receptor-a that blocks both IL-4 and IL-13 signaling and is of
particular interest given what we now know about the signaling
mechanism of mucus production (11).

In conclusion, intraluminal mucus or plugs are an important
feature of asthma pathophysiology. Tang and colleagues advance this
understanding by establishing plugs as a stable asthma phenotype
and contributor to airflow obstruction (9), collectively framing
intraluminal plugs as a therapeutic target. We share the authors’
enthusiasm and call for novel interventions to eliminate intraluminal
plugs but also question if old tricks, including the normalization of
sputum eosinophils, expectorants, mucoregulators, or mucolytics,
may be effective strategies for most people with asthma. The
impaction of mucus might also be determined by the anatomy of the
airways. Although old mucolytic therapies and expectorants may be
partially effective to dislodge impacted mucus, they may not prevent
the formation of new mucus. New therapies such as anti-IL4R
monoclonal antibodies, directly targeting MUCS5 (by aerosolized or
other routes), or targeting consequences of mucin crosslinking
facilitated by the interaction of thiocyanate and peroxidase (12)
might be more effective. It would appear that mucus clearance might
be just as important, if not more important, than luminal eosinophil
clearing in some patients with severe asthma, and even in milder
asthma for symptoms such as cough. The CT mucus score will likely
be leveraged as an outcome measure or for participant selection in
forthcoming intervention studies. Although CT is a promising tool
to assess intraluminal mucus, its limitations must be recognized, and
there is a need for optimization, automation, validation, and
standardization before integration into daily clinical practice.
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3 Getting to the How and Why: Are Individuals with Chronic
Obstructive Pulmonary Disease More Susceptible to the Health

Effects of Air Pollution Exposure?

It’s practically public health dogma: individuals with chronic
obstructive pulmonary disease (COPD) are at increased risk of adverse
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health effects related to pollution exposure. This assertion is based on a
large number of epidemiologic studies demonstrating that short-term
exposure to pollutants is a trigger for acute COPD exacerbations, as
determined by increased respiratory symptoms, medication usage,
urgent care visits, and hospitalizations (1, 2). Long-term pollution
exposure has also been linked with increased COPD incidence,
severity, and progression (3-6). According to one analysis in the
Global Burden of Diseases study, ambient air pollution is the second
most common cause of death and disability owing to COPD (7).
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The biological underpinnings for these adverse effects are
thought to be related to pollutant-induced inflammation,
oxidative stress, and immune dysregulation in the lung. Yet few
toxicologic studies have focused specifically on COPD and air
pollution, particularly because animal models of COPD are
expensive, time consuming, and technologically challenging (8).
Historically, human controlled exposure studies have played an
important role in providing mechanistic evidence for the health
effects of pollutant exposure. Owing to ethical considerations, the
endpoints of these studies have focused on temporary, reversible
health effects. However, when subclinical findings are in the
pathway for development of disease, they provide compelling
evidence for causal associations (9).

It is within this context that, in this issue of the Journal, Ryu
and colleagues (pp. 1046-1052) report findings from a controlled
human crossover study of the short-term effects of diesel exhaust
exposure in older adults with and without COPD (10). The study
enrolled 20 healthy participants (9 ex-smokers and 11 never-
smokers) and 10 ex-smokers with mild to moderate COPD and
used diesel exhaust (DE) as a model for traffic-related air
pollution—the major source of ambient pollutants worldwide—
at concentrations typically encountered during heavy traffic.
Each participant underwent two exposure sessions, randomized
to order, to both filtered air and DE at 300 pg/m® for 2 hours.
Twenty-four-hour postexposure peripheral blood samples and
bronchoscopies were performed for measurement of
inflammation markers, proteases, and antiproteases.

As hypothesized, the authors found that the individuals with
COPD exhibited more effects of DE exposure relative to the other
participants. Although DE exposure caused an increase in circulating
lymphocytes in all participants, only the participants with COPD had
significant changes to BAL markers. Specifically, there was an
increase in BAL SAA (serum amyloid-A) and MMP-10 (matrix
metalloproteinase 10) with a borderline increase (did not maintain
statistical significance after multiple comparison testing) in CRP
(C-reactive protein) and VCAM-1 (vascular cell adhesion protein-1).
There were no observed changes in airway cellularity or spirometry in
any participants.

The observed rise in BAL concentrations of SAA, CRP, and
VCAM-1 is indicative of acute oxidative stress, inflammation,
and promotion of neutrophilic infiltration in the airways after DE
exposure. These findings provide support for the current
understanding of pollutant-mediated pulmonary injury and
parallel observations of earlier studies. Prior studies of DE
exposure in healthy participants have reported increased
expression of mRNA proinflammatory mediators and proteins,
such as IL-8 and myeloperoxidase; as well as variable increases in
cellular infiltrates in sputum, BAL, and bronchial mucosal
biopsies (11, 12). Although many specific proinflammatory
mediators previously reported were not elevated in the current
study findings, the authors point out that these molecular
markers are acute-phase reactants and may have already returned
to normal by 24-hour postexposure bronchoscopy.

A more novel finding in the study was the increase in MMP-10
after DE exposure in participants with COPD. Although the
functions of specific MMPs have not been fully delineated, MMP-10
is believed to have an important regulatory role in the induction of
extracellular matrix degradation and the pathogenesis of COPD.

Editorials

MMP-10 expression is induced by macrophages in response to injury
and infection and is increased in more severe forms of emphysema in
human smokers (13). Murine studies also support a critical role for
MMP-10 in emphysema pathogenesis (14). Although the observed
change in MMP may not have clinical implications and needs to be
replicated, the findings may help advance a mechanistic model that
establishes biologic plausibility for the association between air
pollution and new-onset COPD.

It is interesting that only the subgroup of participants
with COPD exhibited DE-induced changes in pulmonary
markers. Although this provides additional evidence of
enhanced susceptibility for individuals with COPD, it perhaps
raises more questions than answers. Are the health effects related
to increased particle deposition from obstructive airway disease
and thus indicative of an increased internalized dose of
pollutants? Or is the differential response to environmental
contaminants in comparison with ex-smokers representative of
an underlying genetic predisposition to develop disease? Or
perhaps, are the observed adverse effects a consequence of
COPD-induced changes in macrophage function and immune
dysregulation? Although provocative, these findings need to be
interpreted with caution, particularly because other controlled
exposure studies including subjects with obstructive airway
disease have had mixed results, with some paradoxically
finding less adverse health effects in relationship to healthy
subjects (15).

Studies to evaluate COPD-specific susceptibility to air pollution
in terms of inflammatory and protease changes in the lower
respiratory tract are lacking, and this study attempts to fill this
knowledge gap. Limitations of this study include a time-point that
may have missed the peak of inflammatory changes, and the small
sample size, reducing power to detect meaningful differences,
especially when accounting for multiple comparisons. However, this
study is meant to be exploratory, and future studies will need to
validate these markers and explore etiologies for these changes to
provide mechanistic insight.

Overall, this study highlights the importance of rigorous
clinical trials in air pollution research in uncovering mechanisms
of disease susceptibility. Understanding the how and why
pollution affects sensitive populations can help identify novel
interventions to limit toxicity and motivate regulatory action to
reduce emissions.
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38 Should We Wean Patients off Vasopressors before Weaning

Them off Ventilation?

Failed extubation and subsequent reintubation are independently
associated with mortality and morbidity of patients under mechanical
ventilation (1). This is the reason why, before starting the weaning
process, one carefully waits until the patient has reached a sufficient
degree of autonomy (2). Among the criteria used to ensure
autonomy, it must be admitted that the absence of vasopressor
infusion is one of the least solid. Although it is obvious that the
patient must be sufficiently awake and positive end-expiratory
pressure and Fio, must be low, testifying to a minimal respiratory
autonomy, the need to be rid of vasopressor support before weaning
from mechanical ventilation is less evident.

In many cases, the persistence of vasopressor support is
accompanied by persistent dependence on the ventilator or other
remaining failures, and the question of extubating the patient
under vasopressors does not arise. Also, if there is ongoing
myocardial ischemia or major circulatory failure, with obvious
signs of tissue hypoxia, and if the doses of vasopressors are
increasing, it is obvious that extubation must be avoided. The
increase in oxygen consumption owing to the reactivation of the
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respiratory muscles would aggravate tissue hypoxia, and
extubation is clearly unreasonable in this context.

But in other cases, when the infusion of a low dose of a
vasopressor is the only obstacle that remains, what justifies
refraining from extubating the patient? The answer to this
question is still pending.

The risk is not that extubation under vasopressors would
expose the patient to weaning-induced cardiac dysfunction, even
if it is a frequent cause of weaning failure (3). Indeed, this acute
cardiac failure, and the frequently associated pulmonary edema,
are mainly owing to unfavorable changes in the loading
conditions of both ventricles during the transition to
spontaneous breathing. The increase in cardiac preload owing
to the inspiratory fall in intrathoracic pressure, the increase in
right ventricular afterload owing to high-volume ventilation,
and the increase in left ventricular afterload owing to
hypertension are the main mechanisms involved (4). Then, there
is no reason why the persistence of low arterial tone and the
administration of a vasopressor should contribute to it. In fact,
the reason one refrains from extubating a patient on a low dose
of a vasopressor is simply the fear that the underlying disease
that led to the intubation did not completely resolve, if there is
no other clear hemodynamic reason why the patient should
worsen.

In this issue of the Journal, Zarrabian and colleagues (pp.
1053-1063) retrospectively reviewed 6,140 adult patients in Calgary
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