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SUMMARY

Neonatal immune-microbiota co-development is poorly understood, yet age-
appropriate recognition of – and response to – pathogens and commensal
microbiota is critical to health. In this longitudinal study of 148 preterm and
119 full-term infants from birth through one year of age, we found that post-
menstrual age or weeks from conception is a central factor influencing T cell
andmucosal microbiota development. Numerous features of the T cell andmicro-
biota functional development remain unexplained; however, by either agemetric
and are instead shaped by discrete perinatal and postnatal events. Most strik-
ingly, we establish that prenatal antibiotics or infection disrupt the normal
T cell population developmental trajectory, influencing subsequent respiratory
microbial colonization and predicting respiratory morbidity. In this way, early
exposures predict the postnatal immune-microbiota axis trajectory, placing
infants at later risk for respiratory morbidity in early childhood.

INTRODUCTION

Function of the immune system and establishment of microbiota in human infants have profound impacts

on subsequent health and disease. However, the factors influencing immune system andmicrobiota estab-

lishment and the extent of their interrelatedness are incompletely understood (Dimmitt et al., 2010; Rechavi

et al., 2015; Lee et al., 2019). Normally, a developmental program determines major shifts in immune cell

population maturation and distribution over the first 3 months of postnatal life (Olin et al., 2018). Though

the exact stimuli for these shifts are unknown, it is increasingly clear that abnormal gut and respiratory

microbiota during infancy associate with adverse outcomes such as atopy, stunted growth, and respiratory

infection – outcomes that correspond to maladaptive immune system activity (Stewart et al., 2018; Grier

et al., 2017; Bisgaard et al., 2011; Smith et al., 2013; Bosch et al., 2017). Two recent studies demonstrated

that the nasopharyngeal microbiome and virome together predict infant respiratory tract infection, but

these cross-sectional studies left unresolved the sequence of events preceding the observed relations of

the microbiome and virome and their association to eventual adverse events (Korten et al., 2016; Man

et al., 2019).

Reported adverse health effects following disrupted developmental processes support the concept of a

critical neonatal window during which primary exposures and maladaptive immune responses risk lifelong

health (Torow and Hornef, 2017). Recent reports also suggest that perinatal inflammation only transiently

affects immune development (Kamdar et al., 2020). It is not known if such transient but early perturbations

increase the risk of chronic disease specifically during particular developmental windows or operate more

broadly. The strength of bidirectional influences between early microbiota and immune system develop-

ment in humans is not well-understood, but such a concept is particularly relevant when considering the

potential enduring impact on a long-lived adaptive immune system. Even less studied are the health effects

of themicrobiota-T cell axis in the first year of life, which is particularly concerning given the accelerated use

of microbiome-targeting therapies designed to modulate immune-related outcomes in infancy (Reardon,

2014; Mcquade et al., 2019; Uchiyama et al., 2019; Watkins et al., 2017), motivating larger scale studies with
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sufficient longitudinal follow-up to identify immune-related outcomes. Here, we show, in a longitudinal

birth cohort of infants born 23–41 weeks gestation, that microbial-T cell co-development advances in

synchrony with the infant’s postmenstrual age, and deviation from typical or asynchrony between microbi-

al-T cell trajectories increases the risk for poor respiratory outcome.

RESULTS

Study design and demographics

Neonatal subjects (n = 267) born at 23–42 weeks gestational age (GA) were recruited within 7 days of birth

at the University of Rochester from 2012–2016, as part of the NIAID-sponsored Prematurity, Respiratory,

Immune Systems, and Microbiomes study (PRISM) (Figure 1B). In all, 122 preterm (PT, < 36 0/7 weeks

gestation) and 80 full-term (FT, R 37 0/7 weeks gestation) subjects completed the study to 12 months of

age, corrected for premature birth, and were categorized as having or not having the primary outcome

persistent respiratory disease (PRD) using previously published criteria (Pryhuber et al., 2015). Full term

infants admitted to the NICU or requiring monitoring beyond normal newborn care were excluded from

the study. Cohort demographics are shown in Table 1. Sufficient blood to perform T cell phenotyping

by flow cytometry was collected at three predefined timepoints, from 55% of subjects at birth (cord blood),

61% of subjects at hospital discharge, and 38% at 12 months. For microbiota profiling, inpatient samples

were obtained weekly and outpatient samples for PT and FT were obtained monthly, with additional

sampling during acute respiratory illnesses. After sample processing, 16S rRNA gene sequencing, quality

control, and removing subjects without immunophenotyping data, 149 subjects yielded 1748 usable nasal

swab samples and 143 subjects yielded 1899 usable rectal swab samples. The median subject had 24

samples, with 28 days on average between samples. Finally, 109 and 117 subjects had sufficient combined

T cell phenotyping and microbiota data to be included for immunome-nasal microbiota and immunome-

rectal microbiota association analyses, respectively (Tables S1–S3).

Early T cell and microbiota co-development occur synchronously with age

We predicted, based on our and other previous studies, that T cell and microbiota evolution in the first year

of life would proceed in an age-dependent manner. However, in a cohort of both full-term and preterm

infants, age can be usefully defined in two ways: time since conception, which emphasizes the development

process, or days since birth, which emphasizes external exposures. We previously examined several models

relating microbiota-maturation and infant age (20) and found that in many microbial communities,

postmenstrual age (PMA; defined as days since last known menstrual period, a proxy for time since

Figure 1. Systemic interactions between age, T cells, and microbiota

The amount of variance in composition of nasal (NAS) and rectal (REC) microbiota and T cell immune populations that are

explained by the predictors: preterm birth (gestational age at birth< 37 weeks), postnatal day of life (DOL), postmenstrual

age (PMA), T cell population composition, and microbiota composition. Controlling for PMA, system interdependence

was diminished but remained highly significant (red). All comparisons control for preterm birth. (*p < 10�4, **p < 10�20,

multivariate ANOVA).
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conception) best indexes the progression of the communities. In other communities, days of life (DOL), i.e.,

postnatal exposures, essentially drive T cell and microbial maturation. Under the PMA-driven model, PT

and FT subjects would exhibit distinct profiles at birth which would converge when PT infants achieved

term equivalent PMA.

To understand the age-related factors influencing changes in the T cell immune compartment as well as the gut

and respiratory microbiota longitudinally, we first applied unsupervised clustering approaches to reduce T cell

populations and microbiota into biologically interpretable categories. The clustering algorithm FlowSOM

identified 80 discrete populations of T cells using flow cytometry data (19): 50 from a T cell phenotyping panel

(Tphe) and 30 from an intracellular cytokine panel (ICS). For the microbiota data, DADA2 was used to denoise

and resolve the 16S rRNA amplicon sequence variants. We then compared the effect of preterm birth, PMA,

andDOLonmicrobiota taxa andT cell subpopulations at a high level by usingmultivariateANOVA todetermine

the explanatory power of each measure of age across all component microbes or T cell populations (Figure 1).

Acknowledging that some covariates in Table 1 associated exclusivelywithPTbirth,wefirst considered the effect

of birth term alone. Preterm versus full-term status explained between 1% and 2% of the variance, and after

adjusting for this factor, both DOL and PMA explained substantially more variance (3%–17%) in T cell, gut, and

respiratory microbiota composition.

Anticipating thatT cell populationsandmicrobiotacompositionwouldshow interrelatedpatternsof variation,we

again appliedmultivariate ANOVA toquantify the amount of total variance the composition of one systemcould

explain in another. All pairs of systems exhibited significant relationships with one another. The R2
adj ranged from

0.03 (nasalmicrobiotaexplaininggutmicrobiota) to0.14 (nasalmicrobiotaexplainingTcells).However, given that

all systems exhibited strong associations with age, we reasoned that much of the observed effects would be

because of the common influence of age progression within subjects rather than direct action of one system

Table 1. Subject demographics

Preterm (n = 148) Term (n = 119)

Gestational age (weeks) 29.8 G 3.7 39.6 G 1.0

Birthweight (g) 1406.6 G 620.8 3471.5 G 511.4

Female 71.0 (48.0%) 49.0 (41.2%)

Black or Asian race 46.0 (31.1%) 29.0 (24.4%)

Public Insurance 81.0 (54.7%) 59.0 (49.6%)

Maternal smoking postnatal 29.0 (19.6%) 15.0 (12.6%)

Delivered by cesarean section 94.0 (63.5%) 49.0 (41.2%)

Chorioamnionitis 7.0 (4.7%) 4.0 (3.4%)

Funisitisa 35.0 (23.6%) 0

Preeclampsia 26.0 (17.6%) 0

Antenatal steroids 121.0 (81.8%) 0

Postnatal steroids 47.0 (31.8%) 10.0 (8.4%)

Antibiotics while hospitalized, days (mean G SD) 12.9 G 16.5 0

Antibiotics after discharge, courses 1.1 G 2.2 0.6 G 1.1

BPD 25.0 (16.9%) 0

Supplemental O2 exposure by 14 days (Median FiO2 for

first 14 days (IQR)

21.9% (21–27.8) 21% (room air only)

Postnatal infections (% with culture-positive bacteremia) 24.0 (16.2%) 0

Received breastmilk (any) 134.0 (90.5%) 92.0 (77.3%)

Months of >50% feedings by breastmilk 5.4 G 4.5 3.0 G 3.5

Number of illness visits/subject 1.2 G 1.9 1.0 G 1.8

Ventilator days 10.0 G 18.3 0

PRDb 52.0 (35.1%) 17.0 (14.3%)

aFunisitis calculated on 144 PT and 27 FT subjects (placental pathology available).
bPRD measured in 122 PT and 80 FT
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on the other. Indeed, adjusting for PMA in thesemodels attenuated the variance explained between systems by

approximately 50%–90%, though all pairs were still significantly interrelated at p < 0.003. In all cases, PMA ac-

counted for a greater proportion of variance when compared toDOL in the adjusted T cell-microbiota co-devel-

opmentmodels andachieved statistically superior BIC scores (Bayesian InformationCriterion) (Table S4, p values

in favor of PMA vs DOL ranging from 10�50 to 10�153).

Bothage factors explain substantial amounts of variability, and indeedamodel that includesboth simultaneously

leads to the lowest BIC scores of anymodel (Table S4). Given our primary interest in the independent role of host

development across awide rangeof gestational ages at birth, we focusedonPMAas theunivariate index of T cell

and microbiota maturation. These results support PMA as an index of T cell and microbiota maturation, but

further suggest a more complicated model in which these systems can co-occur independently of host age.

T cell populations enriched in premature infants give way to a PMA-predicted trajectory that

converges with full terms

Using the FlowSOM-identified T cell populations in Tphe (Figure 2A) and ICS (Figure 2B), we examined

age-related T cell population distribution changes in our cohort over time, from birth through one year.

Figure 2. Early T cell development in preterm and full-term infants advances with postmenstrual age

(A and B) T cells from flow cytometry performed on infants at birth, hospital discharge, and approximately one year of life

were characterized by (A) phenotype (‘‘Tphe’’, unstimulated) and (B) cytokine function (‘‘ICS’’, stimulated in vitro) and

clustered into subpopulations. The median fluorescence intensity of the flow parameters in the 79 clusters is shown.

(C) T cell subpopulations from panels (B) and (C) that predicted sample PMA in a lasso regression are displayed, and their

regression coefficients along the x axis. Populations that have inverse associations with PMA fall on the left of the dashed

line, and vice versa. The x axis values indicate PMA fold-change per z-scored increase in the proportion of a subject’s cells

assigned to that population. T cell phenotype subpopulations are grouped based on CCR7 and CD45RO expression

(CM = central memory, EM = effector memory, N = naive, TE = terminal effector, and VM = virtual memory).
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Using UMAP to visualize each sample’s T cell populations, we observed that full-term and preterm subjects

clustered separately at birth, but converged by one year PMA (Figure S1), again supporting the notion of

PMA as a dominant influence on this system. We log-transformed the PMA and applied elasticnet

regression (see STAR Methods) to find the most important Tphe populations as statistical predictors of

PMA. Log-transformation gave more sensitivity to the abrupt changes that occur early in life, and meant

that the effect of the populations, as measured through their regression coefficients, can be interpreted

multiplicatively as fold-changes. We then organized them into the following groups: effector memory

(EM, CD45RO+, CCR7-, and CD28�), naive (N, CD45RO-, CCR7+, and CD28+), central memory (CM,

CD45RO+, CCR7+), virtual memory (Vmem, CD8+, CD45ROlo, and CD122hi), and terminal effector (TE,

CD45ROlo, CCR7-, and CD28�) (Bains et al., 2009; De Rosa et al., 2001; Gerlach et al., 2013; Buettner

et al., 2015; Farber et al., 2014; Mahnke et al., 2013). ICS populations were first grouped into naive and

memory (CD45RA+ and CD45RA-, respectively), and then named based on predominant cytokine profile.

T cells that displayed markers consistent with TE differentiation associated with the ‘‘youngest’’ PMA.

Naive, then EM subsets, and finally CM emerged with advancing PMA. Naive populations showed

considerable heterogeneity across PMA, indicating that variation in circulating T cells seen in early human

development could potentially track to thymic or progenitor stages. CM populations that were present

earlier typically carried a FOXP3+IL7ralow T-reg cell phenotype (Figure 2A), supporting previous studies

that indicate a predisposition to peripheral T regulatory cell (Treg) differentiation during human fetal

development. Functionally, CD4+ T cells progressed from naive TNF-a and IL-2 high, then to IL-8 high,

then to polarized (IFN-g, IL-4, and IL-17), polyfunctional cells at later PMA. CD8+ T cells that were cytokine

low or TNF-a positive were present at early PMA, then progressed through IL-4 and IL-8 positive, then

cytotoxic CD45RA+. CD45RA low T cells were biased toward 12-month samples. Together, these results

reveal a trajectory in which pauci-functional innate-like effectors and regulatory T cells are enriched at early

gestational ages, giving way by term gestation to a more ‘‘typical’’ naive phenotype and a gradual gain of

more polarized memory T cell phenotype postnatally.

Atypical T cell phenotypes, but not cytokine function, are predicted by inflammatory

exposures

To characterize changes in the circulating T cell pool during infancy, we grouped Tphe and ICS samples

into immune state types (ISTs) based on the relative abundances of their respective T cell populations using

Dirichlet Multinomial Mixture (DMM) models (Figure 3). Each IST in this case represented an archetypal

profile of T cell composition in terms of the relative abundance of the various T cell subpopulations, and

samples were assigned to the IST which best explained their observedmakeup. The seven T cell phenotype

immune state types (Tphe ISTs, Figures 3A–3C) and eight ICS immune state types (ICS ISTs, Figures 3B–3D)

were ordered according to their average PMA of occurrence. As a group, they explained a substantial

amount of variance in PMA (ANOVA, R2 = 0.86 and 0.69, respectively, Figures 3C and 3D).

Once a normal progression was established, we next hypothesized that clinical exposures would predict

deviation from the normal IST progression. To address this question, we used a joint logistic regression

model that adjusted for GA, sex, race, mode of delivery, premature rupture of membranes, cytomegalo-

virus (CMV) infection, antibiotic exposure, and breastmilk to isolate the variables accounting for IST’s

not following a PMA-determined progression pattern. Neither breastmilk intake nor postnatal antibiotic

exposure predicted T cell state. However, several inflammatory or infectious conditions, including

chorioamnionitis and exposure to antenatal antibiotics increased the odds of a subject ever entering

Tphe5 by 9-fold (95% CI 1.2–66, p < 0.04) and 4.5-fold (95% CI 1.3–16, p < 0.02), respectively (Figure 3C).

The increased abundance of CD57+ and cytotoxic CD8+ T cells in Tphe5 and Tphe6 raised our suspicion

for prior cytomegalovirus (CMV) exposure, a strong stimulus for immunomaturation and known driver of

high CD57 expression (Kern et al., 1999; Brenchley et al., 2003). It is important to note that no subjects

in our cohort had stigmata or clinical evidence in support of a diagnosis of either congenital CMV infection

or acquired CMV infection during hospitalization. CMV infection was detected by PCR on serial nasal

swabs within 12 months in 18 subjects with T cell phenotyping. 40% of subjects entering Tphe6 (20-fold

odds, p < 0.0001) and 19% of subjects ever entering Tphe5 (8-fold odds, p < 0.005) tested positive for

CMV, compared to less than 8% of those subjects who were never in Tphe6 or Tphe5. Tphe5 early in life

increased by 5-fold (p < 0.001) the odds of having Tphe6 at 12-months, but having Tphe6 early in life

exhibited no association with Tphe5 status, indicating that Tphe5 may represent a less enduring immuno-

phenotype whose potential is dependent on a window of immune development. Clinical exposures
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predicting T cell phenotype characteristics were not accompanied by changes in functional state types (ICS

ISTs); in fact, ICS ISTs did not exhibit significant associations (FDR-adjusted p values > 0.70) with any

variables considered, when controlling for age.

Convergent microbiota community progression parallels T cell development in preterms and

full-terms

Having characterized the compositional progression of T cell population profiles with respect to PMA, we

performed a similar assessment of the microbiota to determine if a parallel pattern of maturation by PMA

would hold. To summarize colonization of OTUs across samples, we used unweighted Unifrac distances

Figure 3. Immune State Types (ISTs) advance with postmenstrual age, and are perturbed by specific clinical

exposures

(A and B) T cell phenotype (A) and T cell function (B) immune state types (ISTs) were defined based on T cell population

relative abundances. ISTs were enumerated according to the average postmenstrual age (PMA) at which they occur.

Colors reflect relative abundances of component cell populations (rows); functional annotations and defining markers are

shown in the heatmaps on the right.

(C and D) The assigned IST vs PMA of sampling of (C) TPHE and (D) ICS. Each point represents a sample assigned to a

given IST and is colored by gestational age at birth (GABirth) of the infant. The ANOVA coefficient of determination of

PMA vs IST category is shown as the r2, whereas asterisks at the base of the dot plots indicate significant enrichment

for either preterm (orange) or full-term (blue) samples within an IST, controlling for confounders and repeated measures

(*p < 0.05, **p < 0.01, ***p < 0.001, two-tailed binomial test).

(E) Joint logistic regression showing the log odds and 95% confidence interval of ever being in Tphe5 or Tphe6 given

exposure indicated, controlling for gestational age (*p < 0.05, **p < 0.01, ***p < 0.001).
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between all samples within each body site to compute as a measure of b-diversity, which were then used to

perform principal coordinate analysis (PCoA). For both body sites, the first principal coordinate (PC1)

corresponded to PMA (Figure S3). Samples lower in PC1 tended to be taken before 40 weeks PMA, whereas

advancement along the PC1 axis showed convergence of PT and FT subjects.

We next applied a similar approach as performed on T cell populations using DMM modeling to partition

samples into characteristic community state types (CSTs) based on their compositional profiles. Based on

model fit and parsimony, 13 CSTs were defined for both respiratory (nCST) and gut microbiota (gCST) and

were enumerated (1–13) according to the average PMA at which each CST occurred. CST 1 to 13 in the gut

and the nose were strongly associated with PMA (ANOVA, R2 = 0.57 and 0.61, respectively) (Figures 4C, 4D,

and S4). Both gCST1 and nCST1 were dominated by Staphylococcus. Gut and nasal CST’s later diverged

when more niche-specific taxa took hold, including Enterobacteriales and Clostridiales in the gut and

Figure 4. Premature birth influences long-term age-related respiratory and gut microbiota community progression

Microbiota community profiling was performed on (A and C) rectal and (B and D) nasal samples obtained from 159 infants during regular surveillance and

acute respiratory illness.

(A and B) Microbiota community state types (CSTs) were defined for each body site based on sample composition, and the relative abundances of the top 25

most abundant genera were visualized using heatmaps, with samples as columns, clustered by CST. CSTs were numbered according to average PMA of

occurrence.

(C and D) Samples within each CST were plotted against subjects’ PMA at the time of sample collection. Each dot represents a single sample, colored by the

subject’s GA. r2 values show correlations between CST and PMA. Asterisks at the base of the dot plots indicate significant enrichment for either preterm

(orange) or full-term samples (blue) within a CST controlling for confounders and repeated measures (*p < 0.05, **p < 0.01, ***p < 0.001, two-tailed binomial

test).

ll
OPEN ACCESS

iScience 25, 104007, April 15, 2022 7

iScience
Article



Streptococcus and Corynebacterium in the respiratory tract (Figures 4A and 4B). A small number of gCSTs

and nCSTs occurring later in the first year of life, indicated by asterisks below Figures 4B–4D, were overrep-

resented by either PT or FT subjects after controlling for confounders as in the previous section and

repeated measures using logistic mixed models. Staphylococcus and Streptococcus-dominant nCST1,

nCST2, and gCST1 were more frequently found in PT subjects, as well as gCST2, gCST3. These findings

independently predicted by gestational age at delivery, suggest infrequent but enduring microbial effects

related to premature birth.

Duration and timing differentially affect microbiota-T cell axis

The immune system and microbiota appeared to be regulated in tandem with advancing PMA in our

cohort. We therefore hypothesized that microbiota and T cell associations that persist after adjusting for

PMA, indicating asynchrony with infant development, might impact an infant’s health. To explore this

hypothesis with respect to the longitudinal sampling scheme, which was relatively sparser for the T cell

than for the microbiota, we considered if the number of days a subject spent in each CST, adjusting for

the total length of surveillance, was associated with the T cell state at birth, discharge, and one year. A

strength of this model is that it flexibly models temporal relations between T cells and the eventual or

preceding microbiome state. Another strength is that it summarizes the microbiome and T cell state across

time providing a single value for the subject on these repeated measures. We fit models on all pairwise

combinations of CSTs and immunological parameters. Of the potential 6,318 possible associations

between the 26 CSTs and 243 T cell parameters, we report only associations that are significant after

adjusting for multiple comparisons.

The significant results of these tests, which corresponded to interactions between the T cells and

microbiota present in our cohort, were visualized as networks (Figure S5). After multiple test correction,

in a baseline model that only adjusts for premature birth, initially 166 pairs were found to be associated,

which dropped to 49 pairs after adjusting for PMA, breastmilk exposure, inpatient antibiotic days,

outpatient antibiotic courses, and mode of delivery, further supporting the overarching importance of

PMA in our study.

In the 49 associations that persist in the adjusted model, four microbial states appear to be especially

correlated with the immune state. The community types, nCST3, nCST8, nCST9, and gCST10 span over

half of these significant associations. The relatively sparse associations that occur independent of PMA

and often involve identical or closely-related T cell populations (Figures 5 and S5). Increased relative

abundance at birth in two naive and early activated CD4+ populations, one CD31+ and one CD31�, tended
to increase time spent in nCST3, which is a pauci-diverse CST dominated by Staphylococcus and

Streptococcus, and found in both PT and FT from birth until roughly 60 weeks PMA. Increased relative

abundance of several CD8+, granzyme, and perforin high effector-rich subpopulations at birth, discharge,

and one year were also associated with nCST3. Lastly, at one year, subjects who spent longer in

nCST3 tended to have higher levels of two cytokine-producing (IFNg+/TNFa+) and cytotoxic (107a+)

CD8+ T cell populations.

Increased relative abundance at birth and discharge of Tphe5 and its individual clusters characterized by

CCR7 high, early activated, and FOXP3+ regulatory CD4+ populations associated with shorter durations of

nCST8. This CST, distinguished by its Alloiococcus dominance, was found at 40 to 80 weeks PMA. In

contrast, TPHE IST 2 and 4, characterized by their enrichment for naive and RTE CD4+ and CD8+ T cells,

predicted longer duration in nCST8, indicating that this may represent a more typical microbial-immune

relationship. The nCST9, distinct in its predominant Moraxella species, was associated with increases in

numerous cytotoxic and phenotypically memory CD4 and CD8 populations at one year. Lastly, longer

duration of gCST10, enriched for the beneficial Veillonella and Bifidobacterium species, predicted lower

frequencies of cytokine-positive CD4+ and CD8+ T cells at one year, but was strongly and positively

associated with CD4+ T cells that lacked appreciable cytokine production upon stimulation, suggesting

maintenance of a regulatory milieu.

Together these models suggest that there is an age-independent microbiota-T cell axis, and the bidirec-

tional relationship between T cell phenotype andmicrobiota displays early T cell phenotypic differentiation

predicting later microbiota, and T cell functional maturation following microbiota exposures.
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Sequence and timing of T cell-microbiota associated events predict infant respiratory

outcomes

Observing sparse age-independent T cell-microbiota interactions, we hypothesized that maintenance of a

typical longitudinal microbiome-immune axis is a marker of health, and the trajectories that deviated with

respect to an infant’s PMA would predict respiratory morbidity in the form of PRD. One early indicator in

support of this hypothesis was that Alloiococcus (dominant in nCST8 and negatively associated with

Tphe5), for every 10% increase in relative abundance, there was a 1.4-fold reduction in the odds of a sample

being taken during acute illness compared to healthy surveillance (1.1 to 1.8-fold, 95% CI, p value < 0.003),

controlling for multiple confounders. However, to formally test our hypothesis that microbiota and T cells

work together as age-dependent systems in maintaining respiratory health, we developed a quantitative

model of the ‘‘normal’’ relationship between PMA and T cell and microbiota developmental trajectories,

which was then used to assign a developmental index (DI) for each subject. For DI, we trained two sparse

regression models that used the T cell populations and microbiota abundance vectors to predict log2-

transformed PMA at sample collection. For each subject, two trajectory components were defined: first,

the fitted intercepts of these models represented the predicted PMA at 37 weeks actual PMA, indicate

the subject’s microbiota and T cell maturity relative to ‘‘normal’’ at 37 weeks PMA (see ‘‘immunological

and microbial developmental indices’’ Methods for details), and second, the fitted slopes of the models

indicate a subject’s rate of microbiota and T cell maturation over the first year, again relative to normal.

Holding out a subject’s longitudinal record, the cross-validated models strongly predicted PMA using

either T cell populations (R2 = 0.77) or bacterial taxa (R2 = 0.65) (Figure 6A). The four fitted DI parameter

z-scores together (intercept and slope for microbiota and T cells) were then used to quantify mistiming

with respect to age, or asynchrony between age, T cell and microbiota development, and its contribution

to PRD.

We used random forest classification models to compare the predictive power of the four DI features alone

to that of a set of known clinical risk factors for PRD. The clinical features were race, maternal education, sex,

GA, birthweight, season at birth, and oxygen supplementation integrated over the first 14 days of life (Kel-

ler et al., 2017). In cross-validation, the clinical features predicted PRD with area under the curve (AUC) of

0.69 (0.59–0.79 95% CI), the strongest features being increased oxygen exposure, lower birthweight, and

younger GA (Figure S6). When compared to clinical predictors, the developmental index had statistically

equivalent skill in predicting PRD (Figure 6B, AUC 0.64, 0.54%–0.74 95%CI). Combining the clinical features

and the developmental variables did not improve the AUC of the predictive model; however, indicating

Figure 5. Bidirectional associations between the microbiome and T cell expansion

Microbiota duration (days spent) in microbial community state types (CSTs) was modeled as a function of T cell features,

controlling for gestational age at birth, mode of delivery, human milk consumption, and antibiotic exposure using quasi-

poisson regression. The log rate ratio and its 95% confidence interval is shown for associations that were significant at 10%

FDR.
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potential overlapping and equal effects between the two. Of the four components generating the DI, the

microbiome intercept and immune slope had the largest variable importance scores. In exploring the

functional relationship between PRD and these factors, we observed that an immature microbiota at

term equivalent PMA increased the risk of PRD by over 2-fold, and this effect was magnified in

subjects with accelerated T cell maturation (Figure 6C). These results indicate that microbial-immune

axis trajectories are equally informative to known clinical risk factors when predicting outcomes in infants.

Furthermore, the timing of T cell-microbiota co-maturation relative to an infant’s age appears to play a role

in determining respiratory health.

DISCUSSION

Birth initiates a dynamic interplay between developmental programming, colonization and assembly of the

microbiome, and differentiation and maturation of the adaptive immune system. In healthy infants, this

process balances the accommodation of commensal microbiota, appropriate immune response to

pathogens, and functional maturation of the organs at the mucosal interface between human host and

environment. Here, we present results from a cohort of preterm and full-term human infants, in which

respiratory microbiota, gut microbiota, and T cell systems were measured longitudinally with respect to

several age measures and assessed for their combined strength in predicting respiratory outcomes. By

creating new longitudinal models of microbiota composition and T cells, we were able to describe the

co-development of these systems. We found T cells and microbiota exhibit structured patterns of progres-

sion, driven by age with pronounced differences between PT and FT infants in very early life, and indeed

both days of life and PMA are important factors. In many cases, there was a tendency toward convergence

postnatally, hence we focus on PMA as a synchronizing factor. Furthermore, outside of PMA-driven

Figure 6. Mistimed Immune and Microbial Development Predict Respiratory Outcome

Elastic net regression predicts a postmenstrual age (pPMA) based on both T cell populations and microbial operational taxonomic units (OTUs), separately.

(A) The pPMA of a subject is plotted against the observed age (oPMA) at the time of sampling to establish an intercept at 37 weeks (left) and a slope (right),

corresponding to maturity at term equivalent and rate of maturation over the first year, for both T cell and microbiota. Z-scores for each subject’s slope and

intercept are indicated as color overlays (red - relatively advanced maturation at term equivalent/faster development, and blue - relatively delayed

maturation at term equivalent/slower development). A ‘‘Developmental Index’’ (DI) was constructed using these four parameters: the z-scores of T cell and

microbiota intercepts and slopes.

(B) A random forest machine learning algorithm predicts persistent respiratory disease (PRD) from known risk factor clinical variables and from the T cell and

microbiota-based DI. Boxplots show the area under the curve calculated for each set of variables (mean and standard error of the mean).

(C) The contour graph demonstrates the two DI components, the microbiota intercept and T cell slope, with the best predictive strength for PRD risk,

controlling for clinical factors. Blue = lower PRD risk, red = higher risk.
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development, interactions occur between T cell population profiles and microbiota community structure,

with early atypical or asynchronous immune and microbiota features initiating a cascade of events that

predict respiratory disease in infants.

Our central observation of a patterned progression of the immune system and microbiota builds on

previous studies demonstrating age-dependent shifts in gut microbiota and higher order innate and

adaptive immune cell populations (Peterson et al., 2021; Olin et al., 2018; Roswall et al., 2021). Our study

adds to these reports in several ways. We focused on deep T cell phenotyping, which was important

because mouse models and human vaccine studies indicate that infant T cells, even those derived during

gestation, may survive into adulthood and therefore may maintain an imprint of early exposures (Smith

et al., 2018; Tough and Sprent, 1995). We found pauci-functional effectors and regulatory T cells to be

enriched at early gestational ages, giving way by term gestation to a more ‘‘typical’’ naive phenotype

and a gradual gain of more polarized memory T cell phenotype postnatally. The Treg bias is consistent

with studies showing a predisposition to CD4+ Treg and Treg differentiation in human fetal-derived

T cell progenitors (Hayakawa et al., 2017; Mold et al., 2010). Another parallel reported finding is that

neonatal mice exposed to HSV-1 antigen have enhanced CD8+ T cell short-lived effector differentiation

in human fetal-derived T cell progenitors (Smith et al., 2014, 2018; Rudd et al., 2013). Moreover, these

differential T cell responses observed in mice persist and shape the immune response towards SLECs

upon secondary challenge. Whether or not antigen-specific T cells, such as vaccine-induced, are differen-

tially recalled later in childhood in those infants primed at a time when they harbored a Treg/effector

phenotype seen at lower gestational ages has not been directly studied, but the PT or FT-biased IST’s

at later PMA suggests that early perturbations may have sustained effects on the immune system.

To test these sustained effects, we applied a longitudinal approach, which, when ordered by average

PMA of the sample, revealed a linear progression of immune and microbiota state types by PMA from

birth to one year. A similar patterned progression was seen in both gut and nasal microbiota. Individual

longitudinal trajectories that deviated from the average trajectory, for example, subjects who entered early

into the Treg-enriched state type, Tphe5, were more likely to have been exposed to immune-modulating

and microbiota-modulating stimuli (chorioamnionitis, antenatal antibiotics), and are also more likely to be

colonized later with CSTs in an age-independent fashion. This pattern has also been shown in nonhuman

primates, in whom intrauterine inoculation with LPS or infection causes expansion of dysregulated FOXP3+

CD4+ T cells (Rueda et al., 2016), as well as human neonates in whom chorioamnionitis or funisitis show an

altered placental microbiome as well as sustained inflammatory transcription factor profile, including

defects in FOXP3+ CD4+ T cell function (Rueda et al., 2015; Misra et al., 2015). By applying IST grouping,

we were able to show that Tregs and effectors are expanded within the same Tphe5 IST, suggesting a

state of dysregulation rather than successful immune suppression. In support of this interpretation, the

CCR7-FOXP3+ CD4+ subpopulation associated with Tphe5 arises in inflammatory states and can

contribute to immune dysregulation in CCR7 null mice (Smigiel et al., 2014). We did not directly test

in vitro function of chorioamnionitis-exposed or antibiotic-exposed Tregs with respect to colonizing

bacteria, but it is plausible that in newborns, early exposures shape both immediate immune system devel-

opment and alter their responses to infection and niche receptiveness to an age-appropriate microbiota.

A growing set of birth cohorts with longitudinal observations suggest that immune system development

and microbiome as independent variables predict health outcomes in infants. For example, previous

reports and our analysis indicate that in children, Alloiococcus in the respiratory tract has protective

associations against acute respiratory infections (Teo et al., 2015; Ta et al., 2018). In our cohort, Alloiococ-

cus-dominant nCST8 was found more often in asymptomatic subjects, but was less frequent in infants with

an early atypical immunophenotype. We tested the role of an infant’s age during a microbial-immune axis

shift, and if these systems worked together to impact respiratory outcomes. In support of our hypothesis,

we observed an age-specific microbiota-immune axis combined trajectory, and when altered, this axis

predicted respiratory morbidity. Specifically, accelerated T cell trajectory appeared harmful, but this effect

was attenuated by an advanced microbiome. Another recent study consistent with our finding showed

that, in preterm infants, white matter injury of the brain was associated with early changes in T cells, stool

microbiota and short-chain fatty acids, and these variables acted together to converge on an unfavorable

outcome (Seki et al., 2021). Given that deviation from typical ISTs and CSTs was best predicted by antenatal

infection or antibiotics, the pathologic cascade that links microbiome-immune axis with health outcomes is

likely to be initiated before birth. The bidirectional effects are also evident in the continued effect of gut
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and nasal microbiota on T cell phenotype and function at one year. These windows of opportunity

represent a challenging but promising target in preventing the leading cause of pediatric outpatient visits

and hospitalizations, namely respiratory infections and exacerbations (Busse et al., 2010; Tregoning and

Schwarze, 2010; Chen et al., 2019). However, our results also underscore the need to assess microbiota

and immune systems within the context of one another and the infant’s physiologic development

before considering interventions that could potentially disrupt a well-orchestrated, age-appropriate

immune-microbial axis.

Limitations of the study

As an observational human study, there are several limitations that need to be acknowledged. First, this

study cannot confirm causal mechanisms between the microbiome, the immune state, and the disease,

without making strong and fundamentally unverifiable assumptions about the type and nature of

confounding; although we have attempted to adjust for known potential confounders of immune and

microbiome development, undoubtedly others will be revealed in future studies that will need to be

addressed. Dense longitudinal sampling of the microbiome in both healthy and ill states, however, offers

some ability to quantify the temporal relationships between these two systems. This study used PMA as a

univariate index to organize temporal relationships we observed. However, both day-of-life and PMA are

important factors. Future work could consider more complicated multivariate or nonlinear relationships

between PMA, day of life, microbiome, and immune states. Unavoidable limitations in infant blood

sampling resulted in asymmetric sampling of microbiome and immune variables, but our deep and broad

T cell profiling will allow future studies to sample more frequently with less volume focusing on the most

relevant immune populations. Future studies will also benefit from metagenome and metabolomics to

better resolve microbiota species and functional potential, as well as single-cell genomics to understand

the molecular underpinnings of early T cell-microbiota co-development.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD122 (Mik-b) BD Biosciences Cat#564688; RRID:AB_2738895

Perforin (dG9) Biolegend Cat#308114; RRID:AB_2284280

Granzyme B (GB11) BD Biosciences Cat#563389; RRID:AB_2738175

CD3 (UCHT1) Biolegend Cat#300436; RRID:AB_2562124

CD31 (WM59) BD Biosciences Cat#562855; RRID:AB_2737841

CD127 (HIL-7R-M21) BD Biosciences Cat#563225; RRID:AB_2738081

CD45RO (UCHL1) BD Biosciences Cat#563722; RRID:AB_2744413

CD8a (RPA-T8) Biolegend Cat#301045; RRID:AB_11219195

KLRG1 (13F12F2) eBioscience Cat#17-9488-42; RRID:AB_2573303

CD185 (RF8B2) BD Biosciences Cat#565191; RRID:AB_2739103

CD197 (G043H7) Biolegend Cat#353212; RRID:AB_10916390

Foxp3 (236A/E7) eBioscience Cat#12-4777-42; RRID:AB_1944444

CD4 (S3.5) Invitrogen Cat#MHCD0417; RRID:AB_10371766

CD28 (CD28.2) BD Biosciences Cat#561791; RRID:AB_10898345

CD57 (TB01) eBioscience Cat#25-0577-42; RRID:AB_2573354

IL-8 (E8N1) BioLegend Cat#511406; RRID:AB_893462

IL-17 (BL168) BioLegend Cat#512312; RRID:AB_961392

CD14 (MFP9) BD Biosciences Cat#563079; RRID:AB_2737993

IL-2 (MQ1-17H12) BD Biosciences Cat#564165; RRID:AB_2738636

CD45RA (HI100) BD Biosciences Cat#563963; RRID:AB_2738514

IL-10 (JES3-9D7) BD Biosciences Cat#564050; RRID:AB_2738564

TNFa (Mab11) BioLegend Cat#502948; RRID:AB_2565858

IL-6 (MQ2-13A5) BD Biosciences Cat#561441; RRID:AB_10679121

CD69 (FN50) BioLegend Cat#310914; RRID:AB_314849

CD107a (H4A3) BD Biosciences Cat#562628; RRID:AB_2737686

IFN-g (B27) BD Biosciences Cat#557643; RRID:AB_396760

Chemicals, peptides, and recombinant proteins

Enterotoxin Type B from Staphylococcus aureus List Biological Laboratories Cat#122

Phusion High-Fidelity PCR Master Mix with HF Buffer New England Biolabs Cat#M0531L

Critical commercial assays

Quant-IT PicoGreen dsDNA Assay Thermo Fisher Cat#P7589

SequalPrepTM Normalization Plate Kit Invitrogen Cat#A1051001

Quick-DNA Fecal/Soil Microbe MiniPrep Kit Zymo Research Cat#D6010

Fixable Aqua Dead Cell Stain Kit, for 405 nm excitation Thermo Fisher Cat#L34957

eBioscience Foxp3/Transcription Factor Staining Buffer Set Thermo Fisher Cat#00-5523-00

BD Cytofix/Cytoperm Kit BD Biosciences Cat#554714; RRID: AB_2869008

BD GolgiPlug BD Biosciences Cat#555029; RRID: AB_2869014

BD GolgiStop BD Biosciences Cat#554724; RRID: AB_2869012

Rainbow Calibration Particles, 6th peak from the 8 peak set Spherotech Cat#RCP-30-5A-6

AgPath-ID� One-Step RT-PCR Reagents Applied Biosystems Cat#4387424

Black Hole Quencher-1 Biosearch Technologies 3’-BHQ-1 CPG

(Continued on next page)

ll
OPEN ACCESS

16 iScience 25, 104007, April 15, 2022

iScience
Article



RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Kristin Scheible (Kristin_Scheible@URMC.Rochester.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Flow cytometry (.ics) and 16S sequencing data have been deposited at dbGaP accession dbGap: phs001347

and are available to other researchers, subject to dbGaP procedures as of the date of publication.

d Data and code supporting this analysis has been deposited with Zenodo, under doi https://doi.org/10.

5281/zenodo.5786917 and are publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study design and sample collection

All study procedures were approved by the University of Rochester Medical Center (URMC) Internal Review

Board (IRB) (Protocol # RPRC00045470 & 37933) and all subjects’ caregivers provided informed consent.

The infants included in the study were enrolled within 7 days of life for the University of Rochester

Respiratory Pathogens Research Center PRISM and were cared for in the URMC Golisano Children’s

Hospital. Clinical data including nutrition, respiratory support, respiratory symptoms, medications,

comorbidities, were entered into REDCap (Harris et al., 2009, 2019), then integrated with laboratory results

using the URMC Bio Lab Informatics Server, a web-based data management system using the open source

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Annotated datasets for:-16S gene

sequencing-flow cytometry results

dbGaP phs001347

Oligonucleotides

Forward primer V3-V4 rRNA sequencing (319F):

5’-ACT CCT ACG GGA GGC AGC AG-3’

Grier et al. (2018) N/A

Reverse primer V3-V4 rRNA sequencing(806R):

5’-GGA CTA CHV GGG TWT CTA AT-3’

Grier et al. (2018) N/A

Forward primer V1-V3 rRNA sequencing(8F):

5’-AGA GTT TGA TCC TGG CTC AG-3’

Grier et al. (2018) N/A

Reverse primer V1-V3 rRNA sequencing(534R):

5’-ATT ACC GCG GCT GCT GG-3’

Grier et al. (2018) N/A

Forward primer, UL55:

5’-TGG GCG AGG ACA ACG AA

Boeckh et al. (2004) N/A

Reverse primer, UL55:

5’-TGA GGC TGG GAA GCT GAC AT

Boeckh et al. (2004) N/A

Forward primer, UL123-exon4:

5’-TCC CGC TTA TCC TCR GGT ACA

Boeckh et al. (2004) N/A

Reverse primer, UL123-exon4:

5’-TGA GCC TTT CGA GGA SAT GAA

Boeckh et al. (2004) N/A

Software and algorithms

Code and interim data github (zenodo) https://doi.org/10.5281/zenodo.5786917
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LabKey Server (Nelson et al., 2011). Blood was collected at birth, time of NICU discharge or 36-42 weeks

PMA (whichever occurred first), and at 12 months of life. We collected 2729 gut (842 from NICU and

1887 post-discharge), and 2210 nasal (619 from NICU and 1591 post-discharge) usable microbiota samples

longitudinally from 139 pre-term and 98 full-term infants and worked with the most extensive subset of

these possible depending on the analysis in question (Table S2). From the PRISM study cohort, fecal (rectal)

and nasal material was collected from pre-term infants (23 to 37 weeks gestational age at birth (GA)) weekly

from the first week of life until hospital discharge, and then monthly through one year of gestationally

corrected age. Rectal and nasal samples were collected from full-term infants at enrollment and monthly

through one year. Additionally, rectal and nasal samples were collected from all infants whenever they

exhibited symptoms of acute respiratory illness after discharge from the hospital. Symptoms of acute

respiratory illness prompting sample collection were summarized by the primary caregiver using a

symptom COAST (Childhood Origins of Asthma) score sheet (Busse et al., 2010). Parents were instructed

to notify the study team if the infant had symptom score of three or greater. Demographic information on

the cohort can be found in Table 1.

METHOD DETAILS

Flow cytometry methods

Sample collection, isolation, storage, thawing, stimulation and staining for flow cytometry was performed

as detailed previously (Scheible et al., 2012). In short, cord blood and peripheral blood mononuclear cells

were isolated via Ficoll density gradient centrifugation, cryopreserved and stored in liquid nitrogen, and

rapidly thawed and washed with pre-warmed RPMI-1640 supplemented with 10% FBS and 1x L-glutamine;

thawing was done in ‘subject-balanced’ batches (equal mix of pre and fullterm subjects, each with three

time points). An aliquot of each freshly thawed sample was stained with a T-cell phenotyping (Tphe) panel

with the remainder of the sample rested overnight in an incubator, and stimulated with 2mg/mL of

Staphylococcus aureus, Enterotoxin Type B (SEB); following an initial 2-hour stimulation, samples were

blocked using GolgiPlug and GolgiStop (manufacturer’s recommended concentrations), further

stimulated for 8 hours and then stained with a T-cell functional panel (ICS). Panel compositions are as

shown in Table S5 and as listed in the key resources table.

Staining steps were performed using the following parameters: 96-well V bottom plates (�2.5x106 cells per

well); 50 mL stain volumes; 200 mL wash volumes; 5-minute spins at 500 g; and 30-minute incubations (room

temperature, in the dark). For both panels, plated samples were washed twice with PBS supplemented with

2% FBS (Stain Buffer), stained to assess viability (Fixable Aqua), washed once with Stain Buffer, and then

surface stained. Following two washes with Stain Buffer, samples were fixed and permeabilized

according to manufacturer’s protocol using the eBioscience FoxP3 Fix/Perm kit (Tphe panel) or the BD

Cytofix/Cytoperm kit (ICS panel). Following two washes with the respective permeabilization buffer,

samples were intracellular/intranuclear stained. Finally, samples were washed twice with permeabilization

buffer and once with Stain Buffer.

Samples were acquired on a BD LSRII (core facility instrument QC-ed daily with BD CS&T beads); PMT

voltages were normalized per run to pre-determined/optimized ‘Peak-6’ (Spherotech) median fluores-

cence values. All blood samples generating usable data were included in all analyses. Sufficient blood

to perform T-cell phenotyping by flow cytometry at three pre-defined timepoints was collected from

55% of subjects at birth, 61% of subjects at NICU discharge, and 38% at 12 months. For training the

PMA predictions models (described below), all microbiota samples were used. For all other analyses,

microbiota samples from subjects that did not have any usable data from blood were excluded. Two

staining panels, covering i) intracellular cytokine production (ICS) and ii) T-cell surface phenotyping

(Tphe) were designed (Table S5). Complete immunophenotyping for all three timepoints was performed

on 25% of subjects, and 63% of subjects had complete immunophenotyping for at least one timepoint.

Microbiota collection and sequencing

Microbiota sample collection and storage techniques, genomic DNA extraction and background control

methods were as previously published (Grier et al., 2018). In brief, each sample was collected by inserting

a sterile, normal saline moistened, flocked nylon swab beyond the sphincter into the rectum, for gut

samples, or into the anterior nostril for nasal swabs, and twirling prior to removal. Each swab was then

immediately placed into sterile buffered saline and stored at 4�C for no more than 4 h. Extraction of the

fecal and nasal material from the swabs occurred daily in a sterile environment and were transferred
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immediately to -80�C storage until DNA extraction. Genomic DNA was extracted from the nose, throat,

and rectal samples using a modification of the Zymo Fecal/Soil Microbe Miniprep Kit and FastPrep me-

chanical lysis, and amplified with 16S rRNA gene primers as previously described (Grier et al., 2017,

2018). Briefly, amplification of 16S ribosomal RNA (rRNA) was performed using Phusion High-Fidelity po-

lymerase (Thermo Scientific, Waltham, MA) and dual indexed primers specific to the V3-V4 hypervariable

regions (319F: 50 ACTCCTACGGGAGGCAGCAG 30; 806R: 30 ACTCCTACGGGAGGCAGCAG 50). After
pooling, amplicons were paired-end sequenced on an Illumina MiSeq (Illumina, San Diego, CA) in the Uni-

versity of Rochester Genomics Research Center. Positive controls for each sequencing run consisted of a

1:5 mixture of Staphylococcus aureus, Lactococcus lactis, Porphyromonas gingivalis, Streptococcus mu-

tans, and Escherichia coli and negative controls consisted of sterile saline.

Cytomegalovirus detection

Subject saliva samples collected at 12 months of age were screened for cytomegalovirus (CMV) infection by

Real-Time PCR using a double-primer assay targeting the UL55-UL123-exon 4 regions, according to a

previously published protocol (Boeckh et al., 2004). Briefly, probes were labeled at the 5’ end with 6-carbox-

yfluorescein (FAM) and at the 3’ end with Black Hole QuencherTM1 (Biosearch Technologies, Inc., Novato,

CA). Real-time assays were run on the Applied BiosystemsTM 7500 Real-Time PCR system (ThermoFisher

Scientific) under the following conditions: 50�C for 10 min, 95�C for 10 min, followed by 45 cycles of 95�C for

20 s and 60�C for 1 min. Each 25 ml was prepared using AgPath-IDTM One-Step RT-PCR reagents (Applied

Biosystems), to include 12.5 ml of 2x RT-PCR Buffer, 1 ml of 25x RT-PCR Enzyme mix, a 400 nM concentration

of primers and 5 ml of sample extract. Sample quality was assessed using human RNaseP reference gene

control (Boeckh et al., 2004). Positive control included known positive clinical isolate, primers and probes,

and negative control was nuclease-free water.

QUANTIFICATION AND STATISTICAL ANALYSIS

Flow cytometry gating and clustering

R-based packages and scripts were used for all post-acquisition processing and analysis of flow cytometry

data. Reading of raw .fcs files, compensation, transformation, and subsetting/writing of .fcs files was

performed using flowCore (Hahne et al., 2009). To minimize inter-run variation associated with the Tphe

panel, the flowStats (Hahne et al., 2019) warpSet function was used to normalize arcsinh transformed

channel data using a standard healthy donor adult PBMC control across batches as a reference. For analysis

with the clustering algorithm FlowSOM, an iterative approach was used for both panels to first cluster on

live, intact, lymphoid-sized CD4+ and CD8+ T-cell subsets (in the case of the ICS panel, including activated,

CD69+ subsets); those subsets were then re-clustered to capture rare populations and optimally resolve

phenotypic heterogeneity and associated function. Over-clustering followed by expert-guided merging

was favored when defining the final number of T cell populations. FlowSOM clustering results used in

downstream analysis were represented as proportion of the respective T-cell subset, per sample.

Microbiota identification

Raw data from the Illumina MiSeq was first converted into FASTQ format 2 3 312 paired-end sequence

files using the bcl2fastq program (v1.8.4) provided by Illumina. Format conversion was performed without

de-multiplexing, and the EAMMS algorithm was disabled. All other settings were default. Samples were

multiplexed using a configuration described previously (Fadrosh et al., 2014). The extract_barcodes.py

script from QIIME (v1.9.1) (Caporaso et al., 2010) was used to split read and barcode sequences into

separate files suitable for import into QIIME 2 (v2018.11) (Bolyen et al., 2019) which was used to perform

all subsequent read processing and characterization of sample composition. Reads were demultiplexed

requiring exact barcode matches, and 16S gene primers were removed allowing 20% mismatches and

requiring a matching window of at least 18 bases. Cleaning, joining, and denoising were performed using

DADA2 (Callahan et al., 2016): reads were truncated (forward reads to 260 bps and reverse reads to 240 bps

for rectal V3-V4 samples and forward reads to 275 bps and reverse reads to 260 bps for nasal V1-V3

samples), error profiles were learned with a sample of one million reads per sequencing run, and a

maximum expected error of two was allowed. Taxonomic classification was performed with naı̈ve Bayesian

classifiers trained on target-region specific subsets of the August, 2013 release of GreenGenes (Desantis

et al., 2006). Sequence variants that failed to classify to the phylum level or deeper were discarded.

Sequencing variants observed fewer than ten times total, or in only one sample, were discarded. Rectal

samples with fewer than 2250 reads and nasal samples with fewer than 1200 reads were discarded.
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Phylogenetic trees were constructed for each body site using MAFFT (Katoh and Standley, 2013) for

sequence alignment and FastTree (Price et al., 2010) for tree construction. For the purposes of b-diversity

analysis, rectal and nasal samples were rarefied to depths of 2250 and 1200 reads, respectively, and the

Unweighted Unifrac (Lozupone et al., 2011) metric was applied.

Statistical analyses

Multivariate ANOVA

We used a sequence of multivariate ANOVA (MANOVA)models to estimate the amount of variance one set

of variables could explain in another. We modeled T cell population relative abundances, gut, and nasal

species-level relative abundances pairwise each as predictor and response matrices. DOL and PMA served

only as predictors. Each pair of variables types was joined, with missing samples deleted case-wise. T cell

populations and microbiome taxa with a variance of less than .0001 were removed in each comparison.

The remaining variables were renormalized to sum to one, and transformed using the isometric log

ratio, then modeled using a multivariate linear model with a matrix response. R2
adj was calculated as 1�

MSEfull=MSEreduced where the mean squared error (MSE) was the total sum of squared residuals in the

response matrix, divided by the residual degrees of freedom, thus approximately unbiased for the residual

variance. The PMA-adjusted model used PMA, and the set variables of interest as a predictor in the full

model, retaining only PMA in the reduced model. Wilks’ lambda was used to test for association between

response and predictor variables. The BIC was calculated as � 2loglikðbÞ+n log p, where n is the number of

multivariate observations, p is the number of parameters in the model, and loglikðbÞ is the log-likelihood of

the multivariate normal distribution with covariance derived from the variance-covariance matrix of the re-

sidual matrix.

CST and IST assembly

Microbial community state types (CSTs) were defined for each body site by fitting Dirichlet multinomial

mixture (DMM) models (Holmes et al., 2012) using the R package DirichletMultinomial (v1.22.0) (Morgan,

2019; R Core Team, 2013), R version 3.5.0. Sample composition was represented using normalized counts

of the most specific operational taxonomic units (OTUs) present in at least 5% of the samples from a given

body site. Normalization was performed on a per sample basis by taking the relative abundance of each

OTU and multiplying a constant, which we took as our QC cutoff on the minimum number of reads

(2250 for rectal samples and 1200 for nasal samples). Resulting non-integer counts were rounded down.

We also attempted modeling the un-normalized counts, but found that high-count libraries appeared to

exert undue influence on the DMM model. For each body site, the DMM model was fit with one through

twenty Dirichlet components and the optimal number of components was selected by minimizing the

Laplace approximation of the negative-log model evidence. In this model, CSTs are synonymous with

Dirichlet components, and each sample was assigned to the CST from which it had the highest posterior

probability of be derived. This procedure was repeated with the immunological data in order to define

immune state types (ISTs), using relative abundances of FlowSOM defined T cell populations in the place

of OTUs. Relative abundances were computed within assays (TPHE and ICS) and major populations (CD4

and CD8) separately, and converted to counts by multiplying by 50,000 and rounding down. CD4 and CD8

counts were combined to fit the DMM for each assay.

CST and IST associations

To test for enrichment in pre- or full-term samples, we modeled the number of samples each subject had

categorized into a CST/IST vs the total number of samples for the subject using logistic mixed models:

�
# samples in CST; # samples not in CST

� � gestational age at birth + confounders+ ð1jSubjectÞ;

where confounders were mode of delivery, maternal antibiotic use during pregnancy, number of months

>50% feedings of breastmilk, any breastmilk before first discharge, infant antibiotics before discharge

(days), and infant antibiotics after discharge (courses). In testing for IST associations with CMV, and other

exposures, we modeled presence of the IST ever for the subject as a smooth function of the covariates of

interest, and confounders: gestational age at birth, mode of delivery, race, and sex. In testing for associa-

tions with CMV and inflammation, wemodeled the joint effect of maternal antibiotic use during pregnancy,

clinical chorioamnionitis, membrane rupture >18 hours before birth and CMV. In three other separate

models, we considered milk as an exposure (number of months >50% feedings of breastmilk, any breast-

milk before first discharge), days of infant antibiotics before discharge, and courses infant antibiotics after
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discharge. For each variable of interest, we adjusted for multiple comparisons using the false discovery

rate, and only reported findings significant at < 10% FDR.

Microbiota-T cell associations

Associations betweenmicrobiome development and the immune systemweremodeled usingmicrobiome

CST occurrence patterns as outcome variables and iterating through the relative abundances of each Flow-

SOM T cell population or observed IST at each time point as predictors. In symbols, we modeled

CST days � immune_parameter+ confounders+ sampling_intensity;

using quasi-Poisson regression.

For each CST, each of these immunological parameters (T cell population relative abundances and IST,

hereafter referred to as the immunological variables of interest [VOIs]) at each of the three time points

when the immune system was sampled (birth, discharge, and one year) was assessed one-at-a-time. CST

occurrence patterns were related to immunological VOIs by testing associations between every CST-

VOI combination at the level of individual subjects, while controlling for confounders. In the most general

model, these were: mode of delivery, gestational age at birth, perinatal breastmilk (yes/no), number of

months after discharge more than 50% feedings were from breastmilk, number of days of antibiotics while

in hospital, number of courses of antibiotics after discharge, and the log number of days observed (sam-

pling_intensity) in each individual. Significance of the VOI was assessed with a Chisq-test, comparing

the change in deviance when dropping the VOI from the model.

The response variable, the number of days a subject was assigned to a given CST was calculated by sum-

ming the interval lengths between CST change points. Intervals were calculated frommidpoint to midpoint

on the sampled days of life. At birth, subjects were placed in the first observed CST if the first sample

occurred within 14 days of life, otherwise the first interval was excluded. Subjects were assumed to remain

in their final observed CST for an interval equal to half the interval length between the penultimate and ul-

timate sample. Subjects with fewer than one sample taken per 30 NICU-days or fewer than six samples post

discharge were excluded. We filtered immune VOI with fewer than ten observations, and CSTs present in

fewer than 10% of the remaining observations. Numerical covariates were converted into z-scores, except

gestational age (in weeks) which we modeled as gestational age � 37 weeks. Multiple testing across all

CSTs and VOIs was corrected for using the Benjamini-Hochberg method at 10% FDR.

Prediction of PMA

Two separate elastic net regression models (Friedman et al., 2010) were trained to predict (Bischl et al.,

2000) the log2-transformed PMA with a) T cell immunological features and b) microbial OTU relative abun-

dance. In (a) the four feature sets were CD4 ICS, CD8 ICS, CD4 Tphe and CD8 Tphe populations, while in (b)

the two feature sets consisted of nasal and rectal species-level relative abundances from samples collected

prior to DOL 450, filtered to remove taxa present in fewer than 3% of samples. A total of 433 samples from

185 subjects and 80 features were included in (a). Model (b) was trained on 3032 samples from 237 subjects

and 218 features. Some samples had incomplete feature sets, e.g., if only the ICS panel was run then both

the CD4 and CD8 Tphe sets were missing, or if only the nasal microbiome was sampled and the gut micro-

biome measures were missing. We treated this as a missing data problem, and imputed the values with

their mean values among non-missing cases. Imputation was chained onto the elasticnet model (occurred

only using the training data, in each fold) for the purposes of tuning and validation. Within each feature set,

we used the relative proportions, transformed into z-scores.

Cross validation for tuning and prediction

We tuned the model and estimated its performance using cross-validation by holding out a subject’s entire

longitudinal record. We tuned the elastic net alpha in [0, 1] and lambda in [.001, .5] parameters by randomly

selecting 50 combinations of (alpha, lambda) and evaluating the test mean-square error (MSE) via 5-fold

cross-validation. After finding a minimizing pair of (alpha, lambda), the model was refit with 10-fold

cross-validation. For each subject i, this provides two sequences of fitted values, representing the log2-

transformed PMA prediction. For instance, for the microbiome, we have

cYij = f �i
�
xij
�
; j = 1;.;ni;

ll
OPEN ACCESS

iScience 25, 104007, April 15, 2022 21

iScience
Article



where xij represent microbial feature vectors, ni indexes the number of longitudinal samples for subject i,

and f�i represent the elastic net model trained excluding subject i. For the T cell immunome, the analogous

model is fit. The back-transformed values 2
bYij were used to calculate each model’s R2.

Immunological and microbial developmental indices

The longitudinal sequence of cross-validated fitted values cYij were compared to the true PMA for each sub-

ject using a linear mixed model. We fit the model

bY � log 2ð37Þ � log 2ðPMA = 37Þ+ ð1 + log 2ðPMA = 37ÞjSubjectÞ
thus cYij =ai +bi3PMAij + eij and calculated the best linear unbiased predictor of each subject’s 37-week

intercept ai, slope bi and their conditional standard errors seðaiÞ, seðbiÞ. These are transformed into a quan-

tity similar to a z-score by subtracting the median of ai; bi over subjects i, and dividing by its conditional

standard error seðaiÞ or seðbiÞ.

Prediction of PRD

We used random forest classification models to predict PRD using two feature sets: clinical and develop-

mental index. The clinical features were race, maternal education, the baby’s sex, gestational age, weight

and season at birth, and oxygen supplementation integrated over the first 14 days of life. The develop-

mental index features were the z-scores of the microbiome and T-immune slopes and intercepts. The

random forest hyperparameters mtry, ntree and nodesize were tuned separately for each feature set

with random search using 5-fold cross-validation. After the optimal parameters were found for each feature

set, a second round of 20-fold cross validation was used to evaluate the area under the ROC curve (AUC).

The fitted values from the random forest regression were calculated using the function

generatePartialDependenceData.

ADDITIONAL RESOURCES

This prospective, observational cohort study is registered in ClinicalTrials.gov (NCT01789268) under

the official title ‘‘Impact of Respiratory Virus Infections and Bacterial Microbiome Shifts on Lymphocyte

and Respiratory Function in Infants Born Prematurely or Full Term.’’ Dr. Gloria Pryhuber, co-author, is

the trial’s responsible party, and other study details can be found at https://clinicaltrials.gov/ct2/show/

NCT01789268.
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