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Executive function is necessary for the regulation of the stepping
activity when stepping in place in older adults
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Abstract To determine the effect of age on stepping

performance and to compare the cognitive demand

required to regulate repetitive stepping between older and

younger adults while performing a stepping in place task

(SIP). Fourteen younger (25.4 ± 6.5) and 15 older adults

(71.0 ± 9.0) participated in this study. They performed a

seated category fluency task and Stroop test, followed by a

60 s SIP task. Following this, both the cognitive and motor

tasks were performed simultaneously. We assessed cogni-

tive performance, SIP cycle duration, asymmetry, and

arrhythmicity. Compared to younger adults, older adults

had larger SIP arrhythmicity both as a single task and when

combined with the Category (p\ 0.001) and Stroop

(p\ 0.01) tasks. Older adults also had larger arrhythmicity

when dual tasking compared to SIP alone (p\ 0.001).

Older adults showed greater SIP asymmetry when com-

bined with Category (p = 0.006) and Stroop (p = 0.06)

tasks. Finally, they had lower cognitive performance than

younger adults in both single and dual tasks (p\ 0.01).

Age and type of cognitive task performed with the motor

task affected different components of stepping. While SIP

arrhythmicity was larger for all conditions in older com-

pared to younger adults, cycle duration was not different,

and asymmetry tended to be larger during SIP when paired

with a verbal fluency task. SIP does not require a high level

of control for dynamic stability, therefore demonstrating

that higher-level executive function is necessary for the

regulation of stepping activity independently of the

regulation of postural balance. Furthermore, older adults

may lack the cognitive resources needed to adequately

regulate stepping activity while performing a cognitive task

relying on the executive function.

Keywords Rhythmicity � Symmetry � Executive
function � Older adults � Stepping � Gait

Background

Gait is considered a highly complex motor task, as postural

balance must be regulated to achieve safe forward pro-

gression while also coordinating symmetrical actions of

both lower limbs. Normal gait pattern requires that

movements of the legs be similar in amplitude and timing

[1–3]. However, healthy individuals walk with some spatial

and temporal variability [1], which may reflect the flexi-

bility and adaptability of the motor system in the regulation

of the gait pattern [4]. Others have suggested that some gait

characteristics such as stride-to-stride variability should be

kept low to maintain gait stability [5, 6]. Supporting this

suggestion is the notion that gait variability and asymmetry

tend to increase with advancing age and in the presence of

neurological deficits (e.g. Parkinson’s disease) [7–9] and

have been associated with a higher risk for falls in these

populations [2, 10–14].

In younger adults, gait demands only minimal attention

[15–17]. However, increasing evidence shows that gait

regulation requires higher cognitive control, especially in

older adults [18–20]. With advancing age, the ability to

coordinate the action of each leg relative to the other

becomes increasingly challenging, compromising gait

symmetry, coordination, and ultimately reducing postural

balance and increasing the risks for falls [17, 21].
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Therefore, gait in older adults may not be as automatically

regulated as it is in younger adults and may require more

active control [17, 22, 23].

Dual-task paradigms have frequently been used to

determine the cognitive processes involved in gait and

often lead to a decrease in gait performance [15, 23–25]

and an increased fall risk [17, 26]. Stride-to-stride vari-

ability has been found to be a reliable marker of gait reg-

ulation, where greater stride-to-stride variability represents

poorer gait control as can be seen when two simultaneous

tasks compete for one’s limited available attentional

resources. Therefore, dual tasking involves the appropriate

allocation and prioritization of attention between the two

competing tasks [15, 23, 24, 27]. Typically, as the com-

plexity of a cognitive task increases, the majority of

attentional resources are directed towards the postural task

to maintain motor performance and minimize postural

instability [15, 28]. When the cognitive task is simple, the

threat of postural instability is low, but as task difficulty

increases, so does the postural threat until prioritization

between the two tasks is required [15, 28]. As postural task

complexity increases, older adults devote greater attention

to the postural task compared to younger adults [18, 27–

29].

As opposed to focusing on the entirety of a typical gait

pattern, stepping-in-place (SIP) is a cyclical task, which

reduces gait to its simplest form, as it does not include

forward progression. Therefore, it reduces the need to

regulate postural balance, and allows primarily assessing

the regulation of the stepping action. SIP has been vali-

dated [30] and used as a surrogate to gait to assess stepping

variability in individuals with Parkinson’s disease [10, 30]

and subsequently in virtual reality protocols in PD [31, 32].

The purposes of the present study are to determine the

effect of age on stepping variability and to compare the

cognitive demand required to regulate repetitive stepping

when performing a simple SIP task. More specifically, this

study aims to determine the effects of two cognitive tasks

relying on executive processes, the Category task and the

Stroop Word and Color Test, to compare their impact on

stepping variability between younger and older adults. Our

hypothesis is that age will have an impact on stepping

performance and that concurrently performing a cognitive

task while SIP will have a greater effect in older adults

compared to younger adults.

Methods

Convenience sample of 29 subjects: 14 healthy younger

adults (mean 25.4, SD 6.5, min 20, max 42 years, 11

women) and 15 healthy older adults (mean 71.0, SD 9.0,

min 60, max 81 years, 10 women) participated in the

study. Subjects were excluded if they reported previous

surgeries (i.e. knee or hip replacement), impairment (i.e.

knee or back pain) or conditions (i.e. Type 2 diabetes)

that may interfere with gait and balance. None of the

recruited participants were actually excluded as partici-

pants were screened during a telephonic interview per-

formed prior to testing. Subjects were excluded if they

reported previous surgeries and/or impairments (e.g. knee

or back pain) that could result in proprioceptive alteration

(e.g. knee or hip replacement), or any conditions such as

Type 2 diabetes that could result in peripheral neuropathy

and therefore interfere with gait and balance. Participants

with uncorrected vision or vestibular problems were also

excluded from the study. None of the recruited partici-

pants were actually excluded as they were screened dur-

ing a telephonic interview performed prior to testing.

Following this pre-screening, participants performed the

Montreal Cognitive Assessment (MoCA) and were

excluded if they presented with potential Mild Cognitive

Impairment, i.e. if they had a score below 26. The study

was approved by our Institutional Review Board. Motor

task Participants were asked to stand upright with their

arms along their sides and step in place at a comfort-

able pace for 60 s [30]. SIP trials, were performed on two

force platforms recording at 200 Hz (Kistler, Winterthur,

Switzerland). Different from Nantel et al. [30], SIP cycle

duration, symmetry and rhythmicity were calculated for

55 s, to account for the non-steady state of the first few

steps. SIP cycle asymmetry = 100 9 |ln(SSWT/LSWT)|,

where SSWT and LSWT correspond to the leg with the

shortest and longest mean swing time over the trials,

respectively. SIP cycle rhythmicity represents the mean

stride time coefficient of variation (CV) of both legs. A

large stride time CV indicates less rhythmic gait. SIP

rhythmicity and symmetry were averaged over three tri-

als. Swing and stride times were analyzed using the

algorithm by Nantel et al. [30]. Force plate data were

filtered with a zero-lag fourth-order Butterworth filter

with a 12 Hz cut-off frequency.

Cognitive tasks The Category task and the Stroop Word

and Color Test were performed while sitting (single task

condition) and while SIP (dual task condition). The cate-

gories were presented on a monitor placed 1 m in front of

the participant. The total length of the trial was 60 s, and

each trial comprised of four categories (15 s each). The

task consisted of naming as many items as possible that fit

the given category in 15 s (e.g. naming as many vegeta-

bles as possible). Errors (e.g. naming a fruit in the veg-

etable category) were subtracted from the total number of

items and categories were randomized between the sitting

and SIP conditions. The Stroop Word and Color Test

consisted of two parts: Stroop A (words) and Stroop B

(colors). During the first part (Stroop A), participants were
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presented with an 8 9 10 matrix with color names written

in different colored ‘‘inks’’. Participants had 30 s to read

the color names out loud regardless of the color of the

‘‘ink’’ (e.g. blue written in red = blue.). In the second part

(Stroop B), a second matrix was presented again for 30 s,

and participants were instructed to recite the color of the

letters independently of the written word (e.g. blue written

in red = red.). This task assesses the executive function by

looking at the ability to appropriately allocate attentional

resources and resolve conflict, unlike the category test,

which involves mostly semantic memory and executive

functions such as flexibility and inhibition [33]. Variables

For the Category test, the total number of responses was the

main variable while for the Stroop Word and Color Test,

the main variables included the total number of words, total

number of colors, as well as both the word–color absolute

and relative differences.

Statistics

Two-Way Mixed Design Analyses of Variance (ANOVAs)

were used to account for the differences between age

groups (younger and older adults) and attention (sitting and

SIP) for cognitive performance (Category and Stroop

tests). Two-Way Mixed Design ANOVAs were also used

to compared SIP cycle duration, symmetry and rhythmicity

between groups and between conditions (single or dual

tasking). Repeated measures ANOVAs were also used to

determine the difference between conditions within each

group. Statistical level of significance was set at p\ 0.05.

All significant results were subjected to Bonferroni

adjustment for multiple comparisons.

Results

Motor performance

For SIP arrhythmicity (Table 1), there was a significant

main effect for tasks, F(2, 26) = 3.685, p\ 0.001. Pair-

wise comparisons revealed a statistical difference between

SIP as a single task F(1, 27) = 13.022, p = 0.001 and SIP

combined with the Category task, F(1, 27) = 2.638,

p = 0.001, and the Stroop Word and Color Test, F(1,

27) = 8.752, p = 0.006. There was also a main effect for

groups, F(1, 27) = 17.814, p\ 0.001. Older adults had

significantly larger SIP arrhythmicity compared to younger

adults when performing the SIP task as single task as well

as when performed in combination with both the Category

(p = 0.001) and Stroop Word and Color Test (p\ 0.01),

Table 1. Within the older adult group, SIP arrhythmicity

during single tasking was smaller than during the Category

and the Stroop Word and Color Test (p\ 0.001). Also,

when comparing dual task conditions, SIP arrhythmicity

was smaller during the Stroop Word and Color Test com-

pared to the Category test (p = 0.02). No differences were

seen within the younger adult group.

In SIP asymmetry, there was a main effect for tasks,

F(2, 26) = 3.869, p = 0.03. Pairwise comparisons

revealed a difference between SIP as a single task and SIP

combined with the Category task (p = 0.03). Within the

older adult group, asymmetry of SIP alone was smaller

compared to SIP with the Category task (p = 0.006) and a

trend was seen with the Stroop Word and Color Test

(p = 0.06). No differences were seen within the younger

adult group.

No main effects were seen when comparing SIP asym-

metry between groups, F(1, 27) = 3.503, p = 0.072.

However, results showed a trend for statistical difference

between groups in the Category task (p = 0.06). SIP stride

duration in single or dual tasking was not significantly

different between the groups or tasks.

Cognitive performance

In the Category task, the total number of items named

showed a main effect for tasks, F(1, 27) = 7.029,

p = 0.01, as well as a main effect for groups F(1,

27) = 15.962, p\ 0.001. Older adults named fewer items

compared to the younger group for both single tasking,

F(1, 27) = 8.169, p = 0.008, and dual tasking, F(1,

27) = 20.499, p\ 0.001. Within the older adult group, the

total number of responses during the Category test was

lower when SIP (mean 27.5, SD 4.9) compared to when

seated (mean 30.8, SD 7.3, p\ 0.05). There were no dif-

ferences between single (mean 37.3, SD 4.2) and dual

(mean 35.8, SD 5.0) tasks in younger adults.

For the Stroop Word and Color Test, the number of

words revealed a main effect for task, F(1, 27) = 17.708,

p\ 0.001, as well as for groups, F(1, 27) = 13.348,

p = 0.001, Table 2. Pairwise comparisons revealed a dif-

ference between groups, with older adults identifying fewer

items compared to younger adults when single tasking,

F(1, 27) = 7.162, p = 0.01, and when dual tasking, F(1,

27) = 13.236, p = 0.001. Within the older adult group,

fewer words were identified during dual tasking compared

to single tasking (p\ 0.01). No differences were seen

between single and dual tasking conditions in younger

adults.

The number of colors showed no main effect for task.

However, there was a main effect for groups, F(1,

27) = 57.245, p\ 0.001. Pairwise comparisons revealed

fewer colors identified by older adults compared to

younger adults both in single, F(1, 27) = 48.212,

p\ 0.001, and dual tasking conditions F(1, 27) = 48.079,

p\ 0.001.
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The Stroop Word and Color Test difference showed a

main effect for task, F(1, 27) = 16.390, p\ 0.001. Both

older (p\ 0.001) and younger adults (p = 0.03) showed a

larger word–colors difference in dual tasking compared to

single tasking. The Stroop Word and Color Test difference

ratio showed a main effect for task, F(1, 27) = 9.453,

p = 0.005, and a main effect for groups, F(1,

27) = 27.956, p\ 0.001. Pairwise comparisons showed

smaller ratio in older adults compared to younger adults

both in the single task, F(1, 27) = 17.127, p\ 0.001, and

dual task F(1, 27) = 20.656, p\ 0.001. Within the older

adults, the Stroop Word and Color Test difference ratio was

larger in dual tasking (0.41 ± 0.03) compared to single

tasking (0.35 ± 0.03), p\ 0.001. Within the younger

adults, the ratio was also larger in dual tasking

(0.61 ± 0.03) compared to single tasking (0.52 ± 0.03),

p\ 0.001.

Discussion

The main purposes of this study were to determine the

effect of age on motor and cognitive performance and the

impact of a two cognitive tasks relying on the executive

function, the Category verbal fluency task and the Stroop

Word and Color Test, on SIP regulation. Contrary to pre-

vious studies assessing the effect of age and dual tasking on

gait variability, we chose the SIP task as it does not require

control of the center of mass for forward gait progression

and therefore allows for sole assessment of the stepping

activity generation and regulation. As expected, our results

showed that both motor and cognitive performances were

affected by age. More importantly, we found that age and

the type of cognitive task performed along with the motor

task had an effect on different components of gait and

cognitive performance. While arrhythmicity was larger in

all conditions in older compared to younger adults, SIP

cycle duration was not significantly different in any of the

conditions. A trend toward larger asymmetry was found

with older adults (p = 0.06), but only when SIP was

combined with the Category task, not the Stroop.

The similar SIP cycle duration between groups and

conditions is different from other studies which found

slower gait speed in older adults especially when dual

tasking. During normal walking, the progression of the

center of mass within the margin of stability needs to be

actively controlled by the central nervous system. There-

fore, a reduction in speed when gait is combined with a

cognitive task provides more time to adequately position

the foot on the ground, thus preserving postural stability.

Contrary to walking, SIP does not require a high level of

regulation of dynamic stability, as the forward progression

of the center of mass does not need to be controlled.

Therefore, foot placement during SIP may require less

Table 1 Asymmetry and arrythmicity (mean ± SD) as a single task and combined with the Category task and the Stroop Color–Word Test

Young adults (n = 14) Older adults (n = 15)

Single task Category Stroop Single task Category Stroop

Arryhthmicity (CV) 2.63 ± 0.61 3.65 ± 0.87 3.53 ± 0.60 3.89 ± 1.16� 6.27 ± 2.62�� 5.20 ± 2.04��x

Asymmetry 4.13 ± 1.56 4.88 ± 2.47 4.73 ± 2.83 4.61 ± 1.79 6.93 ± 3.16� 6.09 ± 2.52

Stepping in place cycle (s) 1.15 ± 0.14 1.18 ± 0.15 1.17 ± 0.14 1.13 ± 0.21 1.18 ± 0.23 1.14 ± 0.24

� Significantly different from young p\ 0.01
� Significantly different from single task p\ 0.01
x Significantly different from category task p\ 0.05

Table 2 Stroop Color–Word

Test (mean ± SD) while sitting

(single task) and when

combined with the SIP task

Young adults (n = 14) Older adults (n = 15)

Single task Dual task Single task Dual task

Number of words 66.9 ± 9.6 60.4 ± 9.5 56.7 ± 10.8� 47.1 ± 10.1��

Number of colours 34.4 ± 4.2 36.4 ± 5.2 19.1 ± 7.2� 19.3 ± 7.7�

Difference (words–colours) 32.5 ± 9.2 24.1 ± 7.8� 37.6 ± 12.8 27.8 ± 8.6�

Colours/words (%) 52.1 ± 8.0 60.9 ± 9.0� 34.7 ± 13.7� 40.9 ± 13.9��

� Significantly different from young p\ 0.05
� Significantly different from single task p\ 0.05
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active regulation than normal walking and consequently

allow more of one’s cognitive resources to be allocated to

the cognitive performance. As gait velocity has been shown

to decrease in both fallers [34, 35] and in individuals with

cognitive impairments [36–38], it would have been inter-

esting to determine if cycle duration would decrease in

these populations despite the simplicity of the SIP task.

However, a larger sample size would have been necessary

to further divide our older adult group.

Previous studies have reported larger gait variability in

older adults when performing a Category fluency task

[29], but have shown no effect in younger adults [23, 29].

Recently, Walshe et al. [22] reported a larger negative

effect of dual tasking on gait, but even more so when the

cognitive task targeted the executive functions. In their

study, gait in both young and older adults was affected,

but with a larger effect in older adults. Altogether, these

studies demonstrated that the generation of the gait pat-

tern involves higher cortical regions [22, 23, 29]. The

greater effect of dual tasking on older adults also suggests

that as age progresses, cognitive resources may be inad-

equate to perform gait and a cognitive task simultane-

ously [12, 22]. Overall, our results are in line with these

previous studies, which demonstrate that age and dual

tasking affect the generation and regulation of the SIP

activity. However, SIP arrhythmicity was larger in older

adults, independently of the cognitive task, while asym-

metry was not affected until concomitant cognitive

activity was performed. This suggests that age affects the

ability to regulate stepping rhythmicity to a greater extent

than it affects stepping asymmetry, and that both neces-

sitate higher-level cognitive functions independently of

the control of postural balance.

Overall, cognitive performance was affected by age both

in single and dual tasking conditions, which highlights the

age-related decline in executive processes performance

[39]. Interestingly, both the Category task and Stroop A

(words, congruent) showed a main effect for tasks while

Stroop B (colours, incongruent) did not. This could be due

to what was previously described by Bloem and collabo-

rators [27] as the posture first strategy, whereby older

adults could have been prioritizing motor performance over

cognitive performance when the level of difficulty of the

cognitive task was increased (incongruent vs. congruent).

The positive aspect of such a strategy is that it reduces the

risk of postural instability during the completion of the

motor task. However, on the basis of the older adults’

decreased performance in both the motor and cognitive

task compared to younger adults, these strategies may not

be entirely effective. As participants in the present study

were healthy older adults, it is more likely that motor and

cognitive performances in individuals with cognitive defi-

cits would have been even more affected by the dual task

paradigm [34–38].

The type of cognitive task chosen is important to con-

sider when looking at its effect on gait, as it has been

demonstrated that tasks involving executive function have

a larger effect on gait compared to tasks used to divide

attention (e.g. reciting the alphabet) [20, 22, 40]. Both

cognitive tasks performed in this study are considered to

rely mainly on the executive functions. However, specific

characteristics of these tasks could explain motor and

cognitive discrepancies between the tasks. While verbal

fluency is largely attributed to the executive functions, it

has been shown to be dependent on the visuospatial

sketchpad, a subsystem of the working memory, and

therefore, participants may use visual imagery to retrieve

items from a category [41]. In our study, despite the fact

that participants were asked to fixate on a monitor during

the trial, the visualization strategy could have led to an

internal focus of attention. This is important when con-

sidering that the Stroop Word and Color Test necessitates

focusing ‘‘externally’’ on the monitor. Therefore, the

monitor could have played the role of a visual anchor,

stabilizing balance and reducing stepping asymmetry by a

greater extent during the Stroop Word and Color Test than

during the category task.

Conclusions

Age and the type of a cognitive task affected stepping

characteristics differently. While SIP arrhythmicity was

larger in all conditions in older adults compared to younger

adults, SIP cycle duration was not significantly different

and asymmetry showed a trend to be larger when a verbal

fluency task was performed while stepping in place. This

suggests that the regulation of the stepping activity relies

more heavily on the executive function as age progresses

and that the age related decline in these higher-level cog-

nitive functions affects the ability to generate rhythmical

stepping cycles. Considering that this study was conducted

on healthy older adults, it would be interesting to assess

stepping variability in older adults with cognitive decline

and in individuals at high risk of falls.
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