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Hospitalization and mortality 
associated with SARS‑CoV‑2 viral 
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The COVID‑19 epidemic of 2019–20 is due to the novel coronavirus SARS‑CoV‑2. Following first case 
description in December, 2019 this virus has infected over 10 million individuals and resulted in at 
least 500,000 deaths world‑wide. The virus is undergoing rapid mutation, with two major clades of 
sequence variants emerging. This study sought to determine whether SARS‑CoV‑2 sequence variants 
are associated with differing outcomes among COVID‑19 patients in a single medical system. Whole 
genome SARS‑CoV‑2 RNA sequence was obtained from isolates collected from patients registered 
in the University of Washington Medicine health system between March 1 and April 15, 2020. 
Demographic and baseline clinical characteristics of patients and their outcome data including their 
hospitalization and death were collected. Statistical and machine learning models were applied 
to determine if viral genetic variants were associated with specific outcomes of hospitalization or 
death. Full length SARS‑CoV‑2 sequence was obtained 190 subjects with clinical outcome data. 35 
(18.4%) were hospitalized and 14 (7.4%) died from complications of infection. A total of 289 single 
nucleotide variants were identified. Clustering methods demonstrated two major viral clades, which 
could be readily distinguished by 12 polymorphisms in 5 genes. A trend toward higher rates of 
hospitalization of patients with Clade 2 infections was observed (p = 0.06, Fisher’s exact). Machine 
learning models utilizing patient demographics and co‑morbidities achieved area‑under‑the‑curve 
(AUC) values of 0.93 for predicting hospitalization. Addition of viral clade or sequence information did 
not significantly improve models for outcome prediction. In summary, SARS‑CoV‑2 shows substantial 
sequence diversity in a community‑based sample. Two dominant clades of virus are in circulation. 
Among patients sufficiently ill to warrant testing for virus, no significant difference in outcomes of 
hospitalization or death could be discerned between clades in this sample. Major risk factors for 
hospitalization and death for either major clade of virus include patient age and comorbid conditions.

Coronaviruses are a group of enveloped, non-segmented, single-stranded, positive-sense RNA viruses that are 
capable of infection in humans and  animals1. SARS-CoV and MERS-CoV are two coronaviruses that have previ-
ously resulted in large-scale  pandemics2. COVID-19, the disease caused by the coronavirus SARS-CoV-2, has 
affected over 10 million people and resulted in over 500,000 deaths worldwide in a seven-month period beginning 
in December 2019 (https ://coron aviru s.jhu.edu/map.html, accessed 7/31/20).

There is substantial variability in the course of COVID-19, ranging from asymptomatic infection to death. 
Overall, worldwide mortality is approximately 6% of clinically confirmed cases; hospitalization rates in the US 
average approximately 15% of confirmed cases (https ://coron aviru s.jhu.edu/map.html). (Because asymptomatic 
cases that are not tested are not included in these statistics, these values likely overestimate mortality and hospi-
talization rate  substantially3). While age and comorbid conditions have been identified as risk factors for hospi-
talization and  death4–6, outcomes appear variable even between large population groups. For example, comparing 
outcomes from two large states in the US (New York and California), New York has a nearly 8% mortality rate 
among confirmed cases compared with a 3.4% rate in California (https ://coron aviru s.jhu.edu/map.html). Rates 
of hospitalization also differ substantially between regions.
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SARS-CoV-2 is ~ 30 kb in length and contains 16 open reading frames (ORFs)7,8. Despite its very recent emer-
gence as a viral pathogen, SARS-CoV-2 has undergone rapid mutation. The Nextstrain sequencing  consortium9 
has identified 2785 variants, while the GISAID initiative has collected over 50,000 full length sequences as of 
6-28-2010–12. Analysis of these sequences reveals 5 (Nextstrain) or 6 (GISAID) sequence clusters, with as many 
as 18 new mutations in each cluster distinct from the original SARS-CoV-2  virus6.

Viral genetic variation plays an important role in pathogenicity and virulence in other viruses, such as 
 influenza13. In this study, we sought to determine if specific viral sequence variants are associated with better or 
worse clinical outcomes in COVID-19, by analyzing the clinical course of a cohort of patients within a single 
medical system for whom both full-length viral sequence data and clinical outcome data were available.

Results
Study population characteristics. Full length SARS-CoV-2 sequence was obtained from 283 patients; 
clinical history within the UW Medicine system was available from 190 of these. 35 (18.4%) were hospitalized 
and 14 (7.4%) died from complications of the infection. Clinical characteristics of this cohort are summarized 
in Tables 1 and 2.

When stratified between hospitalized and non-hospitalized patients, advanced age, admission from a skilled 
nursing facility, and a history of either hypertension (HTN), CHF, CVD, CKD, and a history of DVT or cancer 
were significantly associated with hospitalization (p values < 0.001–0.02). Other characteristics that were asso-
ciated with hospitalization included anti-coagulated status, utilization of an ACE inhibitor or ARB, and use of 
corticosteroid or immunomodulatory therapy (p values < 0.001–0.04). Notably, comorbidities of diabetes and 
known tobacco history were not significantly associated with hospitalized status (Tables 1, 2).

Table 1.  Baseline demographics and medical histories of hospitalized and non-hospitalized patients. DVT 
Deep Venous Thrombosis, COPD chronic obstructive pulmonary disease, MI myocardial infarction, ACEI 
angiotensin-converting enzyme inhibitors, ARB angiotensin receptor blocker, IMT immunomodulatory 
therapy. a Cardiovascular disease defined as history of MI, CVD/stroke, CHF, valvular diseases (s/p CABG). 
b Reference value. All diseases were defined using ICD-9 and ICD-10 codes.

All (n = 190) Hospitalized (n = 35) Non-Hospitalized (n = 155) p value (Fisher)

Age (mean, range) 53.4 (16–95) 66.5 (32–95) 50.5 (16–95)  < .001**

Male (n, %) 97 (51.1) 20 (57.1) 77 (49.7) 0.457

Skilled nursing facility 28 (14.8) 13 (37.1) 15 (9.7)  < .001**

Race* (n, %)

Whiteb 107 (56.3) 24 (68.6) 83 (53.5) 0.108

Asian 21 (11.1) 6 (17.1) 15 (9.7) 0.555

Black 22 (11.6) 3 (8.6) 19 (12.3) 0.376

Native Hawaiian/ Pacific Islander 2 (1.1) 0 (0) 2 (1.3) 0.942

American Indian/Alaskan Native 3 (1.6) 1 (2.9) 2 (1.3) 1.000

Other 35 (24.6) 1 (2.9) 34 (21.9) 0.004*

Diabetes 31 (16.8) 8 (22.9) 23 (15.3) 0.331

Hypertension 63 (34.1) 21 (60) 42 (28) 0.001*

COPD 9 (4.9) 4 (11.4) 5 (3.3) 0.119

Asthma 23 (12.4) 5 (14.3) 18 (12) 0.852

Cardiovascular  Diseasea 34 (18.4) 17 (48.6) 17 (11.3)  < .001**

Chronic Heart Failure 12 (6.5) 8 (22.9) 4 (2.7) 0.002*

Chronic Kidney Disease 15 (8.1) 10 (28.6) 5 (3.3)  < .001**

History of cancer 34 (18.4) 13 (37.1) 21 (14) 0.003*

History of DVT 8 (4.3) 5 (14.3) 3 (2) 0.021*

Hypothyroid 23 (12.4) 5 (14.3) 18 (12) 1.000

History of MI 6 (3.2) 3 (8.6) 3 (2) 0.244

Smoking history

Former 40 (21.1) 11 (31.4) 29 (18.7) 0.218

Neverb 101 (53.2) 18 (51.4) 83 (53.5) 0.851

Current 19 (10) 5 (14.3) 14 (9) 0.402

Unknown 30 (15.8) 1 (2.9) 29 (18.7) 0.039*

Steroids or IMT 29 (15.8) 11 (32.4) 18 (12) 0.013*

Plaquenil 2 (1.1) 0 (0) 2 (1.3) 0.642

ACEI/ARB 37 (20.1) 12 (35.3) 25 (16.7) 0.036*

Anticoagulation 20 (10.9) 11 (32.4) 9 (6) 0.001*
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Viral sequence variants. Full-length sequence was obtained from 190 samples acquired from UW Medi-
cine sites in Seattle Washington between 3/1/20 and 4/15/20. Relative to reference SARS-COV-2 sequence, these 
samples in aggregate showed 289 sequence variants (283 SNPs, 6 insertion/deletion, Fig. 1). Most variants were 
present with frequency less than 5%. 163 of the sequence variants were missense mutations, 84 were synony-
mous mutations, and the remainder were not in protein coding regions.

UPGMA hierarchical clustering produced two clear clades of sequence variants (Fig. 1), determined by 12 
single nucleotide polymorphisms (Table 3). Ninety-seven samples corresponded to what we refer to as ‘Clade 
1′ and 91 corresponded to ‘Clade 2′. Two of 190 samples did not fall into either of the two major clades (and 
are listed as ‘Clade 3’ in Table 4). When mapped onto GISAID and NextStrain clades, we find in clade 1 that 89 
correspond to clades GH/20C, 6 map to G/20A, and 2 map to G/20B. In clade 2 we found that 86 correspond to 
S/19B, and 5 mapped onto L/19A (Table 4). The 2 of 190 samples that did not fall into either of the major clades 
corresponded to GH/20C and S/19B. 

Mapping the 190 sequence variants onto the 2563 available full-length sequences in NCBI Virus (05/18/2020) 
showed that the sequence variants found in Seattle in this study represented a substantial fraction of sequence 
variation seen globally (Fig. 1B). Of note, the two major clades identified in our Seattle-based samples are found 
in approximately equal proportion among global samples. No variants were observed in the current series that 
did not map on an existing clade. In Seattle, there was underrepresentation of one clade appearing in the larger 
dataset, which included sequences collected from 20 countries across 5 continents including the USA, China, 
Australia, Italy, Pakistan, and Brazil and contained the reference sequence (NC_045512.2). Overall, the sequence 
variants obtained in this study did not appear unique to Seattle, and represented a substantial proportion of 
variation noted globally.

Table 2.  Baseline demographics and medical histories of patients stratified by mortality. a 2 sequences were 
excluded as they were not characteristic of either clade. b Reference value. c Cardiovascular disease defined as 
history of MI, CVD/stroke, CHF, valvular diseases (s/p CABG). All diseases were defined using ICD-9 and 
ICD-10 codes. DVT Deep Venous Thrombosis, COPD chronic obstructive pulmonary disease, MI myocardial 
infarction, ACEI angiotensin-converting enzyme inhibitors, ARB angiotensin receptor blocker, IMT 
immunomodulatory therapy.

All (n = 190) Deceased (n = 14) Living (n = 176) p value (Fisher)

Age (mean, range) 53.4 (16–95) 66.5 (32–95) 50.5 (16–95)  < .001**

Male (n, %) 97 (51.1) 9 (64.3) 88 (50) 0.335

Skilled Nursing Facility 28 (14.7) 8 (57.1) 20 (11.4)  < .001**

Race* (n, %)

Whiteb 107 (56.3) 11 (78.6) 96 (54.5) 0.098

Asian 21 (16.4) 1 (8.3) 20 (17.2) 0.487

Black 22 (17.1) 0 (0) 22 (18.6) 0.115

Native Hawaiian/ Pacific Islander 2 (1.8) 0 (0) 2 (2) 1.000

American Indian/Alaskan Native 3 (2.7) 1 (8.3) 2 (2) 0.444

Other 35 (24.6) 1 (8.3) 34 (26.2) 0.183

Diabetes 31 (16.7) 3 (21.4) 28 (16.3) 0.660

Hypertension 63 (33.9) 8 (57.1) 55 (32) 0.076

COPD 9 (4.8) 3 (21.4) 6 (3.5) 0.029*

Asthma 23 (12.4) 3 (21.4) 20 (11.6) 0.299

Cardiovascular Diseasea 34 (18.3) 9 (64.3) 25 (14.5)  < .001**

Chronic Heart Failure 12 (6.5) 4 (28.6) 8 (4.7) 0.014*

Chronic Kidney Disease 15 (8.1) 6 (42.9) 9 (5.2)  < .001**

History of cancer 34 (18.3) 7 (50) 27 (15.7) 0.006*

History of DVT 8 (4.3) 2 (14.3) 6 (3.5) 0.177

Hypothyroid 23 (12.4) 1 (7.1) 22 (12.8) 0.646

History of MI 6 (3.2) 2 (14.3) 4 (2.3) 0.142

Smoking history

Former 40 (28.4) 6 (60) 34 (26) 0.038*

Neverb 101 (53.2) 4 (28.6) 97 (55.1) 0.063

Current 19 (15.8) 2 (33.3) 17 (14.9) 0.300

Unknown 30 (22.9) 2 (33.3) 28 (22.4) 0.571

Steroids or IMT 29 (15.7) 5 (38.5) 24 (14) 0.068

Plaquenil 2 (1.1) 0 (0) 2 (1.2) 1.000

ACEI/ARB 37 (20) 3 (23.1) 34 (19.8) 1.000

Anticoagulation 20 (10.8) 4 (30.8) 16 (9.3) 0.084
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To determine if differential selective pressure was driving mutagenesis toward either major clade, the number 
of missense to silent mutations was compared between clades. Overall, the ratio of missense to sense was 1.851 
in Clade 1 and 1.889 in Clade 2. In each case, this ratio varied significantly from expected random mutation 
which would have predicted a ratio of 3.46 (p < 0.001 for each). Thus, both clades appear to be under selective 
pressure but neither appears under differential pressure.

Figure 1.  Top—SARS-CoV-2 sequence variants among 190 full length genomes sequenced from outbreak in 
Seattle, WA March–April 2020 Purple = Clade 1, Gold = Clade 2. Bottom: dendrogram of sequence relations, 
mapped to identical analysis of 2753 full length sequences in NCBI database.

Table 3.  Distribution of sequence variants occurring more frequently than 5% in the study population.

Variant Coding change Overall prevalence Prevalence Clade 1 Prevalence Clade 2

C36T 5′UTR 0.1158 0.0879 0.1443

C241T 5′UTR 0.4526 0 0.8763

C1059T NSP2: T85I 0.4737 0 0.9175

C3037T NSP3: F106F 0.4842 0 1

C8782T NSP4: S76S 0.4579 0.9451 0

C14408T NSP12b: P314L 0.4842 0 1

C17747T NSP13: P504L 0.4579 0.9451 0

A17858G NSP13: Y541C 0.4579 0.9451 0

C18060T NSP14: L7L 0.4579 0.9451 0

A23403G S: D614G 0.4842 0 1

G25563T ORF3a: Q57H 0.4895 0 0.9485

T28144C ORF8: L84S 0.4579 0.0549 1

G29553A 3′UTR 0.2789 1 0.4536
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Correlation of sequence variants with clinical outcomes. Viral clade appeared to correlate with 
several baseline clinical characteristics as shown in Table 5. When stratified between clade 1 and clade 2 infec-
tions, there was a significant difference in patients with a history of CVD, malignancy, steroid/IMT use, and 
anti-coagulation as well as in patients with a smoking history (p values: 0.005–0.03). Comorbidity with CVD 
and cancer history was associated with clade 2 infection (OR: 3.1, 3.1, respectively) (Table 6). History of steroid/
IMT and anticoagulation use was associated with clade 2 infection (OR: 2.7, 5.0 respectively). Notably, patients 
with clade 2 infections were more likely to have never smoked tobacco (OR: 2.0), while patients with clade 1 
infections were more likely to be active smokers (OR: 3.6). In multivariable analyses, a history of malignancy was 

Table 4.  Correspondence of Clade 1 and Clade 2 of current cohort to Nextrain and GISAID clades.

Nextstrain clade Clade 1 Clade 2 Clade 3 GISAID

19A 5 L

19B 86 1 S

20A 6 G

20B 2 GR

20C 89 1 GH

Total 97 91 2

Table 5.  Demographic Factors and Baseline Clinical Characteristics of the Study Population Stratified by 
Viral Clade (n = 188)a. a Reference value. b Cardiovascular disease defined as history of MI, CVD/stroke, CHF, 
valvular diseases (s/p CABG). All diseases were defined using ICD-9 and ICD-10 codes. DVT Deep Venous 
Thrombosis, COPD chronic obstructive pulmonary disease, MI myocardial infarction, ACEI angiotensin-
converting enzyme inhibitors, ARB angiotensin receptor blocker, IMT immunomodulatory therapy.

All (n = 190) Clade 1 (n = 97) Clade 2 (n = 91) p value (Fisher)

Age (mean, range) 53.4 (16–95) 52.1 (16–93) 55.2 (16–95) 0.24 (T-test)

Male (n, %) 97 (51.1) 54 (55.7) 42 (46.2) 0.20

Hospitalized for COVID 35 (18.6) 13 (13.4) 22 (24.2) 0.062

Skilled Nursing Facility 28 (14.7) 15 (15.6) 13 (14.3) 0.88

Race* (n, %)

Whitea 107 (56.3) 51 (52.6) 55 (60.4) 0.30

Asian 21 (11.0) 8 (8.2) 13 (14.3) 0.46

Black 22 (11.6) 14 (14.4) 8 (8.8) 0.20

Native Hawaiian/ Pacific Islander 2 (1.1) 2 (2.1) 0 (0) 0.24

American Indian/Alaskan Native 3 (1.6) 2 (2.1) 1 (1.1) 0.62

Unknown 35 (18.4) 20 (20.6) 14 (15.4) 0.29

Diabetes 31 (16.3) 18 (18.6) 13 (14.6) 0.35

Hypertension 63 (33.2) 30 (30.9) 33 (37.1) 0.47

COPD 9 (4.7) 2 (2.1) 7 (7.9) 0.13

Asthma 23 (12.1) 12 (12.4) 11 (12.4) 0.96

Cardiovascular  Diseaseb 34 (17.9) 10 (10.3) 24 (27) 0.008**

Chronic Heart Failure 12 (6.3) 4 (4.1) 8 (9) 0.36

Chronic Kidney Disease 15 (7.9) 8 (8.2) 7 (7.9) 0.62

History of cancer 34 (17.9) 10 (10.3) 24 (27) 0.005**

History of DVT 8 (4.2) 1 (1.0) 7 (7.9) 0.09

Hypothyroid 23 (12.1) 9 (9.3) 14 (15.7) 0.25

History of MI 6 (3.2) 1 (1.0) 5 (5.6) 0.25

Smoking history

Former 40 (21.0) 21 (21.6) 19 (20.9) 0.34

Nevera 101 (53.2) 43 (44.3) 56 (61.5) 0.019*

Current 19 (10.0) 14 (14.4) 5 (5.5) 0.017*

Unknown 30 (15.8) 19 (19.6) 11 (12.1) 0.06

Steroids or IMT 29 (15.2) 9 (9.7) 20 (22.5) 0.032*

Plaquenil 2 (1.1) 1 (1.1) 1 (1.1) 0.90

ACEI/ARB 37 (19.5) 17 (18.3) 20 (22.5) 0.49

Anticoagulation 20 (10.5) 4 (4.3) 16 (18.2) 0.011*
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significantly associated with clade 2 across all five feature selection models (aOR: 2.44; p value: 0.049). A current 
smoking history was significantly associated with clade 1 in all multivariate models except for the all-variable 
model (aOR: 4.32, p value: 0.017).

Outcomes of patients by viral clade are shown in Fig. 2. 13/97 (13.4%) patients from Clade 1 were hospitalized 
compared with 22/91 (24.2%) of Clade 2 (p = 0.063 by Fisher exact). 6/97 (6.5%) patients from Clade 1 died from 
infection compared with 8/91 (8.8%) from Clade 2 (p = 0.58 by Fisher exact). Further analysis of individual viral 
sequence polymorphism revealed that no single polymorphism was significantly associated with outcomes of 
hospitalization or death, even without statistical adjustment for multiple comparisons.

Machine learning (ML) was applied to probe for cooperative effects between viral genotype and host risk fac-
tors in determining which patients would be hospitalized. Death was too infrequent an outcome to allow machine 
learning modeling from our dataset. Using a Random Forest paradigm (scikit-learn14 v0.22.2) we trained models 
using patient demographics, clinical features, and viral clade either separately or in combination on 160 cases, 
and tested the model on a hold-out set of 30 cases. For our initial analysis, we utilized the most recent 30 cases 
(which had 3 hospitalized patients out of 30). As shown in Fig. 3, the model using solely patient demograph-
ics achieved an AUROC of 0.66. Addition of clinical information to demographics resulted in a substantially 
improved AUROC of 0.93. This model correctly predicted hospitalization status in 26 of 30 patients. Addition 
of clade data to either demographics-only or demographics + clinical models resulted in minimal improvement 
(AUROC 0.72 and 0.93, respectively). A final model, in which all genetic polymorphism data was added to the 

Table 6.  Univariate and Multivariate Logistic Regression Results for Clinical Outcomes in Clade 1 group 
compared to Clade 2 group. a Reference value. b Cardiovascular disease defined as history of MI, CVD/
stroke, CHF, valvular diseases (s/p CABG). All diseases were defined using ICD-9 and ICD-10 codes. DVT 
Deep Venous Thrombosis; COPD chronic obstructive pulmonary disease; MI myocardial infarction; ACEI 
angiotensin-converting enzyme inhibitors; ARB angiotensin receptor blocker; IMT immunomodulatory 
therapy. Only variables that had p values < 0.05 in univariate analysis were entered in Multivariate Regression 
Results. In multi-categorical variables (Race and Smoking History), Odds ratios were calculated against each 
reference group.

Univariate model Multivariate model

Odds Ratio CI Adjusted OR CI

Male 1.47 0.83–2.60

Hospitalized for COVID 0.485 0.23–1.03 1.04 0.40–2.72

Skilled Nursing Facility 1.10 0.49–2.45

Race

Whitea Reference

Asian 0.66 0.25–1.73

Black 1.89 0.73–4.87

Native Hawaiian/ Pacific Islander Inf

American Indian/Alaskan Native 2.16 0.19–24.51

Unknown 1.54 0.71–3.37

Diabetes 1.40 0.64–3.06

Hypertension 0.81 0.44–1.49

COPD 0.26 0.05–1.28 0.39 0.06–2.33

Asthma 1.051 0.44–2.52

Cardiovascular  Diseaseb 0.327 0.15–0.73 0.57 0.21–1.60

Chronic Heart Failure 0.456 0.13–1.57

Chronic Kidney Disease 1.103 0.38–3.18

History of Cancer 0.327 0.15–0.73 0.41 0.17–1.03

History of DVT 0.127 0.02–1.06 0.35 0.03–3.69

Hypothyroid 0.575 0.24–1.40

History of MI 0.183 0.02–1.60

Smoking history

Former 1.43 0.69–3.01 1.46 0.67–3.19

Nevera Reference

Current 3.65 1.22–10.91 4.32 1.32–14.15

Unknown 2.25 0.97–5.22

Steroids or IMT 0.38 0.16–0.88 0.53 0.20–1.38

Plaquenil 0.96 0.06–15.53

ACEI/ARB 0.78 0.38–1.61

Anticoagulation 0.21 0.07–0.65 0.43 0.10–1.79
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demographics + clinical + clade model performed no better than the demographics + clinical model (AUROC 
0.89).

Because hospitalization was relatively rare (18% in total data set), machine learning models could succeed 
by generally predicting non-hospitalization. The best trained model in our initial analysis (demographic + clini-
cal) correctly predicted hospitalization status in 26 of the 30 subjects. The negative predictive value of this 
model was excellent (0.96), but the pre-test probability of non-hospitalization in this cohort was already 0.9. 
To test the generalizability of the machine learning approach for a group with higher risk of hospitalization, we 
re-trained the model on the same data, except holding out the most recently collected 15 hospitalized and 15 
non-hospitalized patients (Fig. 4). Again, AUROC of the demographics-only model was relatively high (0.78). 
Performance was again improved with addition of clinical data (AUROC 0.86), and no further improvement 
was seen with addition of clade or genetic data to the demographics + clinical dataset. Interestingly, with the 
50% hospitalization holdout set, a demographics + clade model did appear to out-perform demographics-only 
(AUROC 0.86), suggesting that there may be some outcome information associated with clade, with the model 
correctly predicting two additional hospitalizations and one non-hospitalization. However, addition of clade 
information to the demographics + clinical did not improve performance further, suggesting minimal interaction 
between viral clade and comorbid conditions.

Figure 2.  Outcomes of COVID-19 in cohort, divided by viral clade. Color code and dendrogram as in Fig. 1. 
Date refers to relative date of sample acquisition over 35 days, darker color is more recent.

Figure 3.  AUROC for machine learning models for prediction of hospitalization using test set of 30 most 
recent cases. Bottom: Optimal model performance for each dataset model for prediction of hospitalization.
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We further tested the machine learning models for sensitivity by training the models on datasets in which a 
specific clade had a ‘spiked’ association with hospitalization, ranging from 100% to random assignment (Fig. 4C). 
Spiked models achieved AUROC of 1.0 for clade assignments ranging from perfect correlation to ~ 10% noise, 
but then degraded toward demographic-only level AUC performance with between 25 and 50% noise. This 
demonstrates that had viral clade been a dominant determinant of outcome the machine learning models would 
have had sufficient power to detect this effect.

Discussion
The COVID-19 pandemic of 2019–2020 has had a dramatic impact on health world-wide, with 7.8 million cases 
and over 400,000 attributed deaths world-wide as of June 14, 2020. The first case reported in the United States 
was in the state of Washington in January, 2020. In the ensuing 6 months, over 20,000 cases have been reported 
in Washington. The overall hospitalization rate within Washington State as of 7/31/20 is approximately 15%, 
with an overall mortality rate of 5% (https ://coron aviru s.jhu.edu/map.html), although these numbers are based 
on Department of Health confirmed cases and likely overestimate true population rates (which would include 
asymptomatic and minimally symptomatic infected individuals).

Several possibilities exist for the heterogeneity of outcomes associated with SARS-CoV-2 infection. Morbid-
ity may be associated with pre-existing illness or its treatment; individuals already ill from other causes may be 
more likely to require hospitalization or succumb from infection. Access to quality healthcare may also influence 
outcomes. Age itself is a predictor of hospitalization and mortality which may significantly influence outcome. 
Host genetic factors are likely to play a role as well, and recent results suggest two host susceptibility loci that 
influence outcome in COVID-1915.

For some infectious processes, viral strain may play a large role in determination of pathogenicity. The influ-
enza pandemic of 1918—the last widespread highly morbid global pandemic—was caused by a specific strain 
of influenza virus (H1N1). Many other viruses have significant sequence variation which influences clinical 
 outcomes16–18. Hepatitis C genomic variants, for example, have been significantly associated with outcomes in 
hepatic  disease19.

Figure 4.  Machine learning models for prediction of hospitalization using hold-out set of 15 most-recent 
hospitalizations and 15 most-recent non-hospitalizations. (A) AUROC for machine learning models on 
hold-out set. (B) Optimal model performance for each dataset model for prediction of hospitalization. (C) 
Model AUROC for spiked dataset ranging from 100% strain concordance with hospitalization (0) to complete 
randomization of outcome with respect to clade (190). Note that models approach observed AUROC with 
50/160 randomized with respect to clade.

https://coronavirus.jhu.edu/map.html
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The current study is the first to attempt to link SARS-CoV-2 viral sequence variants with COVID-19 out-
comes. We found significant variation in viral sequence in our sample, with 289 sequence variants found in the 
190 sequenced samples. However, the majority of variants occurred with a frequency of less than 10%. All of 
the frequently encountered variants have been previously described, and several clades have been identified in 
the  literature20–24.

Within our data, two clear clades emerged from UPGMA hierarchical clustering of the sequence variants. 
The clades are determined by 12 base variants as noted in Table 3. 97 samples corresponded to what we refer 
to as ‘Clade 1′ and 91 corresponded to ‘Clade 2′. When mapped onto GISAID and Nextstrain clades, we find in 
clade 1 that 90 correspond to clades GH/20C (GISAID/NextStrain), while in clade 2, 86 correspond to S/19B. 
In analyzing the ratio of synonymous to non-synonymous mutations, we find that both major clades appear to 
be under substantial negative selection, with significantly more synonymous than non-synonymous mutations 
observed than would be observed by chance. However, relative to each other, neither strain appeared to be under 
differential selective pressure.

We find that risk factors for hospitalization for patients with COVID-19 include advanced age and presenta-
tion from skilled nursing facility. In addition, we found that histories of hypertension, cardiovascular disease, 
deep venous thrombosis, and chronic renal disease were associated with hospitalization. Even though we found 
several baseline clinical factors to be significantly associated with clade 2 in univariate analyses and history of 
malignancy in the multivariate model, rates of hospitalization were not significantly different between patients 
infected with the two major clades of virus in our study (p = 0.063), nor were mortality rates (p = 0.58). Given 
the relatively low number of fatalities in our study, we were not powered to detect subtle strain-level differences 
in mortality outcome.

Machine learning approaches allowed us to model the predictability of hospitalization. Demographics alone 
was sufficient to allow some prediction of hospitalization with an AUROC for the model for the most recent 30 
cases of 0.66. However, addition of clinical data improved the AUROC to 0.93. Addition of clade or individual 
viral sequence data to the model did not further improve performance suggesting that viral sequence variants 
do not independently contribute significantly to risk of hospitalization. Sensitivity analysis suggests that had a 
viral variant had > 50% impact on hospitalization risk this would have been detected by the machine learning 
algorithm and resulted in higher AUROC.

This study has some unique strengths and weaknesses. Our data were derived from a single health-care 
system encompassing three hospitals in a major metropolitan area. By using a single medical system, we had 
access to substantial medical history on these subjects as well as reduced concern regarding the influence of 
hospital system on outcomes (i.e. we assume that decisions for hospitalization and quality of care of hospitalized 
patients will be more consistent in patients treated within a single system). Our system served as the primary 
site for COVID-19 testing particularly in March and April, 2020, which gave us access to a substantial number 
of patients with linked outcome data. However, our outcomes at present are limited to hospitalization and death. 
Use of hospitalization as outcome represents a useful dichotomous outcome that is a proxy for disease severity. 
However, the decision to admit may be influenced by factors other than the patient’s immediate status, and may 
be biased toward admission of patients with significant comorbidities, advanced age, or socio-economic con-
siderations. It is conceivable that viral sequence variants might be associated with differential outcomes looking 
at more granular and direct disease features such as pulmonary radiologic outcomes or specific complications. 
The use of machine learning produced predictive models with excellent overall performance, particularly for 
predicting those patients who would not require hospitalization. Although we took significant steps to limit 
over-learning by models, including testing on two substantial hold-out sets and performing sensitivity analysis 
with ‘spiked’ datasets, it is possible that these machine learning models might not be generalizable to patients in 
other geographic regions or in other health systems.

Overall, our results demonstrate substantial sequence variation in SARS-CoV-2 within a single metropolitan 
area, where the observed sequences represent a substantial fraction of sequence clades that have been observed 
globally. Viral clade showed a trend toward worse outcomes for patients infected with virus from clade 2 but this 
result was of borderline statistical significance in our cohort of 190 patients, and potentially confounded by imbal-
anced distribution of comorbidities between patients infected with the two major clades. Patient demographics 
and clinical history were strongly predictive of hospitalization, and viral clade information did not substantially 
improve predictions, suggesting that it contributes minimally to determination of outcome. Further analysis on 
larger datasets will be needed to determine if viral clade has significant influence on patient outcome.

Methods
Subjects, samples, and sequencing. Institutional Review Board approval for this study was obtained 
from the University of Washington, and all research was conducted in compliance with the Declaration of 
Helsinki. As a retrospective chart outcome study, the University of Washington IRB exempted this study from 
informed consent. The subset of nasopharyngeal samples collected at University of Washington Medicine (UW 
Medicine) clinical sites between March 5 and April 8, 2020 that tested positive for SARS-CoV2 by quantita-
tive PCR with Ct < 32 were subjected to whole viral genome sequencing as described  previously25,26. In brief 
extracted RNA from positive specimens was converted to cDNA using random hexamers and sequencing librar-
ies were prepared using Nextera XT or Flex kits (Illumina). Libraries were sequenced on MiSeq, NextSeq or 
NovaSeq instruments (Illumina) using 1 × 185, 1 × 75, or 1 × 100 runs respectively. Raw reads were processed to 
generate consensus sequences using a custom bioinformatics pipeline (https ://githu b.com/proyc hou/hCoV1 9) 
that combines de novo assembly and read mapping. Raw reads and consensus sequences were deposited to NCBI 
SRA and Genbank respectively under BioProject PRJNA610428.

https://github.com/proychou/hCoV19
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Patients with medical records in the UW Medicine health care system had their health records extracted 
using manual chart review. Data extracted included demographics (age, sex, ethnicity) as well as co-morbid 
conditions identified on the documented clinical notes. Finally, clinical outcome measures such as hospitalization 
and mortality were collected as well. Patients without adequate documentation on comorbidities were coded as 
unknown (n = 4) and not included in calculations for significance.

Demographic and clinical characteristic data were summarized with descriptive statistics including frequen-
cies, percentages and two-sided Pearson chi-square tests with clade type and hospitalization status as outcomes 
of interest. Fisher’s exact test with mid-p correction and Student’s t-test were used when appropriate in univari-
ate analysis of demographic and clinical characteristics to determine significance. Clopper-Pearson confidence 
intervals were considered for binomial confidence intervals. In an exploratory analysis, four models of variable 
selection for multivariate logistic regression were used to determine significance: 1) stepwise Akaike Informa-
tion Criteria (AIC)27; 2) random forests with area under the receiver operating characteristic curve (AUC) 
as the parameter of  interest28; 3) all univariate significant variables with a p value < 0.1; and 4) all covariates. 
LASSO  regression29 using mean squared error and AUC as the lambda tuner was also performed to understand 
important predictor variables.

Missing data. Missing data was handled using multiple imputation by chained equations (MICE) after a 
sensitivity analysis revealed that the missingness of the data was not completely random (i.e. not MCAR). Recent 
literature has concluded that the number of imputations should be similar to the percentage of incomplete cases, 
which in our data is 3.4%30,31. Taken together with the computational expense, a number of 10 imputed datasets 
was chosen with 20 cycles to reach convergence of the sampling distribution of imputed  values32. Finally, all 
analytic variables with continuous, dichotomous, and categorical data were modelled using predictive mean-
matching, Bayesian logistic regression, and Bayesian polytomous regression, respectively.

Machine learning. For machine learning, several models were built with datasets consisting of combina-
tions of demographics, clinical, clade, and genetic data. Genetic data was included as a vector of sequence vari-
ants for each sample. Each dataset was split into train and test sets with 160 and 30 samples respectively. Model 
selection was run using a nested cross validation (CV) format, with 5 outer folds and leave-one-out CV run on 
each fold. Model tuning was accomplished using 10,000 random sets of hyperparameters for each of 4 model 
architectures (AdaBoost, Extra Trees, Gradient Boosting, Random Forest) from scikit-learn (v0.22.2). Compos-
ite precision-recall curves were produced by merging the 5 outer fold predictions, the area under the precision-
recall curves (AUPRC) and area under the receiver operating characteristic (AUROC) were compared, and the 
parameters that produced the lowest validation bias and highest validation score were chosen. Top 1 perfor-
mance was similar across the models with the Random Forest slightly outperforming the others. The chosen 
hyperparameters and model were then used for subsequent testing on the holdout test set.
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