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Mouse embryonic stem (mES) cells, established in 1981
(Evans and Kaufman, 1981; Martin, 1981), were derived
from the inner cell mass (ICM) of blastocysts and can be
expanded in vitro for many passages, maintaining normal
karyotype and differentiation potential. Upon introduction into
blastocysts, mES cells can differentiate into all three germ
layers, contributing to all the somatic lineages and germline.
In 1998, James Thompson derived human embryonic stem
(hES) cells from the ICM of human blastocysts (Thomson
et al., 1998). Intriguingly, hES cells have many characteris-
tics different from mES cells, including morphology and
signaling pathway maintaining pluripotency (Burdon et al.,
2002; Forsyth et al., 2002; James et al., 2005). In 2007,
mouse epiblast stem cells (EpiSCs) were derived from the
epiblast of post-implantation mouse embryo (Brons et al.,
2007; Tesar et al., 2007). These mouse EpiSCs have distinct
molecular and functional properties from mouse ES cells,
while resemble human ES cells in many ways. Mouse ES
cells and EpiSCs represent the in vitro counterpart of
preimplantation and postimplantation epiblast, and these two
phases were defined as naïve and primed pluripotency
respectively (Nichols and Smith, 2009). The traditional
human ES cells are similar to mouse EpiSCs as a primed
pluripotent state. Recently, several groups described culture
conditions to induce and maintain human ES cells at a
naïve-like state (Chan et al., 2013; Duggal et al., 2015; Gafni
et al., 2013; Takashima et al., 2014; Theunissen et al., 2014;
Valamehr et al., 2014; Ware et al., 2014), suggesting that
human pluripotent stem cells also have these two phases.

Although pluripotent stem cells can differentiate into all
the cell types in an adult organism, neither naïve ES cells nor
EpiSCs could contribute to extra-embryonic (ExEm) tissues,
which mediate uterine implantation and subsequent mater-
nal nutrition of the growing embryo and fetus (Beddington
and Robertson, 1989). In 2017, two groups reported the

derivation of extended (or expanded) pluripotent stem (EPS)
cells, which could generate both embryonic and extra-em-
bryonic lineages in vivo (Yang et al., 2017a, b). EPS cells
could be efficiently derived from early embryos and through
reprogramming, both in human and mouse. Remarkably, one
single EPS cell injected into eight-cell embryo could con-
tribute to both the embryo proper and the trophectoderm
lineages. Single-cell transcriptome analysis revealed
enrichment for blastomere-specific signature in EPS cells.

One of the most important applications of mES cells is to
generate knockout mice. In this issue of Protein & Cell, two
papers from Deng lab (Du et al., 2018; Li et al., 2018)
showed that, compared to mES cells, EPS cells have
superior advantages in generating mouse models. Li et al.
showed that EPS cells had genetic and epigenetic stability
better than ES cells after long-term culturing. When single
EPS or ES cell was injected into eight cell embryos, EPS
cells showed much better chimeric contribution capability.
They further knocked human IL3 and IL6 genes into mouse
endogenous loci using CRISPR-Cas9. After injecting these
engineered EPS cells into tetraploid embryos, they were
able to derive IL3 and IL6 knock-in mice directly with an
efficiency of one mouse out of ten injected embryos, while
injecting ES cells failed to obtain any live born. These results
showed that gene targeting in mouse EPS cells combined
with tetraploid complementation (Nagy et al., 1993) can
efficiently produce mouse models in approximately 2–3
months.

Since only a few mouse strains are permissive for ES
cells derivation, Du and colleagues attempted to derive EPS
cells from non-permissive NOD-scid Il2rg−/− strain. They
successfully established EPS cells from NOD-scid Il2rg−/−

stain via two methods: de novo derivation from blastocysts
and chemical reprogramming from embryonic fibroblasts. In
vitro long-term culture showed these EPS cells kept normal
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karyotypes, and contributed to both ICM and trophectoderm
lineages when injected into embryos. They also showed that
gene targeting worked efficiently in EPS cells derived from
NOD-scid Il2rg−/− background.

Genetically modified mouse models are invaluable tools
for biology and biomedical research. These two studies
raised some exciting opportunities for improving mouse
model generation. Although CRISPR-Cas9 based gene
editing in zygote could generate knockout and knock-in mice
efficiently (Wang et al., 2013; Yang et al., 2013), more
sophisticated manipulation such as large transgene knock-in
and conditional allele generation could still be easier using
gene targeting in pluripotent stem cells. With superior
genetic and epigenetic stability and efficient tetraploid com-
plement capability, EPS cells could serve as a very useful
system to generate genetically modified mouse models. With
the help of CRISPR-Cas9, multiple sophisticated genetic
modifications can be engineered in EPS cells and then
mouse will be derived directly from these cells via tetraploid
complementation.

Since NOD-scid Il2rg−/− strain is highly immunodeficient, it
is widely used for generating humanized mouse models,
such as patient derived xenograft (PDX) model. It will be
interesting to know whether the results of these two studies
can be combined to generate human IL6 knock-in NOD-scid
Il2rg−/− mouse through tetraploid complementation. If this is
successful, it sure will facilitate the generation of more
sophisticated models on this important strain background.

Although EPS cells have developmental potency to con-
tribute to both embryonic and extra-embryonic lineages, they
are still not bona fide totipotent (Jaenisch et al., 2018). As Li
and colleagues showed, when one single EPS cell was
injected into eight cell embryos, about 30% of the E10.5
embryos have more than 50% cells coming from this single
injected EPS cell. This suggests that EPS cells have better
development potential than natural blastomere! Upon further
development of culture condition, whether EPS cells alone
can contribute to the entire embryos is an extremely exciting
question to ask.

So far EPS cells have only been derived from human and
a few mouse strains, another very exciting future direction is
to derive EPS cells from more species, especially in live-
stock animals that were non-permissive to pluripotent stem
cell establishment. If successful, this will greatly improve the
genetic modification and production of other species such as
non-human primate and livestock.
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