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Background. Age-related macular degeneration (AMD), the most common cause of blindness in the developed world, usually
affects individuals older than 60 years of age. The majority of visual loss in this disease is attributable to the development of
choroidal neovascularization (CNV). Mononuclear phagocytes, including monocytes and their tissue descendants, macrophages,
have long been implicated in the pathogenesis of neovascular AMD (nvAMD). Current therapies for nvAMD are based on
targeting vascular endothelial growth factor (VEGF). This study is aimed at assessing if perturbation of chemokine signaling and
mononuclear cell recruitment may serve as novel complementary therapeutic targets for nvAMD. Methods. A promiscuous
chemokine antagonist (BKT130), aflibercept treatment, or combined BKT130+aflibercept treatment was tested in an in vivo
laser-induced model of choroidal neovascularization (LI-CNV) and in an ex vivo choroidal sprouting assay (CSA).
Quantification of CD11b+ cell in the CNV area was performed, and mRNA levels of genes implicated in CNV growth were
measured in the retina and RPE-choroid. Results. BKT130 reduced the CNV area and recruitment of CD11b+ cells by 30-35%.
No effect of BKT130 on macrophages’ proangiogenic phenotype was demonstrated ex vivo, but a lower VEGFA and CCR2
expression was found in the RPE-choroid and a lower expression of TNFα and NOS1 was found in both RPE-choroid and
retinal tissues in the LI-CNV model under treatment with BKT130. Conclusions. Targeting monocyte recruitment via
perturbation of chemokine signaling can reduce the size of experimental CNV and should be evaluated as a potential novel
therapeutic modality for nvAMD.

1. Introduction

Dysregulation of the complement and systemic immune sys-
tems has been associated with the pathogenesis of age-
related macular degeneration (AMD). Genetic, histological,
and biochemical studies have associated the alternative com-
plement pathway with the disease [1–8]. Lymphocytes,
mononuclear cells, and particularly monocytes and macro-
phages were also implicated in AMD [3, 9–23]. In fact, infil-
tration of monocytes to the retina was found to be essential
for the development of choroidal neovascularization (CNV)

[18, 24]. Increased numbers of CD56+ T cells have been
detected in the blood of AMD patients when compared to
age-matched controls [25], and the interaction of T cells and
M1 macrophages was reported during the stages of AMD
[23]. Once recruited to the eye, monocytes differentiate to
macrophages that can exert a proangiogenic effect in the con-
text of neovascular AMD (nvAMD), an effect that may be
exacerbated in aging [17, 18, 22, 26–31]. Activated macro-
phages from nvAMD patients might exert a more significant
proangiogenic effect compared with macrophages from age-
matched controls [22]. Several macrophage-derived cytokines,
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in addition to VEGF, can mediate CNV growth [32, 33].
Accordingly, perturbation of monocyte recruitment and/or
function may potentially result in suppression of CNV growth
that may potentially complement anti-VEGF-based therapies.

Chemokines and their receptors play a critical role in the
progression of autoimmune and inflammatory diseases such
as AMD. Multiple chemokines were found to be involved in
the development of this pathology [34–38]. For example, a
transcriptome-wide analysis of the AMD donor retinas sug-
gested that CCL2, IP-10, MIG, and I-TAC are upregulated
in all forms of the disease [39]. CXCR3 is one of the mamma-
lian chemokine receptors, promoting chemotaxis and cell
proliferation. This receptor binds to three major chemokine
ligands: IP-10, MIG, and I-TAC. CXCR3 expression and
IP-10 were elevated in the RPE-choroid fractions of the
laser-induced CNV eyes compared with nontreated fellow
eyes [40]. Our group has reported an increased expression
of other chemokine receptors, namely, CCR1 and CCR2, in
the CD14+CD16+ subset of monocytes from neovascular
AMD (nvAMD) patients [41]. CCR2 is a major chemokine
receptor that is also potentially involved in macrophage acti-
vation and recruitment in AMD [32]. In accordance with the
high levels of MCP-1, the ligand for CCR2 was detected in
the aqueous humor of patients with AMD [42, 43], and mac-
rophages have been found in the vicinity of drusen areas of
retinal pigment epithelium (RPE) atrophy, Bruch’s mem-
brane rupture, and choroidal neovascularization (CNV) in
histological sections from AMD eyes [44–49].

Targeting a single chemokine, or its receptor, in an
attempt to reduce macrophage recruitment to the retina
was contemplated as a potential treatment for AMD. This
approach is limited by the redundancy of the chemokine sig-
naling system and by the nonexclusive nature of ligand-
receptor interactions which characterizes it [50–52]. Here,
we suggest an alternative approach involving antagonizing
multiple chemokine signaling pathways simultaneously.
Accordingly, a recent study demonstrated the efficiency of a
broad-spectrum chemokine inhibitor (NR58-3.14.3) in mod-
ulating macrophage-mediated inflammation in light-induced
retina injury [53].

BKT130 is a novel promiscuous chemokine-binding
peptibody which has the ability to bind and inhibit multi-
ple inflammatory chemokines, such as CCL2 (ligand for
CCR2), CCL5 (binding CCR5), IP-10, MIG, and I-TAC
(binding to CXCR3) [54]. This novel peptibody was already
proven to have a therapeutic effect in autoimmune and
inflammatory pathologies by inhibition of the recruitment
of immune cells, inflammation, and disease progression in
rodent models for rheumatoid arthritis (RA) and multiple
sclerosis (MS) [54]. BKT130 was also found to inhibit mela-
noma and pancreatic tumor cell growth in mice [54]. In this
study, we assessed the effect of this chemokine antagonist in a
rodent model for laser injury-induced CNV and in comple-
mentary in vitro experiments.

2. Materials and Methods

2.1. Laser-Induced Model of CNV (LI-CNV) and Experimental
Groups. LI-CNV was generated in adult Long-Evans rats

(8-12 weeks old). Animals were treated in accordance with
the guidelines of the Association for Research in Vision and
Ophthalmology (ARVO). Experiments were conducted
with the approval of the institutional animal care ethics
committee. Before each procedure, rats were anesthetized
by intraperitoneal injections of a mixture of 85% ketamine
(Bedford Laboratories, Bedford, OH) and 15% xylazine
(VMD, Arendonk, Belgium). Local anesthesia using oxy-
buprocaine HCL 0.4% (Localin) drops (Fisher Pharmaceu-
ticals, Tel-Aviv, Israel) was applied to each eye 10 minutes
before intravitreal injections or laser photocoagulation.

Laser burns (5-7 burns per eye) were generated as
previously described [55]. Intravitreal injections were per-
formed using a PLI-100 Pico-Injector (Medical System
Corp., Greenvale, NY) as we have previously described
[22]. Intravitreal injections of either 4μl of 5mg/ml
BKT130 (Biokine, Ness Ziona, Israel) (n = 9 eyes), 1μl of
40mg/ml aflibercept (Bayer Pharma AG, Berlin, Germany)
(n = 8), a combination of 4μl BKT130 and 1μl of afliber-
cept (n = 8), or 4μl of PBS solution (n = 10) were provided.
BKT130 dosage was according to a previous study which
tested dose response and kinetic analysis in vivo [54], and
aflibercept dosage was according to that used in human eyes
which was adjusted according to the size of the rat eye. All
intravitreal injections were performed at the time of the
laser burn injury and 5 days later. Antibiotic ointment
(5% Synthomycine) was applied after the injection. RPE-
choroid flat mounts were dissected and processed for isolec-
tin staining 10 days following the laser injury as we have
previously described [22]. The contralateral retina of the
same rat was homogenized and frozen at -80 for RNA extrac-
tion using TRI-Reagent (Sigma-Aldrich, Munich, Germany).

2.2. CNV Quantification. RPE-choroid flat mounts were
fixated for one hour in 4% PFA and suspended overnight
in isolectin solution (GS-Ib4 Alexa 594 staining solution,
Molecular Probes, Eugene, Oregon) containing 200mM
NaN3 and 1mM CaCl2. Flat mounts were then washed
6 times for 20 minutes in PBS and embedded on a slide
with a mounting medium. Isolectin images of the RPE-
choroid flat mounts were viewed using a fluorescent micro-
scope (Olympus BX41, Tokyo, Japan). Background was con-
trolled by setting the exposure parameters as such so that
they provided no detectable signal for the control nonim-
mune serum-stained rat flat mount. These same parameters
were maintained while capturing all images from the test sec-
tions. Images were photographed with an Olympus DP70
digital camera.

The CNV area around each laser injury was measured
using the ImageJ software [56]. The optic disc was removed
to avoid autofluorescence from background counts. The scale
was set to translate pixels into mm2, threshold was set on an
unstained negative control, and these settings were used as
background for all images. In order to calculate the average
area of each CNV, we calculated the stained area of particles
above the size of 60 pixels and divided it by the number of
laser burns in the eye. The average CNV area of each eye
was then calculated, and the mean CNV area of the four
groups was compared.
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2.3. Immunohistochemistry. Immunohistochemistry of the
fixed retinas was performed for mononuclear phagocyte
(CD11b+) cell count. In brief, mouse monoclonal anti-
CD11b (Abcam, ab78457, 1 : 100) was used as the primary
antibody for the rat mononuclear phagocytes. A donkey
anti-mouse (Abcam, ab150110, 1 : 100) was used as the sec-
ondary antibody. Retinal flat mounts were first permeabilized
and blocked for 3 hours at room temperature (RT) with
blocking solution containing 0.1% Triton-X, 10% Normal
Donkey Serum (NDS, Millipore S30, Temecula, CA, USA),
3% albumin bovine (BSA; Amresco Inc., Solon, OH, USA)
in PBS. Primary antibody was added overnight in 4°C on
shaker. Samples were then washed for 20 minutes six times
in PBS at RT, and secondary antibodies were added for 2
hours on a shaker at RT. Samples were placed on slides with
mounting medium after 4′,6′-diamidino-2-phénylindole
(DAPI) (Enzo LifeScience Exeter, UK) staining, for cell
nucleus identification. Flat mounts of eyes with LI-CNV
and without primary antibodies served as negative controls,
which defined our background for the microscopy.

Immunofluorescence analysis was performed using a
Zeiss LSM 710 confocal laser scanning system (Carl Zeiss
MicroImaging GmbH, Jena, Germany) with 25X oil objective
and a tile scan. Background was controlled by setting the
exposure parameters as described above. These same param-
eters were maintained while capturing images from the test
sections. CD11b+ cells which were found in the laser injury
site, at the sub retinal space, were counted by a masked
observer, using ImageJ software. The perimeter of the laser
injury site was determined based on the absence of nearby
photoreceptor cells as identified via DAPI staining, sur-
rounding the laser injury (Figure 1(a)). Results are presented
as the mean number of cells per laser-treated area of each
experimental group ± SEM.

2.4. Quantitative Real-Time PCR (QPCR). Total RNA was
extracted from the flash-frozen retinas using TRI Reagent
(Sigma-Aldrich), according to the manufacturer’s instruc-
tions, and treated with DNase (TURBO DNA-free, Ambion,
Austin, TX). Reverse transcriptase polymerase chain reaction
was performed using the High Capacity cDNA Reverse Tran-
scription Kits (Applied Biosystems, Foster City, CA) and
anchored oligo dT primers on 1 μg total RNA in a volume
of 20μl.

Quantitative real-time PCR (QPCR) was performed
using the SYBR Green technique to measure mRNA levels
of genes involved in angiogenesis, inflammation, mononu-
clear cell marker, macrophage polarization, and monocyte
recruitment. Oligonucleotide primers for genes of interest
[CCL2, CCR2, CCL5, VEGFA, IL1β, TNFα, NAP-2, MIP-2,
CD11b, CD163, MRC1 (CD206), and N0S1] and for an
endogenous control gene (β-actin) were designed for QPCR
using Primer-Blast (https://www.ncbi.nlm.nih.gov/tools/
primer-blast/). These genes were selected as they are related
with chemokine signaling or with proangiogenic function
of macrophages. All primers were purchased from Sigma-
Aldrich (primer sequences are presented in Supplement
Table 1). Measurement of the mRNA levels was performed
on the retinas and RPE-choroid tissues, separately, 10 days

after injections, in each experimental group (n = 9 eye
samples in each group: PBS, BKT130, aflibercept, and,
BKT130+aflibercept). Measurement of β-actin mRNA levels
served as endogenous controls. All reactions were carried
out in triplicate, using 384-well plates, at a total volume of
10 μl. Wells contained 20 ng (for CCL2, CCR2, CCL5,
MRC1, CD163, VEGFA, CD11b, NOS1, and IL1β) or 100 ng
(for TNFα, NAP-2, and MIP-2) cDNA template, 5μl of
SYBR Green FastMix (Quanta Biosciences), and 0.5μl
forward and reverse primers (10mM) for each gene. Signal
amplification was measured throughout 38 cycles of 60°C
for 20 seconds, followed by 95°C for 20 seconds. To
confirm the amplification of a specific cDNA, the
dissociation temperature was examined and compared with
the calculated melting temperature for each amplified
product. The amplified products were also examined by
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Figure 1: BKT130 reduces CD11b+ cell migration to the laser-
treated area. Rat retinal flat mounts were prepared 10 days
following laser injury and intravitreal injections. Flat mounts were
observed using a confocal laser scanning system. CD11b-positive
cells were observed in the center of the laser-treated areas (a).
Each laser-treated area was observed in a 40x lens, and the
macrophages (magenta) were counted (b–e). The eyes injected
with BKT130, aflibercept, or BKT130+aflibercept demonstrated
less CD11b-positive cells ((d) and (e), respectively) compared
with PBS-injected eyes (b). A comparison between the amounts
of cells found in laser-treated areas in each group is provided in
(f). The Y-axis presents the mean (±SEM) number of CD11b+
cells found in each laser-treated area, in either BKT130 (number
of laser burns = 19), aflibercept (n = 25 laser injury areas),
BKT130+aflibercept (n = 41), or control PBS-injected group
(n = 24). ∗P < 0 05 and ∗∗P < 0 005.
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agarose gel electrophoresis. Fluorescent signals were measured
by the CFX384, C1000 touch thermal cycler (Bio-Rad) and
analyzed using the spreadsheet software (Excel; Microsoft,
Redmond, WA). Expression levels of each gene were
compared across the samples by using the expression levels
of the endogenous control according to the standard 2(-ΔΔCT)

calculation [57], giving results as relative quantification and
fold change ± standard error of themean (SEM).

2.5. Choroid Sprouting Assay (CSA). Blood samples (20ml)
were collected from 6 nvAMD patients (3 females, 3 males,
mean age ± SEM: 70 8 ± 2 3 years, range: 64-81) in EDTA
tubes (BD Bioscience). Patients were recruited from the ret-
ina clinic of the Department of Ophthalmology at the
Hadassah-Hebrew University Medical Center. The criteria
for the inclusion of nvAMD patients included the following:
age over 55 years, diagnosis of AMD according to the AREDS
criteria [58], and diagnosis of CNV according to fluorescein
angiogram and optical coherence tomography. All patients
signed an informed consent form, and the study was
approved by the institutional ethics committee (see Ethical
Approval). Monocytes were isolated from the whole blood,
differentiated into macrophages (M0), and activated into
M1- and M2a-like phenotypes, as we and others have previ-
ously described [22, 59, 60].

An ex vivo angiogenesis assay was performed as previ-
ously described [22, 61], to evaluate the effect of BKT130
on the macrophages’ proangiogenic phenotype. Briefly, the
supernatant from human-activated and human-polarized
macrophages that were treated with 50 μg/ml BKT130 or
untreated control macrophages was collected at day 7 of
monocyte cell culture and kept in -20°C until use. Treatment
with BKT130 took place at the day of macrophage polariza-
tion or at day 5 for the nonactivated macrophages (M0).

Adult C57BL6J mice, which were treated in accordance
with the guidelines of the Association for Research in Vision
and Ophthalmology (ARVO), were utilized for CSA experi-
ments. Experiments were conducted with the approval of
the institutional animal care ethics committee (see Ethical
Approval). Mice were anesthetized with ketamine, checked
for responses, and euthanized by cervical dislocation. The
eyes were immediately enucleated and kept in ice-cold ECGS
medium containing 1/100 penicillin-streptomycin and 1/100
glutamine before dissection. A choroid-sclera complex from
the mice was gently dissected along with retinal pigment
epithelium (RPE). The complex was cut into 5-6 1mm long
pieces. Fragments were embedded in 30 μl of growth
factor-reduced Matrigel™ (BD Biosciences, Cat. 354230) in
24-well plates. The thickness of the Matrigel™ was approxi-
mately 0.4mm. Plates were then incubated for 10 minutes
in 37°C, in a 5% CO2 cell culture incubator without medium
to solidify the Matrigel™. Medium (250 μl) containing
ECGM (C-22010, PromoCell, Germany), 2.5% supplement
mix (C-9215, PromoCell, Germany), 5% FCS, 1/100 penicil-
lin-streptomycin, and 1/100 glutamine was added to each
well. 250μl of the macrophages’ supernatant or 250μl of
medium only was added to each well in duplicates. In addi-
tion, BKT130 was added directly to another group of CSA
wells with the supernatant of untreated polarized M0 and

M1 macrophages from 5 other nvAMD patients (4 female,
1 male, mean age ± SEM: 77 8 ± 3 9 years, range: 64-87), to
assess the effect of BKT130 directly on the supernatant with-
out its potential effect on the macrophages’ phenotype.
Medium was changed every 3 days, and the cultures were
fixed with 4% PFA after 8 days. Cultures were viewed with
an inverted phase-contrast CKX41 Olympus microscope,
and images were photographed with an Olympus DP70 dig-
ital camera (Olympus, Tokyo, Japan).

ImageJ software was used to quantify the sprouting area.
The scale was set to convert pixels to mm2. Each image was
converted to an 8-bit format to obtain a binary image.
Sprouting area quantification and analysis were performed
in duplicates for each sample.

2.6. Statistical Analysis. Data was processed using the biosta-
tistical package InStat (GraphPad, San Diego, CA). P < 0 05
was considered to indicate the statistical significance. Values
over two standard deviations from the average were excluded
from the statistical analysis. Appropriate statistical tests were
applied according to the results of a normalcy test, sample
distribution, and nature of the parameters.

3. Results

3.1. BKT130 Suppresses Laser-Induced Model of CNV (LI-
CNV). The LI-CNV rat was utilized to evaluate the in vivo
effect of BKT130 on CNV growth (Figure 2). The CNV area
was measured 10 days after the induction of LI-CNV and
commencement of intravitreal therapy in the rat eyes.
BKT130 treatment (n = 9 eyes) was associated with a 36.8%
reduction in the CNV area [mean area mm2 ± SEM] as
compared with control (n = 10) PBS-injected eyes (0 036 ±
0 005 vs. 0 057 ± 0 004, respectively; P = 0 005, ANOVA).
Aflibercept treatment (n = 8) was associated with a 68.4%
reduction of the CNV area as compared with controls
(0 018 ± 0 001, P = 0 0001). Injection of both aflibercept
and BKT130 (n = 8) resulted in a 70.2% smaller CNV area
(0 017 ± 0 001, P = 0 0001). CNV was 50% smaller in
aflibercept-treated eyes compared with BKT130-treated eyes
(P = 0 0003) and 52.8% smaller in aflibercept+BKT130-
treated eyes (P = 0 0003).

3.2. BKT130 Inhibits Mononuclear Phagocyte Recruitment to
a LI-CNV. Immunostaining for CD11b+ cells was performed
on the photoreceptor side of the retina flat mounts to assess
their recruitment to the LI-CNV (Figure 1). CD11b+ cells
were found beneath the photoreceptors (between retinal
and RPE cells) overlying the laser injury site (Figure 1(a)).
Laser injury sites were of similar size across the experi-
mental groups, while the number of CD11b+ cells was asso-
ciated with the specific treatment provided (Figure 1(a)). The
lowest CD11b+ cell count (43% reduction) was found in the
aflibercept+BKT130 (number of laser-treated areas = 41;
mean cell count in each laser-treated area ± SEM: 18 51 ±
1 26) as compared with the control PBS-treated eyes
(n = 24 laser injury areas, mean cell count = 32 63 ± 2 23;
P < 0 001; ANOVA). A reduction in the number of CD11b+
cells was also found in BKT130-treated eyes (n = 19, cell
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count = 21 89 ± 1 85; P < 0 01; ANOVA) and in aflibercept-
treated eyes (n = 25, 21 36 ± 1 78; P < 0 001; ANOVA) as
compared to PBS-treated eyes. No difference in the mean cell
number was found among BKT130, aflibercept, and com-
bined aflibercept+BKT130-treated eyes.

3.3. BKT130 Treatment Affects Gene Expression Profile in the
Eyes with LI-CNV. The mRNA expression profile of several
genes evaluated with QPCR was associated with the specific
treatments provided, as well as the tissue tested (retina and
RPE-choroid; Figure 3).

Mean RPE-choroid CCR2 expression (RQ ± SEM) was 2-
fold lower in the BKT130-treated eyes (n = 9 eyes, 1 3 ± 0 26)
as compared with PBS (n = 9, 2 56 ± 0 37, P = 0 02, t-test)
and 1.8-fold lower from aflibercept+BKT130-treated eyes
(n = 9, 2 35 ± 0 37, P = 0 05, t-test) (Figure 3(a)). Multivari-
ate analysis for CCR2 mRNA levels in the RPE-choroid
across the four groups did not disclose a difference (P = 0 2,
Kruskal-Wallis test).

CCL5mRNA levels in the RPE-choroid was 2-fold higher
in BKT130-treated eyes (0 9 ± 0 14, P = 0 03, t-test) and 3-
fold higher in aflibercept-treated eyes (n = 9, 1 37 ± 0 36,
P = 0 04, t-test), as compared to the eyes injected with PBS
(0 45 ± 0 09; Figure 3(b)). Multivariate analysis for CCL5
mRNA levels across the four groups in the RPE-choroid
did not disclose a difference (P = 0 15, Kruskal-Wallis test).

CCR2 and CCL5 expression in the retinal tissue was sim-
ilar among the experimental groups.

TNFα expression was 2.25-fold lower in RPE-choroid
(0 8 ± 0 17) and 2.7-fold lower in retinal (1 05 ± 0 28) tissues
of BKT130-treated eyes as compared to the PBS-treated eyes
(1 8 ± 0 28, P = 0 03, Mann–Whitney test; 2 83 ± 0 67, P =
0 05, t-test, respectively) (Figures 3(c)–3(e)). A multivariate
test for retinal TNFα expression across the four groups con-

firmed variable expression levels among the groups
(P = 0 04, Kruskal-Wallis test). A multivariate test for RPE-
choroid TNFα expression across the four groups did not dis-
close a difference (P = 0 1, Kruskal-Wallis test), yet when we
pooled the two groups that were treated with BKT130
(BKT130 and aflibercept+BKT130), the multivariate test for
RPE-choroid TNFα expression across the three groups con-
firmed variable expression levels among the groups (P =
0 04, Kruskal-Wallis test).

Retinal VEGFA expression was 1.8-fold lower in
aflibercept-treated eyes (0 32 ± 0 03) as compared to PBS-
treated eyes (0 59 ± 0 05, P = 0 0003, t-test). BKT130 treat-
ment was associated with 3.2-fold reduced expression of
VEGFA in the RPE-choroid (0 42 ± 0 12) as compared to
PBS-treated eyes (1 34 ± 0 28, P = 0 02, t-test). The combina-
tion of aflibercept+BKT130 was associated with lower
VEGFA expression by 1.25-fold in retinal tissue (0 47 ±
0 04) and 2.6-fold reduced levels in RPE-choroid tissue
(0 52 ± 0 12) as compared with the PBS-treated group
(0 59 ± 0 05, P = 0 05, t-test; 1 34 ± 0 28, P = 0 01, t-test,
respectively) (Figures 3(d)–3(f)). A multivariate test for
VEGFA expression across the four groups disclosed variable
expression levels (P = 0 03 in the retina and P = 0 004 in
the RPE-choroid, Kruskal-Wallis test).

A multivariate test for CD11b expression in the retina
across the four groups disclosed variable expression levels
(P = 0 003, Kruskal-Wallis test). Univariate analysis sug-
gested that CD11b expression in the retina was decreased
by 14-fold following BKT130 (0 026 ± 0 01) treatment
and by 10-fold following aflibercept treatment (0 03 ± 0 01)
as compared with PBS- (0 4 ± 0 1) treated eyes (P = 0 02,
t-test; P = 0 02, t-test, respectively) (Figure 3(g)). No
change was measured in CD11b expression in the RPE-
choroid tissue.
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Figure 2: In vivo assessment of BKT130’s effect in a rodent model of LI-CNV. BKT130 was injected intravitreally in a rat model of LI-CNV
(n = 9 eyes). The eyes injected with PBS served as a negative control (n = 10), while intravitreal injections of aflibercept served as the positive
control (n = 8). BKT130 was also injected with aflibercept to assess an additive effect (n = 8). CNV was identified and quantified using a
fluorescent microscope in isolectin-stained RPE-choroid flat mounts (a–d). Each laser treated area was observed in a 20x lens and the
whole flat mount in 4x lens. The CNV area was measured and compared between treatments and between PBS-injected eyes (e). The
Y-axis presents the averaged (±SEM) CNV area (mm2) of treated and PBS-injected control eyes. ∗∗P < 0 005 and ∗∗∗P < 0 0005.
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Figure 3: Gene expression profile of the retinas and RPE-choroid following treatment. mRNA expression levels of genes related to
angiogenesis (VEGFA, IL1β, and TNFα), inflammation (CCL2, CCR2, CCL5, TNFα, NAP-2, and MIP-2), mononuclear cell markers
(NOS1, CD163, and CD11b), and macrophage recruitment (CCL2, CCR2, NAP-2, and MIP-2) were evaluated in the RPE-choroid (a–d)
and in the retinas (e–h) of rats via QPCR (n = 9 eyes in each group: PBS, BKT130, aflibercept, and BKT130+aflibercept). Presented are the
genes that significantly changed after treatment. The Y-axis indicates RQ ± SEM. ∗P < 0 05.
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A multivariate test for CD163 expression in the retina
across the four groups did not disclose a difference (P = 0 1,
Kruskal-Wallis test). Univariate analysis demonstrated that
BKT130 treatment was associated with a 4.17-fold reduction
of CD163 (an M2 macrophage biomarker) expression in
the retina (0 0005 ± 0 0002 and 0 0001 ± 0 00003, P = 0 03,
t-test, respectively) (Figure 3(h)). No change was measured
in CD163 expression in the RPE-choroid tissue.

In univariate analysis, BKT130 treatment was associated
with reduced NOS1 (an M1 macrophage biomarker) expres-
sion in the RPE-choroid and in the retina, respectively (RPE-
choroid: BKT130—0 02 ± 0 02, PBS—0 06 ± 0 01, P = 0 05;
retina: BKT130—0 008 ± 0 003, PBS—0 04 ± 0 01, P = 0 01,
t-test). Aflibercept monotherapy was not associated with
altered NOS1 expression in the choroid or the retina tissues.
The combination therapy of aflibercept+BKT130 was associ-
ated with reduced NOS1 levels in the retina (aflibercept
+BKT130: 0 008 ± 0 003, PBS: 0 04 ± 0 01, P = 0 02, t-test),
but not in the RPE-choroid. A multivariate test for NOS1
expression in the retina and in the RPE-choroid across the
four groups disclosed variable expression levels (P = 0 04
for both tissues, Kruskal-Wallis test) (Figures 3(i) and 3(j)).

No difference in the expression levels of MRC1, CCL2,
IL1β, NAP-2, and MIP-2 in the retina or in the RPE-
choroid was identified across the treatment groups (data
not shown).

3.4. BKT130 Does Not Affect Macrophages’ Proangiogenic
Phenotype or Function. An ex vivo CSA was conducted to
evaluate the effect of BKT130 on macrophage’s proangio-
genic phenotype and the function of the secreted proteins.
No difference in the sprouting area was detected among
wells treated with the supernatant of macrophages that were
incubated with or without BKT130 (n = 6 in each group,
mean of CSA area in mm2 ± SEM, M0: untreated 1 72mm2

± 0 32 vs. treated 1 64mm2 ± 0 32, P = 0 7; M1: untreated
2 2mm2 ± 0 34 vs. treated 2 2 ± 0 35, P = 0 4; M2: untreated
1 62mm2 ± 0 34 vs. treated 1 54mm2 ± 0 25, P=0.6; paired
t-test). In addition, the sprouting area was not affected
by the addition of BKT130 to the CSA wells treated with
macrophage’s culture media in each macrophage subtype
tested (mean of CSA area in mm2 ± SEM, M0: without
BKT130 1 4mm2 ± 0 6 vs. with BKT130 1 12mm2 ± 0 6,
P = 0 8; M1: without BKT130 2 2mm2 ± 0 9 vs. with
BKT130 1 36mm2 ± 0 5, P = 0 5, paired t-test) (Figure 4).

4. Discussion

We describe the effect of a novel promiscuous chemokine
antagonist (BKT130) in the rat model of LI-CNV. Applica-
tion of this compound via the intravitreal route was associ-
ated with a reduction in the recruitment of CD11b+ cells to
the proximity of CNV lesions, a reduction of CNV size, and
suppression of the expression of chemokines and cytokines,
including the major monocyte receptor—CCR2—in the
RPE-choroid tissue. Despite the fact that BKT130 inhibits
chemokines which are expressed not only by the inflamed tis-
sue but also by M1 and M2 macrophages, ex vivo treatment

with BKT130 in CSA or treatment of cultured macrophages
with BKT130 failed to suppress choroidal sprouting.

These data suggest that BKT130’s favorable in vivo effect
is mediated via perturbation of chemokine signaling and
monocyte recruitment to the laser-injured area. Recently, it
was suggested that microglia are resident macrophages of
the retina that are derived from embryonic yolk sac progen-
itors during development, while nonresident bone marrow-
derived macrophages may be recruited into the retina from
the vasculature in pathology [62]. Therefore, any additional
CD11b+ cells found in the retina are likely to represent
recruited macrophages rather than resident microglia [63].
Macrophages were implicated in the pathogenesis of AMD
based on multiple studies, among them are the presence of
macrophages in the vicinity of AMD lesions [44, 45, 64,
65], proangiogenic human and rodent macrophages’ effect
in vitro and in the rodent model of LI-CNV [18, 22, 66],
and the reduced size of experimental CNV following inhibi-
tion of the CCR-CCL2 signaling pathway and monocyte
recruitment [30, 67].

BKT130 suppresses LI-CNV via antagonizing multiple
chemokines, thereby indirectly suppressing the expression
of VEGF and other proinflammatory and proangiogenic
cytokines. In the present study, anti-VEGF therapy was also
associated with reduced macrophage recruitment, conceiv-
ably, through a PGF trap which inhibits subretinal phagocyte
accumulation and other different mechanisms [68–70].

Macrophages may mediate CNV progression via cyto-
kine production. TNFα-expressing macrophages were previ-
ously detected in CNVs excised from AMD patients [71].
Our previous study showed that M1 macrophages from
nvAMD, which had a proangiogenic effect in the rat model
of LI-CNV, also produce considerable amounts of TNFα
[22]. In addition, it has been previously suggested that mac-
rophages secreting TNFα in CNV stimulate RPE expression
of VEGF [71, 72] and that TNFα increases the secretion of
VEGF A and C and leads to the upregulation of VEGF
expression by human RPE cells and choroidal fibroblasts
[73, 74]. Our current results showed approximately 60%
reduction in TNFα expression in both retinal and RPE-
choroidal tissues following BKT130 treatment. In addition,
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we found reduced expression of CD11b and NOS1 in both
retinal and RPE-choroid tissues following BKT130 treatment
which suggest reduced mononuclear phagocyte recruitment
and reduced polarization towards the M1 macrophage phe-
notype. Interestingly, aflibercept, while suppressing macro-
phage recruitment as evident by reduced CD11b expression
in the retina, did not suppress TNFα, NOS1, or CCR2 expres-
sion suggesting that it did not affect macrophage polarization
or polarized macrophages’ recruitment. Thus, our findings
support a potential suppression of M1 macrophages’ polari-
zation by BKT130 while aflibercept may potentially suppress
the recruitment mononuclear cells but not polarization to the
M1 phenotype and therefore may have a different mecha-
nism of action on CNV growth. These results are in accor-
dance with a recent report of higher expression of M1
markers in the RPE-choroid of a mouse following laser-
induced CNV as compared to M2 macrophages’ markers
which were increased in the retina [75]. M1macrophage acti-
vation and M1-dominant polarization profile of microglia
were also recently described in the degenerative retina of
rd1 mice [76].

VEGF immunoreactivity was previously found to be
greater in inflammatory and active CNV and was found in
the RPE to a greater extent than found in macrophages
[77]. In addition to the RPE [78] and macrophages, at least
six more retinal cell types have the capacity to produce and
secrete VEGF including astrocytes [79], Müller cells [80],
endothelial cells [81], microglia [77], pericytes [82], and gan-
glion cells [83]. BKT130 downregulated VEGFA expression
in the RPE-choroid, but not in the retina. By contrast, afliber-
cept downregulated VEGFA expression in the retina and not
in the RPE-choroid. Interestingly, combining aflibercept with
BKT130 treatments caused downregulation of VEGFA
expression both in retina and in RPE-choroid tissues. These
results may reflect the variable mechanism of VEGF suppres-
sion associated with the two compounds and suggest a poten-
tial complementary effect of the combined therapy.

Caveats of the current study include the fact that LI-CNV
in rat is a wound-healing reaction that follows an insult at the
level of Bruch’s membrane and relies heavily on inflamma-
tion [18, 19] and that it does not directly reflect nvAMD. In
addition, because of the absence of a defined macula in
rodents, this rodent model does not fully mimic the complex-
ity of human pathology [84]. However, this model was
proven to be suitable for testing the efficacy of new drugs
through systemic or intraocular administration and has
shown a predictive value for drug effects in patients with
AMD, for example, with aflibercept [85, 86]. In addition,
while we observed a trend towards enhanced suppression of
CNV in the combination arm of aflibercept+BKT130, this
arm did not show a smaller CNV size as compared with afli-
bercept monotherapy. Yet in the LI-CNV model, application
of aflibercept essentially eliminated the neovascular tufts,
thereby, resulting in a ceiling effect that does not allow for a
functional effect of the combined therapy to be apparent.
Such complete elimination of the CNV lesion is not usually
achieved in nvAMD following anti-VEGF therapy. Thus, in
the human pathology, there is a need for supplementing the
effect of available therapies. Finally, the lower injection vol-

ume used in the aflibercept monotherapy group as compared
to other groups may theoretically interact with CNV size. Yet
our control group was injected with 4μl of PBS, similar to the
BKT130 group which was the main focus of this research.
Furthermore, the highest injection volume was used in the
1 μl + 4 μl of the BKT130+aflibercept group, and this group
yielded suppression of CNV.

5. Conclusion

Intravitreal delivery of a promiscuous chemokine antago-
nist, BKT130, inhibited the recruitment of monocytes to
the laser injury area, reduced CNV area in the LI-CNV rat
model, and decreased expression of VEGFA and CCR2 in
RPE-choroid and TNFα in both RPE-choroid and retinal
tissues. Reduction in TNFα and NOS1 with BKT130 but
not with aflibercept might suggest a different macrophage
subtype inhibition and therefore an additional effect on dif-
ferent patients. Additionally, a combination therapy with
BKT130 and anti-VEGF had an additive effect on VEGFA
expression in the eyes of rats with LI-CNV. Future studies
should evaluate if perturbation of chemokine signaling
may serve as a novel therapeutic option in nvAMD to sup-
plement anti-VEGF therapy.
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