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Abstract

Reliable signal transmission constitutes a key requirement for neural circuit function. The propagation of synchronous pulse
packets through recurrent circuits is hypothesized to be one robust form of signal transmission and has been extensively
studied in computational and theoretical works. Yet, although external or internally generated oscillations are ubiquitous
across neural systems, their influence on such signal propagation is unclear. Here we systematically investigate the impact
of oscillations on propagating synchrony. We find that for standard, additive couplings and a net excitatory effect of
oscillations, robust propagation of synchrony is enabled in less prominent feed-forward structures than in systems without
oscillations. In the presence of non-additive coupling (as mediated by fast dendritic spikes), even balanced oscillatory inputs
may enable robust propagation. Here, emerging resonances create complex locking patterns between oscillations and spike
synchrony. Interestingly, these resonances make the circuits capable of selecting specific pathways for signal transmission.
Oscillations may thus promote reliable transmission and, in co-action with dendritic nonlinearities, provide a mechanism for
information processing by selectively gating and routing of signals. Our results are of particular interest for the
interpretation of sharp wave/ripple complexes in the hippocampus, where previously learned spike patterns are replayed in
conjunction with global high-frequency oscillations. We suggest that the oscillations may serve to stabilize the replay.
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Introduction

The ground state of cortical networks is characterized by

irregular and asynchronous spiking activity [1–4] and its dynamics

are highly sensitive to perturbations, e.g., missing or additional

spikes [2,3,5–8]. Yet, reliable transmission of information in the

presence of such perturbations is assumed to be essential for neural

computation. A common hypothesis states that such transmission

might be achieved by propagating signals along subnetworks

(layers) connected in a feed-forward manner. Indeed, propagation

of synchronous and rate signals in feed-forward networks (FFNs)

has been demonstrated in vitro [9–11] and recent experiments

suggest that, e.g., the generation of bird-songs relies on activity

propagation in feed-forward structures [12]. Moreover, sequential

replay observed in hippocampal and neocortical areas also suggest

such an underlying feed-forward structure [13–18].

Layered feed-forward networks that support propagation of

synchrony are termed synfire chains [19–23]. The propagated

signal is a synchronous pulse-packet [21,24], i.e., a fraction of

synchronously active neurons of one layer which induces

synchronous activity in the following, postsynaptic, layer and so

on. Robust signal transmission in synfire chains embedded in

larger recurrent networks is usually obtained by an increased

connectivity (compared to the embedding network) between the

neurons of successive layers of the FFN [25–27]. Alternatively,

increased synaptic efficiencies [28], or the combination of

enhanced synaptic weights and non-additive coupling (mediated

by fast dendritic spikes, cf. [29]) can enable such a robust

propagation [30,31].

A hallmark of cortical dynamics is the presence of oscillations of

various frequencies. A plethora of experimental studies links

oscillations in, e.g., delta- (0:1{4 Hz), gamma- (25{100 Hz),

fast-gamma-band (90{140 Hz) or the high-frequency range of up

to 200 Hz (‘‘ripples’’), to attentional states, sensory stimulus

selection, ongoing information and memory processing [32–40].

In this article we investigate how background oscillations

influence the transmission of synchronous activity in feed-forward

networks. More precisely, we consider sparse feed-forward

structures that emerge as part of a random network and that

exhibit moderately enhanced synaptic efficiencies (cf. also [30,41]).

In particular, the feed-forward structures considered are too weak

(in the sense of connectivity and coupling strength) to propagate

synchronous signals on top of asynchronous background activity.

However, we demonstrate that additional oscillatory input,
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excitatory and inhibitory spike trains generated by an external

oscillating neuronal population, can enable robust propagation of

synchrony.

We consider both conventional additive couplings, mediated by

transient conductance changes on the dendritic input site, and

non-additive couplings that take nonlinear processing of inputs by

fast dendritic spikes (e.g., [29,42–44]) into account. These

dendritic spikes are evoked by highly synchronous inputs (i.e.,

inputs arriving within a time window of less than a few

milliseconds) and cause strong, rapid depolarization in the soma

of the postsynaptic neuron, exceeding the depolarization expected

from additive processing of inputs. Thereby they may foster

directed [30,31] and undirected [45] propagation of synchrony.

We show that for additively coupled networks, external

oscillations support propagation of synchrony only if the (average)

excitatory input exceeds the inhibitory input. This exceeding

causes a net depolarization of the neurons which in turn enables

propagation of synchrony. However, there is no resonance

between the propagating synchronous signal and the oscillatory

stimulation, and temporally distributed external inputs would have

the same effect. In contrast, for non-additively coupled networks

the sensitivity of dendritic spike elicitation to synchronous inputs

yields resonances to oscillations, i.e., there is a specific stimulation

frequency range which enables propagation of synchrony.

Dendritic spikes are not suppressed by inhibition [46] such that

they support synchrony propagation also if the inputs are

balanced, i.e., if the (average) inhibitory input equals (or even

exceeds) the excitatory input.

Interestingly, the existence of resonance frequencies provides

the possibility to guide synchronous activity along different

pathways with distinct resonance frequencies. The mechanism of

oscillation-induced signal transmission is robust against changes of

the system properties. In particular, networks with peaked and

with broad delay distributions exhibit qualitatively similar

transmission dynamics. Further, we identify the hippocampus as

a core candidate region for oscillation-induced signal transmission

as in the hippocampus both high-frequency oscillations and replay

of spike patterns are simultaneously observed in experiments.

Results

Synchrony propagation through feed-forward structures has

been demonstrated for additive and non-additive coupling, and

non-oscillatory network background activity [21,22,25,27,28,30].

In general, if synaptic coupling is additive (i.e., in the absence of

dendritic spikes), the connection strength within the structure, i.e.,

synaptic efficiencies and/or connectivity, need to be much

stronger (perhaps outside the biological plausible range) than for

non-additive coupling (cf. Fig. 1a,d and [30,31]). With too small

coupling strength a synchronous signal fails to propagate, the

synchronous activity dies out after a small number of layers

(Fig. 1b,e).

Interestingly, even balanced oscillatory inputs (cf. Methods

Section) may stabilize synchrony propagation if the coupling is

non-additive (Fig. 1f), but do not influence or even suppress

synchrony propagation in circuits with additive couplings (Fig. 1c).

For too strong couplings, correlations in the spiking of neurons

can be amplified over the layers of the feed-forward structure and

initiate spontaneous propagation of synchrony (not shown; cf. [47–

49]). Such spontaneous synchronous spiking can spread over the

entire network (if recurrent connections are present), generating a

large scale synchronous population burst and a subsequent phase

of refractoriness. Throughout the manuscript we refer to network

states where large parts of the network spontaneously synchronize

like this, as pathological (epileptic-like) activity states. In such

states, a meaningful propagation of synchronous signals is not

possible: The transmitted signal (induced propagating synchronous

pulse) cannot be separated from the background activity (sponta-

neous synchronous waves).

Whether synchrony propagation is stabilized or enabled

depends on features of neurons, network and oscillatory input,

e.g., stimulation frequency or synaptic coupling strength. We

investigate the mechanism underlying this stabilization numeri-

cally and analytically (Supporting Material S1 Text). We identify

parameter regions for which synchrony propagation is facilitated

by oscillations. In particular, we demonstrate that nonlinearly

coupled FFNs show resonance to (balanced and unbalanced)

oscillations.

Synchrony Propagation
As a starting point, we investigate isolated FFNs and briefly

describe the mechanism underlying propagation of synchrony in

networks with and without dendritic nonlinearities. A detailed

description of the neuron and network setup is provided in the

Methods Section.

Each neuron of the FFN receives much more input from the

external homogeneous background than from the preceding layer.

Therefore, in the absence of synchrony, the FFN’s dynamics in the

ground state is mainly determined by this external background

input, and the neurons of the FFN fire asynchronously with a low

rate. However, exciting a fraction of neurons of the first layer of

the FFN to spike synchronously causes a synchronous input to the

second layer, a fraction of which subsequently spikes synchro-

nously. This process continues from layer to layer and thus can

induce persistent propagation of synchrony.

One can derive an iterated map (cf. also [30,31]) that specifies

the average number of neurons �gg which spike synchronously,

i.e., within a certain time interval, given that in the preceding

layer gin neurons have spiked synchronously. We denote the

probability for a neuron in the asynchronous ground state to

spike within a time interval of x milliseconds after receiving an

input of strength e by psp
x (e). Say that in some layer, gin neurons

spike synchronously, then each neuron of the following layer

will receive some number k[ 0,1, . . . ,gin
� �

of synchronous

inputs of strength ec. As each of the gin spikes sent is received

by every neuron of the postsynaptic layer with probability pex, k

follows a binomial distribution, k*B gin,pex

� �
, such that on

average

Author Summary

Rhythmic activity in the brain is ubiquitous, its functions
are debated. Here we show that it may contribute to the
reliable transmission of information within brain areas. We
find that its effect is particularly strong if we take nonlinear
coupling into account. This experimentally found neuronal
property implies that inputs which arrive nearly simulta-
neously can have a much stronger impact than expected
from the sum of their individuals strengths. In such
systems, rhythmic activity supports information transmis-
sion even if its positive and negative part exactly cancels
all the time. Further, the information transmission can
adapt to the oscillation frequency to optimally benefit
from it. Finally, we show that rhythms with different
frequencies may enable or disable communication chan-
nels, and are thus suitable for the steering of information
flow.
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neurons spike within a time interval of x milliseconds.

We assess the temporal development of the size of the

synchronous pulse in every layer by considering glz1 the average

number of neurons spiking synchronously in layer lz1 as a

function of gl the average number synchronous spiking neurons in

the preceding layer l. Thus, replacing �gg by glz1 and gin by gl in

Equation (1) we obtain the map

glz1~F(gl) ð2Þ

where F(:) is the continuous interpolation of the right hand-side of

Equation (1) for continuous gl[R. The fixed points of the map (2)

determine the stability region for the propagation of synchrony (cf.

Fig. 2). For small coupling strength ec, there is only one fixed point

G�0&0 and any synchrony propagation will extinguish within few

layers (cf. also Fig. 1b,e). For sufficiently large layer size v and

coupling strengths ec, stable propagation of synchrony can be

achieved, the size and temporal spread of the synchronous pulse

are stable throughout the layers (for an extensive analysis see [31]):

This is due to the appearance of two additional fixed points, G�1
(unstable) and G�2 (stable), which emerge via a tangent bifurcation

in the map (2) upon increasing ec. A synchronous pulse g0§G�1
will propagate with a typical group size g�&G�2 .

In a given network, persistent propagation is possible if the

connection strengths are larger than some critical value. We

denote the critical connection strength, i.e., the bifurcation point

at which the fixed points G�1 and G�2 emerge, by ec~e�L for FFNs

with linear dendrites and by ec~e�NLve�L for FFNs with nonlinear

dendritic interactions.

Stable propagation of synchrony occurs with a certain

propagation frequency np, which is defined as the inverse of the

average time interval between two consecutive synchronous pulses.

np is governed by (i) the synaptic delay and (ii) the the spike latency

tsp, i.e., the average time that an arriving input needs to trigger a

spike in the postsynaptic neuron (if it does so). The synaptic delay

is fixed for a given setup, but tsp in general depends on the strength

of the input and thereby on the connection strength ec.

For networks with linear dendrites, tsp decreases with increasing

input strength (cf. Fig. 3a): The increase of the input causes a steeper

and steeper rise of the evoked postsynaptic potential, and therefore

reduces the (average) time the neuron needs to reach the threshold VH.

In contrast, tsp is constant for networks with nonlinear dendritic

interactions: The spiking of the neuron is triggered by the additional

current pulse mimicking the dendritic spike. This current pulse (and

with it the resulting depolarization) is independent of the actual input

strength (see also Methods Section), and the rise of the postsynaptic

potential is so steep that tsp eð Þ is practically constant for e§Hb. We

note that for large input the spike latency tsp for neurons with nonlinear

dendritic interaction is larger than for neurons without: The latency

between dendritic stimulation and the onset of the somatic response to

the dendritic spike can be estimated to tds&2{3ms [29,50], and is

therefore delayed compared to the onset of the somatic response to the

linear (electrically) transmitted signal.

As a consequence of the constancy of the latency tsp, for FFNs with

non-additive couplings the propagation frequency np depends only

weakly on the connection strength ec. If a propagation of synchrony is

enabled for ec&e�NL, this propagation occurs with a certain ‘natural’

propagation frequency np~nnat. In contrast to linearly coupled FFNs,

the propagation frequency remains approximately constant for

connection strengths above the critical connection strength, ecwe�NL

(Fig. 3b). For connection strengths satisfyingHb=ec[N the propagation

frequency np jumps: If ec is increased above Hb=i for some i, a smaller

number i of spikes can trigger a dendritic spike, i.e., a reduced fraction

of the synchronous pulse packet is sufficient to trigger dendritic spikes,

such that the neurons in each layer tend to spike earlier. This shortens

the (average) responding time to the synchronous pulse packet and the

propagation frequency increases.

We remark that for large connection strengths ec, the FFN

enters a pathological state of activity: Neurons of one particular

layer share inputs from the preceding layer and this causes

correlations in their spiking activity. If the single connections

become stronger (i.e., only a few inputs are needed to generate a

dendritic spike and a somatic output spike) also these correlations

become stronger. They may accumulate over the layers of the FFN

and lead to spontaneous synchronous spiking activity propagating

along the later layers of the FFN [47–49]. Thus, there exist cutoff-

Figure. 1. Signal transmission in isolated FFNs (m~10, v~200, pex~0:05) with linear (a–c) and nonlinear (d–f) dendritic interactions.
For each dendritic interaction type, raster plots for two different coupling strengths ec are shown. Panels (a), (b), (d) and (e) display the network
activity in the absence of oscillations; in panels (c) and (f) balanced oscillatory input is present (parameters see inset). The stimulation frequency ns

equals the propagation frequency np of the stable propagation shown in (a) and (d).
doi:10.1371/journal.pcbi.1003940.g001
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connection strengths epath
L and epath

NL for networks with linear and

nonlinear dendritic interactions, above which the global spiking

activity is characterized by network oscillations and a meaningful

propagation of synchronous activity is not possible anymore.

Whereas signal transmission is possible in FFNs with and

without dendritic nonlinearities, the underlying mechanism is

different: In linearly coupled networks transmission is achieved by

eliciting somatic spikes directly, thus also asynchronous inputs and

depolarizing constant external currents may contribute to spike

propagation. In nonlinearly coupled networks transmission is

mediated by dendritic spikes (all-or-none events), and therefore

only highly synchronized spiking input contributes.

Synchrony propagation in the presence of balanced
oscillations

Depending on the coupling strength FFNs may or may not be

capable of propagating synchronous signals. But how do external

oscillations influence the propagation of synchrony? Do systems

Figure. 2. Transition from non-propagating to propagating regime. (a) The probability p
sp
10(e) that a single neuron in the ground state

(receiving homogenous background inputs) spikes within 10 ms after stimulation by a synchronous input pulse of strength e. For neurons with linear
dendritic interactions (additive coupling; solid line) the spiking probability increases continuously with increasing input e. For neurons with nonlinear
dendritic interactions (non-additive coupling; dashed line), inputs larger than the dendritic threshold Hb elicit a dendritic spike and therefore the
spiking probability jumps to a constant value, p

sp
10 eð Þ~ : p� , for e§Hb. The probabilities are estimated from averaging over 10,000 single trials per

connection strength. (b,c) Maps (2), specifying the average number of synchronously spiking neurons glz1 in one layer given that in the previous
layer gl neurons have spiked synchronously; derived from the single neuron response probability in (a) for an isolated FFN (here v~200, pex~0:05).
Different colors indicate different strengths of feed-forward connections (ec[ 1:0,2:0,4:0f gnS); panel (b) shows the map for additive and panel (c) for
non-additive coupling. For weak connection strength there is only one fixed point G�0 corresponding to the extinction of a synchronous pulse. With
increasing coupling strength two additional fixed points G�1 and G�2 emerge via a tangent bifurcation. This bifurcation marks the transition from a
non-propagating to a propagating regime.
doi:10.1371/journal.pcbi.1003940.g002

Figure. 3. Propagation frequency of a synchronous pulse. (a) Spike latency tsp of a neuron after stimulation with an input of strength e
(shaded areas indicate the regions between the 0.2 and 0.8 quantiles; only data for p

sp
10 eð Þ§0:5 are shown). For neurons with nonlinear dendritic

interactions tsp is constant, whereas for neurons with linear dendritic interactions tsp decreases with increasing stimulation strength e. (b) Propagation
frequency np of a synchronous pulse versus strength of the feed-forward connections ec in the absence of external oscillations (v~200, pex~0:05);
the inset shows a zoomed view of the propagation frequency in FFNs with non-additive couplings for ec&e�NL. The yellow line indicates the natural
propagation frequency nnat.
doi:10.1371/journal.pcbi.1003940.g003
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with and without dendritic nonlinearities exhibit qualitatively the

same behavior?

To answer this question, we first consider isolated FFNs, which

receive balanced oscillatory stimulation with frequencies ns equal

to the propagation frequencies np observed for the onset of

propagation of synchrony in unstimulated FFNs. Thus we expect

the stimulation to be in resonance with the propagating

synchronous pulse in the FFN. The impact of different stimulation

frequencies and the possibility of complex locking patterns

between oscillations and propagating synchrony is investigated in

the following Sections.

How does the amplitude of the oscillatory input as controlled by

the number Ne of oscillating (virtual) neurons influences signal

propagation?

For networks with additive couplings we find that the critical

connection strength (i.e., the minimal connection strength which

enables propagation of synchrony) increases with increasing

oscillation amplitude Ne (details on the setup of the oscillatory

input are provided in the Methods Section) as illustrated in

Fig. 4a,c: The additional input is balanced, so that the mean input

to each neuron is constant (for all Ne), but both the mean

excitatory and inhibitory conductances are increased. In this high-

conductance state the effective membrane time constant decreases

and consequently the amplitude and the width of postsynaptic

potentials decrease [51,52]. In other words, the additional inputs

arising from oscillations decrease the excitability of the neurons.

Thus, stronger inputs (in terms of conductances) are needed to

generate the same depolarization as in networks without external

oscillations and the critical connectivity, e�L, increases. This is the

same phenomenon that hinders synfire-explosions [26,53] in

networks with conductance-based synapses as described in [27].

In contrast, in networks with non-additive couplings, the

critical connection strength decreases with increasing oscillation

amplitude Ne (see Fig. 4b,d). In such networks the propagation of

synchrony is mainly mediated by dendritic spikes. Dendritic spikes

are elicited if the excitatory input on a dendrite within a certain

time-window, DT s, is larger than the dendritic threshold Hb.

Inhibition fails to suppress dendritic spikes [46] and thus its

increase does not hinder signal propagation. If the frequency ns of

network oscillations is in the range of the natural propagation

frequency nnat&ns, and the oscillations are in phase with the

propagating signal, the synchronous pulse from the preceding

group arrives at each layer synchronously with the oscillatory

inputs. Thus, less input from the preceding layer is needed to reach

the dendritic threshold. Taken together, by effectively lowering the

dendritic threshold Hb the external inputs reduce the critical

connectivity e�NL. In Fig. 4b,d we show that this reduction can

yield propagation of synchrony at drastically reduced synaptic

efficiencies within the FFN; in the given example the critical

connection strength e�NL is reduced by a factor of two to three

(from 1:45nS to 0:6nS).

The downside of the robustness of dendritic spikes to inhibition

is that even balanced oscillations may cause pathological activity if

oscillation amplitude becomes too strong: With increasing

amplitude Ne the neurons of the FFN become more and more

sensitive to inputs from the previous layer. Thus, similar to the

regime of overly strong feed-forward connections, correlations in

their spiking activity accumulate along the layers of the FFN [47–

49] and induce spontaneous propagation of synchrony (gray areas

in Fig. 4).

Synchrony propagation in the presence of unbalanced
oscillations

Like balanced oscillations also unbalanced oscillations may be

expected to alter the propagation efficiencies of FFNs: The

Figure. 4. Balanced oscillations can support signal transmission in isolated FFNs (m~20, v~200, pex~0:05). The panels show up to
which layer the propagating synchronous pulse (initiated in the first layer in-phase with the external oscillations) is detectable (color-coded) as a
function of the coupling strength ec and the amplitude of the external network oscillations, measured by Ne. Configurations, where the system enters
a pathological activity state (i.e., ongoing spontaneous propagation of synchrony) are marked in gray. Panels (a,c) show simulation results for
networks with linear dendritic interactions (ns~230Hz, ss~0:3ms) and (b,d) for networks with nonlinear dendritic interactions (ns~180Hz,
ss~0:3ms); panels (c) and (d) are close up views of (a) and (b). The black stars indicate the values of ec and Ne used in Fig. 6a,c. Whereas balanced
oscillations hinder signal propagation in additively coupled networks (i.e., require compensation by stronger coupling), they can support it in non-
additively coupled ones. Other parameters are pext

ex ~pext
in ~0:05, eext

p ~0:3nS, eext
m ~0:825nS.

doi:10.1371/journal.pcbi.1003940.g004
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average external excitatory input is larger or smaller than the

inhibitory input, and thus the average ground state membrane

potential of the neurons is shifted which influences the neurons’

excitability. As we show below this shift clearly influences

propagation of synchrony in additively coupled networks, but

has only a weak effect in non-additively coupled systems.

For a given excitatory coupling strength eext
p we denote the

corresponding balanced inhibitory coupling strength by

e0
m : ~ceext

p , ð3Þ

where c is chosen such that the peaks of the excitatory and

inhibitory postsynaptic potentials are of equal amplitude when the

input is received at resting potential (cf. also Methods Section). We

consider isolated FFNs stimulated by oscillations as in the previous

section, but we decrease or increase the strength of the inhibitory

inputs by a factor a compared to the balanced regime, i.e.,

eext
m ~ae0

m: ð4Þ

For additively coupled networks and av1 such input indeed

promotes synchrony propagation (cf. Fig. 5a, red lines): The

oscillatory input depolarizes the neurons of the FFN and thus less

synaptic input is needed to elicit a somatic spike; the critical

connectivity e�L decreases. At the same time, the increased

excitability of the neurons lowers the threshold for pathological

activity, e
path
L . Likewise, for aw1 the neurons are hyperpolarized

by the oscillatory input which impedes the generation of somatic

spikes; the critical connectivity e�L increases (cf. Fig. 5a, blue lines).

In contrast, in non-additively coupled networks, the critical

connectivity e�NL is largely unaffected by changing the balance of

inhibition and excitation (cf. Fig. 5b). Here, propagation of

synchrony is mediated mainly by dendritic spikes, and their

generation is not influenced by inhibition. Pathological activity is

induced if correlations in spontaneous spiking activity accumulate

over the layers. Because inhibition reduces the overall spiking

activity (and also the probability that a dendritic spike triggers a

somatic one), with increasing a (and thus increasing inhibition) the

pathological threshold epath
NL increases.

We note that although unbalanced oscillations may promote

propagation of synchrony in additively coupled networks, the

mechanism underlying this support differs from propagation of

synchrony in non-additively coupled networks. The effect is

attributed to the increase of the (average) ground state membrane

potential and, as we demonstrate below could as well be obtained

by additional constant (over time) input currents with the same

strength as the mean input due to the oscillations.

Network Resonance
Oscillations may support propagation of synchrony (if in

resonance), but how does their actual impact depends on system

features such as frequency and amplitude of external oscillations?

In the following, we investigate which frequency ranges support or

hinder synchrony propagation. In particular, we show that

networks with non-additive coupling exhibit resonance to stimu-

lations where the frequency ns is rationally related to the natural

propagation frequency nnat. In networks with additive couplings,

we do not find such a resonance effect, even if the stimulation is

unbalanced and therefore supports signal propagation.

First, we consider networks with linear couplings: As pointed

out in the previous section, balanced oscillatory inputs decrease

the excitability of the neurons of the FFN. Thereby it decreases the

capability of the network to propagate synchronous signals for all

stimulation frequencies ns. With increasing ns, the total number of

input spikes per unit time increases and the effective time constant

decreases further such that the propagation becomes more and

more difficult. Fig. 6a illustrates that the presence of balanced

oscillations indeed inhibits synchrony propagation increasingly,

the stronger and the more prominent the oscillations are (i.e.,

larger Ne and ns).

The support of signal transmission by unbalanced input (cf.

Fig. 5) is caused by an increase of the ground state’s membrane

potential. With increasing Ne and ns this depolarization increases

(increased net excitation) and thus facilitates synchrony propaga-

tion more and more. Likewise, the propagation frequency np

increases until the stimulation gets too strong and the system enters

Figure. 5. Support of propagation of synchrony by unbalanced oscillations. Same setup as in Fig. 4, but with altered inhibitory coupling
strength eext

m ~ae0
m as indicated in (b). The lines inclose the parameter regions for which an initial synchronous pulse is detectable up to the final layer.

(a) For FFNs with linear dendritic interactions unbalanced oscillations may foster propagation of synchrony, if the excitation exceeds the inhibition
(av1, i.e., eext

m ve0
m; red lines) or impede it, if the inhibition exceeds the excitation, respectively (aw1, i.e., eext

m we0
m; blue lines). (b) In contrast, in FFNs

with nonlinear dendritic interactions the balance between excitation and inhibition has only a weak effect on the parameter region in which robust
propagation of synchrony is possible.
doi:10.1371/journal.pcbi.1003940.g005
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a pathological activity state. We do not observe resonance to the

oscillatory stimulation, and the promotion of propagation of

synchrony can equally well be obtained by an additional constant

(over time) excitatory input I s which is proportional to the

stimulation frequency ns (cf. Fig. 6b).

In contrast, networks with non-additive couplings show

resonance, and even balanced oscillations enable propagation of

synchrony for configurations where signal propagation fails for

homogeneous external background (i.e., in the absence of external

oscillations, cf. Fig. 4b,d). For stimulation frequencies ns&nnat, we

observe a locking of the propagating signal to the external

stimulus: The input from a preceding layer is not sufficient to

excite sufficiently many neurons to spike synchronously and to

enable persistent propagation. It can, however, take place if there

is additional input. An oscillatory external input then influences

the timing of the propagating pulse-packet and the propagation

frequency np locks to the stimulation frequency ns (cf. Fig. 6c,d).

With changing ns, we observe multiple resonance peaks for setups

where the ratio of ns and nnat is rational, nnat : ns~n : m for some

small integers n,m. The arrival of the input from every mth external

oscillation coincides with the arrival of the synchronous pulse from

the preceding layer at every nth group. Examples are shown in Fig. 7

for frequency ratios n : m~3 : 1 (the propagation at every third layer

is supported by the external input), n : m~2 : 3 (the propagation at

every second layer is supported by the external input from every third

oscillation) and n : m~1 : 2 (every second oscillatory input coincides

with the arrival of the synchronous pulse from the preceding layer).

We remark that the sub-harmonic resonances are less prominent

than the main resonance frequency, however, they can nonetheless

enable oscillation-induced signal transmission even in systems where

the oscillation frequency is small compared to the natural propaga-

tion frequency (cf. for example Fig. 7a).

Near the resonance frequencies the propagation frequency

np locks to the stimulation frequency ns (cf. Fig. 6c gray areas).

If the stimulation frequency increases above the resonance

frequencies, synchrony propagation breaks down: Due to non-

zero synaptic delay, initiation time of a dendritic spike and

rise-time of the excitatory postsynaptic potential, there is a

minimal time interval a signal needs to propagate from one

layer to another. Thus, if the external stimulation frequency

becomes too large, the inputs from the preceding layer arrive

too late, i.e., outside the dendritic integration window DT s,

and therefore the additional inputs do not support propagation

of synchrony as described above.

We only observe frequency lockings for small integers n,m. The

number n counts the (minimal) number of layers a signal has to

propagate in the absence of external simulations as the propaga-

tion of synchrony is supported by the oscillatory input only for

every nth layer. For large n, however, the signal either propagates

even in the absence of additional inputs (i.e., there is no need for

supporting the signal propagation) or it has decayed after n layers

and cannot be stabilized by external inputs. Large m imply high

stimulation frequencies, and with increasing stimulation frequency

the external input becomes more and more stationary in the sense

that additional (oscillatory) inputs are delivered to the neurons of

the FFN all the time. A propagation of synchrony may be enabled,

but the signal does not lock to the stimulation frequency anymore

(cf. Fig. 6c).

Figure. 6. FFNs with nonlinear dendritic interactions show resonance. Same network setup as in Fig. 4; coupling strengths are (a) ec~3:5nS,
(b) ec~2:8nS and (c,d) ec~0:8nS. (a–c) The upper panels display the propagation frequency np of the synchronous signal, the lower panels show the
layer up to which propagation occurs, as a function of the stimulation frequency ns for FFNs with (a,b) linear and (c) nonlinear dendritic interactions.
Different colors represent different amplitudes Ne of external oscillations as indicated by insets. In additively coupled FFNs (a) balanced oscillations
hinder synchrony propagation, whereas (b) unbalanced oscillations (a~0:5, i.e., excitation exceeds inhibition, cf. Equation 4) support it. This support,
however, might be equally well achieved by temporally constant additional excitatory inputs: The thick gray filled lines indicate the propagation
properties of an FFN, where single neurons receive constant additional current I s (red; upper vertical axis), 2I s (black) or 3I s(blue). For very strong
depolarization (high ns or I s) the network enters a pathological activity state; this break-down of network stability is indicated by the vertical lines in
the lower panel. In non-additively coupled FFNs even (c) balanced oscillations foster synchrony propagation and, in contrast to additively coupled
FFNs, the propagating signal may lock to the oscillatory stimulation if the ratio nnat : ns is rational; the gray lines indicate
np : ns~ 2 : 1,1 : 1,2 : 3,1 : 2f g. This locking is illustrated in (d): Raster plots of spikes of the external oscillating population (upper panel) and of
the FFN (lower panel). The yellow lines indicate the time intervals n=ns{ss,n=nszss½ � for n[N, containing &68% of the spikes of the external
oscillatory population (cf. also Fig. 7).
doi:10.1371/journal.pcbi.1003940.g006
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Above we demonstrated how oscillations can support signal

transmission in FFNs with homogenous delays. As shown in the

subsequent sections, we observe the same resonance phenomena

equally prominent in FFNs with distributed delays, even if the

delay distributions are broad.

We also remark that we can describe the emergence of

oscillation supported propagation of synchrony using methods

introduced in [30,31]. In Supporting Material S1 Text we provide

a simplified, analytically tractable model by describing the

dynamics in terms of probabilistic threshold units. In particular,

we derive an analytical expression for the minimal amplitude of

the oscillatory input, N�e , for which robust signal propagation is

possible and compare the analytical predictions with numerical

simulations (cf. Supporting Material S2 Text).

Selecting transmission pathways by resonance
Networks with non-additive coupling exhibit resonance to oscillatory

signals and this provides the possibility of specifically activating FFNs

with different resonance frequencies. As we demonstrate below such

resonant signal transmission establishes a mechanism to read out

signals encoded in the structure of a recurrent network.

In how far do the results for pure feed-forward structures

without recurrent connectivity can be generalized to recurrent

systems as relevant for biological neural circuits? The main

difference between isolated FFNs and recurrent FFNs is the

emergence of a projection of the synchronous activity to all

neurons of the network, not only to the neurons of the layer

following the currently active one. For additively coupled networks

this projection (similar to balanced oscillatory input) shifts the

range of coupling strengths

ec[ e�L,epath
L

h i
ð5Þ

for which a persistent propagation of synchrony is possible to

larger connection strengths. The length of the interval, however, is

unchanged (for details see Supporting Material Text S2). For non-

additively coupled networks, the critical connectivity e�NL is largely

unaffected, but with more and more prominent recurrent

connections the pathological threshold epath
NL decreases. For

moderate recurrent connection strengths propagation of synchro-

ny can be induced by oscillations also in recurrent networks

Figure. 7. Examples of resonance in isolated FFNs with non-additive coupling (m~20, pex~pin~0:05, v~200). The ratio between the

stimulation frequency ns and the natural propagation frequency nnat is rational: (a) ns~
1

3
nnat~59Hz, (b) ns~

3

2
nnat~265:5Hz and (c)

ns~2nnat~354Hz. The gray areas indicate the time interval in which the external oscillations may contribute to the generation of somatic spikes.
At t~0 synchronous activity is induced in the first layer. The upper panels show the spiking rate of neurons of the FFN in the presence of external
oscillations (black solid). The firing rates for identical networks, where the oscillatory input stops at t~0 are shown for comparison (green dashed).
The lower panels show the spiking activity of the first nine layers (odd layers: red, even layers: blue). Other parameters are (a–c) pext

ex ~pext
in ~0:05,

ss~0ms, eext
p ~0:15nS, eext

m ~0:4125 and (a) ec~1:3nS, Ne~900, (b) ec~1:0nS, Ne~600 and (c) ec~0:8nS, Ne~700.

doi:10.1371/journal.pcbi.1003940.g007
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without causing pathological activity; though if the connections are

too large activity might spread not only from one layer to the next,

but might propagate over the whole network (‘synfire explosion’

activity, [25,26,53]). We investigate and discuss such recurrent

systems in detail in Supporting Material S2 Text.

The main resonance frequency in non-additively coupled FFNs

is given by the natural propagation frequency nnat. This frequency,

however, is determined by the average time tsp an arriving

synchronous input at a given layer needs to trigger a somatic spike

and the average synaptic delay �tt,

nnat&
1

tspz�tt
: ð6Þ

We illustrate this dependency in Fig. 8a indicating the

resonance peaks for different �tt. Here, the coupling delays tij

between neurons of successive layers are drawn uniformly from an

interval of length Dt centered at �tt,

tij[ �tt{
Dt

2
,�ttz

Dt

2

� �
: ð7Þ

With increasing �tt, the natural propagation frequency and thus

the resonance peaks are shifted to smaller frequencies.

The width of the resonance peak is determined by the temporal

spread of the propagating synchronous pulse itself, the temporal

spread of the oscillatory inputs (ss; cf. also Supporting Material S1

Text) and the width of the dendritic integration window DT s. In

particular, the width of the resonance peaks increases with

increasing DT s as shown in Fig. 8a.

The existence of separated resonance peaks provides the

possibility to specifically activate different signal transmission

routes by oscillations of suitable frequencies. As a simple example

consider a recurrent network containing two FFNs (cf. Fig. 8b,c).

The coupling delays between neurons of successive layers of the

first FFN are centered at �tt1~2:0ms, the coupling delays between

neurons of successive layers of the second FFN are centered at

�tt2~3:5msw�tt1. As before, the feed-forward couplings ec in both

FFNs are too weak to enable a robust propagation of synchrony in

the absence of external oscillations (cf. Fig. 8b). Yet, external

oscillations fitting to the resonance frequencies of the FFNs may

enable robust propagation in one of the FFNs without activating

the other. The close-up view in Fig. 8c shows that indeed the

propagation in both FFNs occur with different propagating

frequencies.

Heterogeneous conduction delays
So far we considered networks with homogeneous or narrow

delay distribution. However, heterogeneous delays provide a

desynchronizing force to propagating synchronous signals. Here,

we investigate the robustness of oscillation-induced signal propaga-

tion with respect to heterogeneous coupling delays. We show that

even in networks with broad delay distributions external oscillations

support signal propagation.

Starting with a homogenous delay distribution, i.e., all delays

tij:�tt, we study broadened ones in the following. More precisely,

we draw the the conduction delays from a log-normal distribution,

i.e., the probability density function is given by [54]

ft(t)~

1ffiffiffiffiffiffi
2p
p

st
exp {

log t½ �{mð Þ2

2s2

 !
tw0

0 tƒ0

8><
>: , ð8Þ

where s and m are the parameters of the probability distribution.

To keep the resonance frequencies comparable, we keep the mode

Figure. 8. Activation of specific signal transmissions in FFNs with different resonance frequencies. (a) With increasing average coupling
delays �tt (distribution width Dt~0:3ms) resonance peaks (isolated FFN; m~20, v~200, pex~0:05, ec~1:0nS) are shifted to lower frequencies (cf.
Equation 6). The panels show up to which layer a synchronous pulse propagates in the presence of balanced oscillations (pext

ex ~pext
in ~0:05, Ne~250,

eext
ex ~0:3nS, eext

in ~0:825nS, ss~0:3ms). The width of the resonance peaks increases with increasing size of the dendritic integration window (solid:
DT s~1:0ms, dashed: DT s~1:5ms, dotted: DT s~2:0ms). (b) Raster plot of the spiking activity of a recurrent network (N~3800, pex~pin~0:05,
eex~0:2nS, ein~0:55nS) which contains two FFNs (m~10, v~200, ec~1:0nS) which share the initial layer. Both FFNs have different average coupling
delays (�tt1~2:0ms and �tt2~3:5ms; Dt~0:3ms) and thus different resonance frequencies (cf. panel a); for the remaining connections the average
coupling delays is �tt~2:75ms. Whereas a synchronous pulse extinguishes after a few layers in the absence of oscillations (t~30ms), it may propagate
along the layers of one FFN or the other depending on the stimulation frequency (t~130ms and t~230ms; Ne~250, eext

ex ~0:3nS, eext
in ~0:825nS,

ss~0:3ms). Panel (c) is a close-up view of the raster plot shown in (b).
doi:10.1371/journal.pcbi.1003940.g008
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M, i.e., the maximum of the probability distribution (8), constant

with increasing distribution width parameter s. For given M and s,

the parameter m of the probability distribution (8) is given by

[54]

m~ log Mzs2 ð9Þ

and thus Equation (8) reads

ft(t)~

1ffiffiffiffiffiffi
2p
p

st
exp {

log
t

M

h i
{s2

	 
2

2s2

0
B@

1
CA tw0

0 tƒ0

:

8>>><
>>>:

ð10Þ

The standard deviation of the distribution is given by

s~M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp 3s2ð Þ exp s2½ �{1ð Þ

q
: ð11Þ

In Fig. 9a we show the log-normal distribution for fixed M and

different s and s.

We consider signal propagation in FFNs in the presence of

balanced oscillations. Synchronous pulses may propagate along

the layers, if the summed input from the external oscillation and

the previous layer is strong enough to excite sufficiently many

neurons to spike. However, the dendritic integration window DT s

is small, typically in the order of a few milliseconds. Only inputs

arriving simultaneously within this time interval can contribute to

the generation of dendritic spikes, and thus may elicit subsequent

somatic spikes. By increasing the width of the delay distribution,

the arrival times of the inputs from the previous layer become

more and more distributed. Consequently, the number of spikes

arriving simultaneously with the external spikes, i.e., within a time

interval DT s centered at the expected arrival times of the external

synchronous pulses, decreases — thus, the effective number of

inputs decreases (cf. also Supporting Material Text S1). However,

this decrease might be compensated by, e.g., larger layer sizes v.

As an example, we illustrate in Fig. 9B that an FFN with a layer

size of w~200 neurons (green line) can tolerate heterogeneous

delay distributions with a standard deviation up to s&0:75ms

(same network setup as in Fig. 4b,d and 6c,d). In a similar network

with increased layer sizes an oscillation-induced propagation of

synchrony is possible for substantially broader delay distributions

(e.g., for v~400 up to s&4ms).

Oscillation-induced signal transmission can take place if the

total expected input within the relevant time window DT s is

sufficiently large. Therefore both the width s of the delay

distribution and the layer size v influence the width of the

resonance peaks. With increasing s the arrival times of the spikes

from the previous layer become more distributed, and the total

number of spikes within a time interval DT s decreases.

We illustrate the effect of an increasing width of delay distribution in

Fig. 10a: Starting with a setup where a synchronous signal can

propagate over all layers for homogeneous coupling even in the

absence of external oscillations, an increase of the width of the delay

distribution results in the formation of resonance peaks. The arriving

inputs become more and more distributed and therefore signal

propagation is only possible if the input from the previous layer is

supported by external oscillations. If the delay distribution becomes

broader, the frequency bands which enable oscillation-induced signal

transmission become narrower, and eventually for sufficiently large s a

robust signal transmission is not possible anymore.

Similarly, for a given width s of the delay distribution an

increase of the layer size v may enable oscillation-induced signal

transmission and cause the formation of resonance peaks (cf.

Fig. 10b). With increasing v the total number of potential inputs

from the previous layer (and thus also the number of potential

inputs within the relevant time window of length DT s) increases. If

this number becomes sufficiently large, robust propagation of

synchronous pulses is enabled.

We conclude that oscillation-induced signal propagation in FFNs is

possible even if the delay distribution is broad, and that heterogeneities

in the delays can be compensated by increased layer sizes.

We remark that heterogeneous weights (in contrast to heterogeneous

delays) do not constitute a desynchronizing force in networks with

nonlinear dendritic interactions: The spike latency tsp (and thus the

propagation frequency) is only weakly affected by the coupling strength

(cf. Fig. 3). Thus, if the input is sufficient to elicit dendritic spikes, the

timing of the consecutive somatic spike (if triggered) does not depend

on the input strength from the previous layer or the external input -

only the timing of presynaptic inputs is important.

Figure. 9. Signal propagation in FFNs with broad delay distribution. (a) Probability density function (10) of log-normal delay distribution
with mode M~2:5ms and different standard deviations s (cf. also Equation 11). (b) The panel shows up to which layer a synchronous pulse
propagates in the presence (solid lines) and in the absence (dashed lines) of balanced oscillations for different layer sizes v (color code). The network
setup is the same as in Fig. 4 (m~20, pex~0:05, ec~0:8nS; with external oscillation parameters: pext

ex ~pext
in ~0:05, eext

p ~0:3nS, eext
m ~0:825nS,

ss~0:3nS, Ne~350, ns~160Hz). With increasing width of the delay distribution, the inputs from one layer to the following layer become more and
more desynchronized, and thus signals propagate over fewer and fewer layers. However, by increasing the layer size oscillation-induced signal
propagation is possible, even for very broad delay distributions. For further explanation see text.
doi:10.1371/journal.pcbi.1003940.g009
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Propagation in hippopcampal-like network structures
We have demonstrated that oscillation-induced signal transmis-

sion is present in systems with heterogeneous coupling delays. In

the previous section we studied the influence of inhomogene-

ities in a rather general setting. In this section we consider a

specific example: We employ a delay distribution as expected

for subnetworks in the hippocampus. In this area, spike patterns

generated during exploration are replayed during sleep

[14,15,55,56], accompanied by high-frequency network oscil-

lations [57–59]. The replay has been hypothesized to be

realized by local feed-forward structures [13,14,16,60], possible

supported by dendritic sodium spikes [30,31,41] which have

been prominently found in the hippocampus [29,43,46,61]. In

the following we show that oscillations in hippocampal-like

network structures indeed support signal transmission. Impor-

tantly, the expected resonance frequencies quantitatively agree

with the oscillation frequencies observed in neurophysiological

experiments.

We assume that the delays are a function of the distance

between the presynaptic and the postsynaptic neuron. Further, we

take variations of the dendritic conduction time into account. In

general, the total conduction delay can be decomposed into two

contributions,

tij~tax
ij ztdend

ij , ð12Þ

(i) the axonal delay, i.e., the time interval between the presynaptic

spike and the onset of the synaptic transmission, and (ii) the

dendritic delay, i.e., the time delay between the onset of the

synaptic transmission and the onset of the postsynaptic (somatic)

response. The axonal conduction delays are proportional to the

distance between the presynaptic and postsynaptic neuron. For

simplicity, we assume that the neurons are distributed uniformly

on a quadratic patch with side length l. Thus,

tax
ij ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxð Þ2z Dyð Þ2

q
vcond

, ð13Þ

where vcond is the axonal conduction velocity and Dx and Dy are

the absolut distances between two neurons in the horizontal and

vertical direction with the probability density function

fD Dð Þ~
2

l
{

D

l
z1

� �
0ƒDƒl

0 otherwise

8<
: ð14Þ

for D[ Dx,Dyf g. The dendritic conduction delays are drawn

uniformly from the interval

tdend
ij [ tdend,min,tdend,max


 �
ð15Þ

and account for the variability in the distance between the synaptic

contact sites and the soma.

As an example, we consider the recurrent connections in the

hippocampal region CA1. Here, the range of local axonal

interconnections is estimated to be in the order of 300mm

[62,63]; in some direction connections extending over 400mm or

more are found [62–65]. The axonal conduction delay vcond in the

hippocampus is measured to be in the range of 200{400mm=ms

[66,67], for numerical simulation we assume vcond~300mm/ms in

the middle of the biologically plausible parameter range. Further,

we assume the variation in the dendritic conduction delays to be in

the interval tdend,min,tdend,max

 �

~ 0:5ms,1:5ms½ � in agreement

with experimental data [68–70].

In Fig. 11a we show the resulting probability density functions

for different patch sizes l. With increasing side length l the

probability distributions become broader and the peak of the

distribution is shifted to larger delays. As shown in Fig. 11b

synchronous pulses may propagate in FFNs in the presence of

external oscillations. We observe resonances as before (cf. Fig. 6),

and the resonance frequencies are shifted to smaller frequencies

with increasing patch size l.

Interestingly, the oscillation frequencies accompanying replay in

the hippocampus are larger in area CA1 than in the more globally

connected region CA3 [57,71,72]. We hypothesize that the

existence of long range connection in CA3 (and therefore an

effectively increased patch size) cause lower resonance frequencies.

Fig. 10. Resonances in FFNs with broad delay distribution (same network setup as in Fig. 9). The panels show until which layer a
synchronous pulse successfully propagate versus the stimulation frequency ns . In (a) the layer size is fixed (w~350) and the width s of the delay
distribution is varied. Here, for heterogeneous coupling delays (orange) a synchronous signal propagates for all stimulation frequencies (and even in
the absence of external stimulations). With increasing s the fraction of frequencies for which a robust signal propagation is possible decreases, and
for sufficiently large s no robust signal propagation is possible anymore (red). In (b) the width of the delay distribution is fixed (s~2ms) and the layer
size v is varied. Here, for small v robust signal propagation is not possible (independent of the stimulation frequency), however, with increasing layer
size the fraction of stimulation frequencies which enable a robust signal propagation increases. For further explanation see text.
doi:10.1371/journal.pcbi.1003940.g010
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The observed oscillations during replay might therefore be

optimized for the specific region and support the replay of spike

patterns encoded in weak FFNs.

The oscillations themselves might be generated by global

network oscillations based on dendritic spikes [50], by highly

connected nodes (so-called hub-neurons) which are a prominent

feature of networks with broad degree distribution [41], by

interneuron network oscillations [57,73,74], or by avalanches of

spikes propagating in a network of axons coupled by axo-axonal

gap junctions [75–77].

Discussion

Reliable and controlled transmission of signals is considered

essential for computation in cortical networks. Propagation of

synchronous activity along layered feed-forward networks may be

one important way to realize such transmission [19,21,23].

Starting with a random recurrent network, feed-forward structures

are assumed to be formed in a ‘‘training phase’’ previous to the

recall of the learned sequences by, e.g., spike time dependent

plasticity [78–80]. Moreover, propagating synchronous pulses are

a candidate for generating precisely timed spike patterns in the

millisecond range as observed in various neurophysiological

studies (e.g., [81–84]).

Robust propagation, however, typically requires a highly

prominent feed-forward anatomy, either in the sense of densely

connected layers of neurons [25–27] or strongly increased

connection strengths between neurons of successive layers

(compared to remaining connections of the network) [28]. Such

prominent structures are experimentally not observed.

In previous articles we have shown that fast dendritic spikes can

support signal transmission in the form of propagation of

synchrony [30,31]. They specifically amplify activity that is

synchronous, and thus enable a robust propagation in networks

with moderate feed-forward anatomy. In this article we demon-

strated that the presence of background oscillations can relax this

requirement even further by supporting the propagating signal by

additional external inputs. These additional inputs excite the

neurons of the network (including the current target layer of the

propagating synchronous pulse) and therefore enable a robust

propagation with less inputs from the preceding layer. As a

consequence robust signal transmission may emerge in networks

with weaker couplings between the layers of the feed-forward

network.

Such weaker structures, where the differences between feed-

forward connections and remaining recurrent couplings are

smaller, can be formed faster by synaptic plasticity (assuming a

constant plasticity rate), i.e., the process of creating (and

reconfiguring) information pathways is simplified. Alternatively,

the background oscillations can enable robust signal transmission

in feed-forward networks with reduced layer size (while keeping

the coupling strengths fixed). We may expect that this leads to an

increase in the storage capacity of recurrent networks, because a

reduced number of ‘‘memory-encoding’’ neurons is required for

reliable signal propagation.

We remark that the mechanism of oscillation-induced signal

transmission is related to the idea of ‘‘communication through

coherence’’ [33], where the information flow between neural

groups is enabled by coherent rhythmic modulation in the neural

excitability in the different sub-networks. Similarly, in our

approach the oscillatory input excites the neurons (and, even

more importantly, the non-linear dendrites of the neurons) of the

local network, and therefore acts as a ‘‘clock’’ enabling the

successful propagation of synchronous pulses in the local network.

Experimental data suggests that there is a balance between

excitatory and inhibitory input to single neurons in cortical

networks during spontaneous and sensory-evoked activity [85–87].

We therefore considered external oscillatory input which is

composed of an excitatory as well as an inhibitory component.

We find that for additively coupled networks, only unbalanced

external inputs that cause a net depolarization, support propaga-

tion of synchrony. Further, this support does not depend on the

oscillatory nature of the input and could equally well be

established by a temporally constant input current with the

strength of the temporal mean input.

In contrast, for networks with non-additive couplings the ratio

of the excitatory and inhibitory input is less important. In these

networks propagation of synchrony is mainly mediated by

dendritic spikes, which are elicited if the excitatory input within

a short time interval exceeds the dendritic threshold [29,42–44].

Further, inhibition fails to suppress the generation of such

dendritic spikes [46] and thus even inputs with a net hyperpolar-

izating effect support signal propagation. Due to the short

dendritic integration window the timing of the external input is

important, and thus only oscillatory inputs of a suitable frequency

range can facilitate the propagation of synchrony. Whenever the

ratio of the stimulating frequency and the ‘‘natural’’ propagation

Fig. 11. Signal propagation in hippocampal-like networks. (a) Probability density function for delay distributions of neurons on a quadratic
patch with side length l. The conduction delay is composed of the distance-dependent axonal delay and the uniformly distributed dendritic delay (for
details see Equations (12) – (15) and explaining text). (b) The panel shows up to which layer a synchronous pulse propagates along an FFN with the
delay distribution taken from (a) in the presence of balanced oscillations for different patch sizes l. The network setup is the same as in Fig. 9. With
increasing patch size l, and thus increasing connection lengths, the resonance frequencies are shifted to lower values. For further discussion see text.
doi:10.1371/journal.pcbi.1003940.g011
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frequency of the feed-forward network is rational, resonances and

locking patterns emerge. The resonance frequencies themselves

are determined by the average conduction delays between the

neurons of the FFN. This provides a mechanism to selectively

activate different signaling pathways by oscillations of suitable

frequency.

If either the synaptic couplings or the oscillatory inputs are too

strong, synchronous activity may spread over the entire network,

generating a large scale synchronous population burst and a

subsequent phase of refractoriness. The occurrence of such

pathological activity states which transiently silences the network

can terminate the induced propagating signal and therefore hinder

signal transmission. These observations may be relevant for

understanding the neurological implications of epileptic-like

seizures.

For clarity of presentation, we first demonstrated the effect of

oscillation-induced propagation of synchrony for FFNs with

homogenous or relatively narrow delay distributions. In biological

neural circuits, the distribution of delays might be substantially

broader. One might expect that this may blur out signals and

hinder their reliable transmission. However, in networks with

nonlinear dendrites, for the generation of dendritic spikes (and

consecutive somatic spikes) inputs from both, the previous layer

and the oscillatory network are needed. Therefore, broad delay

distributions only decrease the ‘‘effective’’ layer size, i.e. the

fraction of inputs from the previous layer which can arrive within

the relevant time interval to support spike generation. As a

consequence FFNs with broad delay distribution require a

moderately increased layer size, but the general mechanism of

oscillation-induced signal transmission is unchanged.

In this article we considered oscillatory input arriving from an

external source. For clarity, we separated the local (signal

processing) network and the oscillation-generating network to

study the impact of oscillations. We note that there are no

conceptual differences if we consider networks, in which such

oscillations arise from the embedding network itself. For example,

we have recently shown that in networks with a broad distribution

of synaptic connections moderate network oscillations which are

suited to support signal transmission naturally emerge [41]: So-

called hub-neurons (higher than average connected neurons) can

echo the propagating synchronous signal, start to oscillate and

therefore provide an oscillatory, supporting feedback. As another

example intrinsic network oscillations can emerge due to recurrent

inhibition or the excitatory-inhibitory loop [88,89]. Oscillation-

supported signal transmission might also arise from network

intrinsic responsivity modulations such as sub-threshold mem-

brane potential oscillations in resonator-type neurons [90], if they

are synchronized and sufficiently strong to depolarize the dendritic

compartments in a rhythmic way. Furthermore, network level

resonances [91] may support propagation of synchrony.

Dendritic spikes are prominently found in, e.g., the hippocampus

(cf. [29,43,46,61] and others). In this cortical area spike patterns

observed during spatial exploration are replayed during sleep or

resting phases (e.g., [14,15,55,56]). Interestingly, this replay is

accompanied by high-frequency oscillations in the range of up to

200 Hz [57,58,71]. We estimate the distribution of conductance

delays for recurrent connections in the hippocampal areas CA1/

CA3, and show that the expected resonance frequencies for the

support of synchrony propagation agree quantitatively with the

frequencies observed in neurophysiological experiments. This

suggests that the high-frequency oscillations may contribute to the

stabilization of the replay of spike patterns in the hippocampus.

Our choice of parameters, including that of (average) conduction

delays, is guided by neurophysiological observations in the hippo-

campus. However, in other cortical systems substantially larger delays

have been reported (see, e.g., [92] for an overview). Because the

natural propagation frequency decreases with increasing conduction

delays, this suggests that the mechanism of oscillation-induced signal

transmission is not restricted to high-frequency oscillations as present

in the hippocampus. Furthermore, oscillations can stabilize signal

transmission for stimulation frequencies where the ratio of natural

propagation frequency and stimulation frequency is rational.

Therefore oscillation-induced signal transmission can be enabled by

stimulation with frequencies substantially smaller than the natural

propagation frequency. For example, only every second or third

synchronous pulse might be supported by the oscillatory input (cf.

Fig. 7). The widths of these sub-harmonic resonances are smaller

than the main resonance peak (around nnat), however, we have shown

that they can enable oscillation-induced signal transmission even if

the oscillation frequencies are small compared to the natural

propagation frequency.

Finally, we emphasize that the occurrence of the identified

mechanism of signal transmission by oscillation-induced propaga-

tion of synchrony need not be restricted to information processing

in neural networks. In Supporting Material S1 Text, we derive a

simplified, analytically tractable model describing the network

activity in terms of probabilistic threshold units. Its analysis reveals

that the main prerequisite for oscillation-induced signal transmis-

sion is the threshold-like processing of inputs of the single elements

in the network. We may therefore expect that the mechanism also

plays a role in other networks of sharply nonlinear threshold units.

Networks of such units describe a variety of real-world phenom-

ena, like the transmission of rate activities in neural networks

(McCullogh-Pitts model, e.g., [59,93]), (failure) cascades in social,

supply or communication networks (e.g., [94,95]), or signaling in

gene and protein networks (threshold Boolean networks, e.g., [96].

Methods

In this section we briefly introduce the neuron model and

system setup. A complete list of standard neuron and model

parameters is provided in the last subsection.

Neuron model
We consider networks of neurons of the integrate-and-fire type

[97]. Single neurons interact by sending and receiving action

potentials (spikes). The state of neuron i is described by its

membrane potential Vi and its temporal dynamics are determined

by

Ci

dVi tð Þ
dt

~gL
i V

eq
i {Vi tð Þ


 �
zI ex

i tð ÞzI in
i tð Þ, ð16Þ

where Ci is the membrane capacity, gL
i is the leak conductance

and V
eq
i is the equilibrium potential. Iex

i tð Þ and I in
i tð Þ are currents

arising from excitatory and inhibitory inputs, respectively.

Whenever the membrane potential Vi tð Þ exceeds the spiking

threshold VH
i at some time t~t�, a spike is sent to the post-

synaptic neurons j, where it arrives after a delay time tji. The

sending neuron’s potential is reset to Vi t�ð Þ~V reset
i , and the

neuron is refractory for a time period tref
i , i.e., Vi(t):V reset

i for

t[ t�,t�ztref
i


 �
. Simulation results were obtained using the

simulation software NEST [98].

Linear (additive) coupling
The effects of the synaptic inputs on postsynaptic neurons are

modeled by transient conductance changes. Denoting the reversal
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potentials of excitatory and inhibitory currents by Eex and Ein, the

input currents to neuron i arising from synaptic inputs from other

neurons of the network are given by

I ex
i tð Þ~gex

i tð Þ Eex{Vi tð Þ½ �, ð17Þ

I in
i tð Þ~gin

i tð Þ Ein{Vi tð Þ

 �

: ð18Þ

gex
i tð Þ and gin

i tð Þ are linear superpositions of single responses,

gex
i (t)~

X
n,j

eex
ij f ex t{tf

j,n{tij

	 

, ð19Þ

gin
i tð Þ~

X
n,j

ein
ij f in t{tf

j,n{tij

	 

, ð20Þ

where eex
ij and ein

ij denote the excitatory and inhibitory coupling

strength from neuron j to neuron i and tf
j,n is the nth spiking time

of neuron j. f ex and f in specify the time course of the synaptic

conductance change given by the difference of two exponentials

[97] with time constants tk,1 and tk,2,

f k tð Þ~ Ak
� �{1

e
{ t

tk,1{e
{ t

tk,2

� �
for t§0

0 for tv0

,

8<
: ð21Þ

for k[ ex,inf g describing the effect of an excitatory and inhibitory

input, respectively, that is received at time t0~0. The normali-

zation constant

Ak~
tk,2

tk,1

� � tk,2

tk,1{tk,2

{
tk,2

tk,1

� � tk,1

tk,1{tk,2

: ð22Þ

is chosen such that the peak conductance maxt§t0
f k tð Þ
� �

~1.

Throughout this article, we denote the strength of a synaptic

connection by the value of the peak conductance, i.e., a single

input of strength e causes a conductance change e:f k(t).
We note that, to keep the model as simple as possible, we did

not incorporate any saturation in the linear model. This is in

contrast to the model with nonlinear dendrites (see below), since

a dendrite becomes refractory after generation of a dendritic

spike.

Non-linear (non-additive) coupling
Besides linear summation of inputs (as described above), we

consider nonlinear amplification of synchronous inputs mediated

by fast dendritic spikes. These have been found in single neuron

experiments (e.g., [29,42–44]) and introduced in recent models of

neural networks [30,41,45,50,99]. The amplification is based upon

dendritic action potentials which generate a strong depolarization

in the soma. Here, three properties are of particular interest: (i)

The amplification is very sensitive to input synchrony (relevant

time window v&3 milliseconds), (ii) the peak of the depolarization

in the postsynaptic neuron (pEPSP) is reached a certain time

interval after stimulation with only sub-millisecond jitter and (iii)

with increasing stimulation strength the amplitude of the pEPSP

saturates.

We model the contribution of such dendritic spikes to the

neuronal input as follows (see also [30,50]): We augment the

neurons with an additional nonlinear dendrite. Inputs that

arrive at the linear dendrite are processed as described above.

Inputs on the nonlinear dendrite also cause a conductance

change as described above, but additional depolarizations of the

membrane potential mimicking the effect of a dendritic spike

may be generated. If the total excitatory input to a nonlinear

dendrite within a time interval DT s exceeds a certain threshold

Hb, a current pulse is initiated which takes effect on the

membrane potential after a delay time tds. To account for the

experimentally observed saturation of the somatic depolariza-

tion caused by dendritic spikes we limit the maximal conduc-

tance change within a time interval DT s to Hb and model the

current pulse in a phenomenological approach such that the

depolarization caused by a suprathreshold input, e§Hb,

resembles the characteristics and time course of the depolariza-

tion observed in single neuron experiments (cf. [29]). More

precisely, the current pulse is described by the sum of three

exponential functions,

Ids tð Þ~H t{tds
� �

{A exp {
t{tds

tds,1

� �
zB exp {

t{tds

tds,2

� �
{C exp {

t{tds

tds,3

� �� �
,

ð23Þ

with positive prefactors A, B, C and decay time constants tds,1,

tds,2 and tds,3 which are chosen such that the somatic

depolarization fits experimental data. After initiation of such a

current pulse the (nonlinear) dendrite becomes refractory for a

time period tref,ds and does not transmit spikes within the

refractory time period. This refractoriness yields the experi-

mentally observed saturation for inputs exceeding the dendritic

threshold.

We note that for the generation of a dendritic spike only the

excitatory inputs are considered. Consequently, in accordance

with recent experimental findings, inhibition fails to suppress fast

dendritic sodium spikes. However, the probability that a somatic

spike is initiated by a dendritic one might be reduced by

hyperpolarization of the soma [46] (cf. also [41]).

Network setup
We investigate sparsely, randomly connected recurrent net-

works and study the propagation of synchrony in naturally

occurring feed-forward subnetworks (FFNs). ‘‘Naturally occur-

ring’’ here means that the feed-forward structures are present as

part of a recurrent network and are not generated by, e.g., adding

feed-forward connections. However, they are highlighted by

moderately increased excitatory connections.

We denote the total number of neurons in the recurrent

network by N . The network itself constitutes an Erdös-Rényi

random graph: A directed excitatory synaptic connection between

any pair of neurons exists with probability pex. Inhibition in

recurrent networks is usually assumed to be mediated by a

population of inhibitory neurons (interneurons). Spiking of

excitatory neurons causes a response of inhibitory neurons which

in turn project an inhibitory input to the excitatory neurons. Here,

we simplify this inhibitory feed-back mechanism and assume that

the spiking of neurons, additionally to the excitatory input on the

postsynaptic neurons, have an inhibitory effect: An inhibitory

connection between any pair of neurons exists with probability pin.

We remark that there might exist an inhibitory and excitatory

connection between two neurons. However, these cases are rare
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due to the sparsity of the considered networks (typically

pex,pin&0:05). The simplification of the inhibitory feed-back loop

eases the analytical treatment, but is not crucial for the effect of

oscillation induced propagation of synchrony as discussed later on

(cf. also [41]).

For clarity of presentation coupling strengths are assumed

homogeneous; excitatory connections have strength eex
ij ~ep, the

strength of inhibitory connections is denoted by ein
ij ~em. We

choose the ratio between inhibitory and excitatory connection

strengths, c~em=ep, such that the peaks of single excitatory and

inhibitory postsynaptic potentials measured at resting membrane

potential are of equal amplitude.

We define FFNs by assigning neurons randomly to m groups of

v neurons each, where each neuron belongs to one group at most.

These groups constitute the layers of the FFN. By construction, the

connectivity between neurons of successive groups of the FFN

statistically equals the overall connectivity. To enable propagation

of synchrony, we increase the strengths of the already existing

excitatory connections between neurons of successive layers; this

connection strength is denoted by ec.

For clarity of presentation, in the first part of the article we

investigate the influence of oscillations on propagating synchrony

in isolated FFNs. Here, only excitatory connections between

neurons of successive layers are present, i.e., ep~em~0, but ecw0.

However, recurrent connections (ep,emw0) do not change the

results qualitatively. We comprehensively study recurrent FFNs

and discuss differences to isolated FFNs in Supporting Material S2

Text.

Detecting propagation pulses
We evaluate up to which layer a synchronous pulse propagates

in the FFN by considering the signal-to-noise ratio (SNR):

After a synchronous pulse is initiated in the first layer (i~1) at

time t
pp
1 ~tstart, we determine for the following layers i,

i[ 2, . . . ,mf g, how many neurons have spiked within a time

window of length Dpw lagging behind the synchronous pulse in

the previous layer (centered at t
pp
i{1) by a temporal shift D

pp
i . The

temporal shift Dpp
i [ 0,Dmaxf g is chosen after simulation such that

the number of spikes

Si~
X

l

X
j[Gr(i)

x
t
pp
i{1

zD
pp
i

,t
pp
i{1

zD
pp
i

zDpw

h i(t
f
j,l) ð24Þ

becomes maximal. Here Gr(i) are the indices of neurons of group

i, t
f
j,l is the lth firing time of neuron j, and x denotes the

characteristic function. Starting with t
pp
1 ~tstart, the following t

pp
i

are determined by first evaluating D
pp
i according to Equation (24),

and then defining t
pp
i as the mean of all spikes contained in the

interval t
pp
i{1zDpp

i ,t
pp
i{1zDpp

i zDpw

 �

.

Further, we determine the noise level Ni in each layer i[ 1,mf g
by measuring the probability Pi

Dpw(k) to find k spikes from

neurons of group i in a time window Dpw during a control time

interval Dtobs in which no synchronous activity is induced (an

external oscillatory input is present, if applicable). The noise level

Ni is then given by the minimal value satisfying

XNi

k~0

Pi
Dpw(k)§a, ð25Þ

with constant av*1. Finally, we denote the propagation up to

the ith layer as successful if the SNR is larger than a constant

bw1,

SNRi : ~ min
n~1,...,i

Sn

Nn

� �
wb: ð26Þ

This means, in particular, that we can distinguish the background

(spontaneous) activity from the transmitted signal in all layers

1, . . . ,i.

Homogeneous neuronal background
In the ground state of balanced networks [2,3] single neurons

fire irregularly and their spiking activity is approximately described

by Poissonian spike trains [4,100,101]. In addition to inputs from

the recurrent network each neuron receives inputs from remote

networks, and we emulate this influence by independent excitatory

and inhibitory (Poissonian) spike trains. We denote the rates by

next,ex and next,in and the strength of single spikes (peak

conductances) by eext,ex and eext,in, respectively. Similarly to the

recurrent connections, we assume the external input to be

balanced, such that the total input is balanced as well. As a

consequence, the neurons are in a fluctuation-driven regime, and

in the absence of synchrony the neurons spike asynchronously and

irregularly and their output spike trains resemble Poissonian spike

trains themselves.

Background oscillations
In this article we study the impact of neuronal oscillations on the

ability of recurrent networks to propagate synchronous signals.

Oscillatory input may arise from oscillations in other circuits or

within the local network itself.

To systematically investigate the influence of oscillations on

synchrony propagation in a controlled way, we emulate such

oscillations by excitatory and inhibitory inputs generated by a

‘virtual’ population of Ne neurons that spike with a mean

frequency ns. Within each oscillation period T s~1=ns, Ne spike

times are drawn from a Gaussian distribution centered at

tn :~n=ns (for the nth oscillation, n[Z) with standard deviation

ss. Each of these spikes causes an excitatory input of strength eext
p

with probability pext
ex and an inhibitory input of strength eext

m with

probability pext
in to each neuron of the recurrent network (cf.

Fig. 12).

Here and in the following the term ‘‘balanced oscillations’’

refers to oscillatory input for which excitatory inputs and

inhibitory inputs cause postsynaptic potentials of equal amplitude

if the average excitatory inputs exceed the inhibitory inputs or vice

versa, we denote such inputs as ‘‘unbalanced oscillations’’.

Whereas unbalanced oscillations induce a net depolarization or

hyperpolarization of the neurons in the network, balanced

oscillations maintain the balance between excitation and inhibi-

tion, and are thus expected to change the average membrane

potential in the ground state only weakly. However, they may

influence the effective time constant of the neurons as discussed in

the Results Section (cf. also [51,52]).

The aim of the article is to understand the influence of the

oscillatory nature of the input on propagating synchrony, and

resonances between signal propagation and input oscillations. We

discuss balanced oscillations and unbalanced oscillations separately.
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Standard parameters
Throughout the article (for simplicity) we consider a homoge-

neous neuron population. The single neuron parameters are

Ci:C~400pF, V reset
i :V reset~{65mV, VH

i :VH~{50mV,

gL
i :gL~25nS, V

eq
i :V eq~{55mV and tref

i :tref~3ms

[72,102] for all i.
The time constants of the excitatory conductances (AMPA) are

tex,1~2:5ms and tex,2~0:5ms [103,104]. For simplicity we

assume the same time constants for inhibitory conductances

(GABAA), tin,1~tex,1~2:5ms and tin,2~tex,2~0:5ms. The rever-

sal potentials are Eex~0mV and Ein~{75mV [72,97]. To

obtain balanced recurrent (and external oscillatory) inputs, the

ratio c between excitatory and inhibitory couplings is chosen such

that the peaks of single excitatory and inhibitory postsynaptic

potentials equal each other when the inputs are received at resting

membrane potential, i.e.,

c~
DV eq{EexD
DV eq{EinD

~2:75 ð27Þ

for standard neuron parameters.

We consider sparsely connected networks (standard connection

probability pex~pin~0:05) with homogenous coupling delays

tij:�tt~2:5ms in the first part of the article, and with heteroge-

neous coupling delay distribution in the second part. For the latter,

the underlying distribution and parameters are stated in the

corresponding sections.

Each neuron receives excitatory and inhibitory Poissonian spike

trains with rates next,ex~next,in~2:4kHz. Single inputs have

strength eext,ex~1nS and eext,in~2:75nS, respectively.

The parameters of the dendritic spike current are chosen

according to single neuron experiments [29,42–44], Hb~8:65nS,

A~55nA, B~64nA, C~9nA, tds,1~0:2ms, tds,2~0:3ms,

tds,3~0:7ms and tref,ds~5ms (cf. also, [30,50]). The standard

value for the length of the dendritic integration window is

DT s~2ms; in the last part of the article it is varied as indicated.

For the detection of propagating synchronous signals, we

considered time windows of length Dpw~5ms, and considered

time lags between successive synchronous pulses up to Dmax~5ms.

The noise level is determined during an observation interval

Dtobs~1000ms, we further set the constant for defining the chance

level to a~0:99 and require a minimal SNR of b~1:2.
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7. London M, Roth A, Beeren L, Häusser M, Latham P (2010) Sensitivity to

perturbations in vivo implies high noise and suggests rate coding in cortex.

Nature 466: 123–127.

8. Monteforte M, Wolf F (2012) Dynamic flux tubes form reservoirs of stability in

neuronal circuits. Phys Rev X 2: 041007.

Figure. 12. Schematic illustration of oscillatory background input. Oscillatory input is generated by a (virtual) population of Ne neurons
which spike once during each oscillation period of length 1=ns. The actual spiking times are drawn from a Gaussian distribution. At each neuron in the
network, each spike causes an excitatory input of strength eext

p with probability pext
ex and an inhibitory input of strength eext

m with probability pext
in .

Additionally to the oscillatory input, neuron receive inputs from recurrent connections and Poissonian spike trains which are not displayed in the fig.
doi:10.1371/journal.pcbi.1003940.g012

Oscillation-Induced Signal Transmission and Gating in Neural Circuits

PLOS Computational Biology | www.ploscompbiol.org 16 December 2014 | Volume 10 | Issue 12 | e1003940



9. Reyes AD (2003) Synchrony-dependent propagation of firing rate in iteratively

constructed networks in vitro. Nat Neurosci 6: 593–599.

10. Feinerman O, Segal M, Moses E (2005) Signal propagation along

unidimensional neuronal networks. J Neurophysiol 94: 3406–3416.

11. Feinerman O, Moses E (2006) Transport of information along unidimensional
layered networks of dissociated hippocampal neurons and implications for rate

coding. J Neurosci 26: 4526–4534.

12. Long MA, Jin DZ, Fee MS (2010) Support for a synaptic chain model of

neuronal sequence generation. Nature 468: 394–399.

13. August D, Levy W (1999) Temporal sequence compression by an integrate-
and-fire model of hippocampal area CA3. J Comput Neurosci 6: 71–90.

14. Nadasdy Z, Hirase H, Czurko A, Csicsvari J, Buzsáki G (1999) Replay and time
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oscillations in the hippocampal CA1 region of the behaving rat. J Neurosci 19:
RC20: 1–4.

72. Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (2007) The Hippocampus

Book. Oxford: Oxford University Press.

73. Brunel N, Wang XJ (2003) What determines the frequency of fast network

oscillations with irregular neural discharges? I. Synaptic dynamics and

excitation-inhibition balance. J Neurophysiol 90: 415–430.

74. Geisler C, Brunel N, Wang XJ (2005) Contributions of intrinsic membrane

dynamics to fast network oscillations with irregular neuronal discharges.

J Neurophysiol 94: 4344–4361.

75. Traub RD, Schmitz D, Jefferys JG, Draguhn A (1999) High-frequency

population oscillations are predicted to occur in hippocampal pyramidal

neuronal networks interconnected by axoaxonal gap junctions. Neuroscience
92: 407–426.

76. Traub RD, Bibbig A (2000) A model of high-frequency ripples in the

hippocampus based on synaptic coupling plus axon-axon gap junctions

between pyramidal neurons. J Neurosci 20: 2086–2093.

Oscillation-Induced Signal Transmission and Gating in Neural Circuits

PLOS Computational Biology | www.ploscompbiol.org 17 December 2014 | Volume 10 | Issue 12 | e1003940



77. Maex R, Schutter ED (2007) Mechanism of spontaneous and self-sustained

oscillations in networks connected through axo-axonal gap junctions.
Eur J Neurosci 25: 3347–3358.

78. Jun JK, Jin DZ (2007) Development of neural circuitry for precise temporal

sequences through spontaneous activity, axon remodeling, and synaptic
plasticity. PLoS ONE 2: e723.

79. Fiete IR, Senn W, Wang CZH, Hahnloser RHR (2010) Spike-time-dependent
plasticity and heterosynaptic competition organize networks to produce long

scale-free sequences of neural activity. Neuron 65: 563–576.

80. Waddington A, Appleby PA, De Kamps M, Cohen N (2012) Triphasic spike-
timing-dependent plasticity organizes networks to produce robust sequences of

neural activity. Front Comput Neurosci 6: 88.
81. Abeles M, Bergman H, Margalit E, Vaadia E (1993) Spatiotemporal firing

patterns in the frontal cortex of behaving monkeys. J Neurophysiol 70: 1629–
1638.

82. Riehle A, Grün S, Diesmann M, Aertsen A (1997) Spike synchronization and

rate modulation differentially involved in motor cortical function. Science 278:
1950–1953.

83. Johansson RS, Birznieks I (2004) First spikes in ensembles of human tactile
afferents code complex spatial fingertip events. Nat Neurosci 7: 170–177.

84. Putrino D, Brown EN, Mastaglia FL, Ghosh S (2010) Differential involvement

of excitatory and inhibitory neurons of cat motor cortex in coincident spike
activity related to behavioral context. J Neurosci 30: 8048–8056.

85. Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical
network activity in vivo is generated through a dynamic balance of excitation

and inhibition. J Neurosci 26: 4535–4545.
86. Okun M, Lampl I (2008) Instantaneous correlation of excitation and inhibition

during ongoing and sensory-evoked activities. Nat Neurosci 11: 535–537.

87. Atallah BV, Scanziani M (2009) Instantaneous modulation of gamma
oscillation frequency by balancing excitation with inhibition. Neuron 62:

566–577.
88. Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma

oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8: 45–56.

89. Tiesinga P, Sejnowski T (2009) Cortical enlightenment: Are attentional gamma

oscillations driven by ING or PING? Neuron 63: 727–732.
90. Izhikevich EM (2001) Resonate-and-fire neurons. Neural Netw 14: 883–894.

91. Akam T, Kullmann DM (2010) Oscillations and filtering networks support

flexible routing of information. Neuron 67: 308–320.
92. Izhikevich EM (2006) Polychronization: Computation with spikes. Neural

Comput 18: 245–282.
93. Cayco-Gajic NA, Shea-Brown E (2013) Neutral stability, rate propagation, and

critical branching in feedforward networks. Neural Comput 25: 1768–1806.

94. Watts DJ (2002) A simple model of global cascades on random networks. Proc
Natl Acad Sci U S A 99: 5766–5771.

95. Lorenz J, Battiston S, Schweitzer F (2009) Systemic risk in a unifying
framework for cascading processes on networks. Eur Phys J B 71: 441–460.

96. Bornholdt S (2008) Boolean network models of cellular regulation: Prospects
and limitations. J R Soc Interface 5: S85–S94.

97. Dayan P, Abbott L (2001) Theoretical Neuroscience: Computational and

Mathematical Modeling of Neural Systems. Cambridge: MIT Press.
98. Gewaltig MO, Diesmann M (2007) Nest (neural simulation tool). Scholarpedia

2: 1430.
99. Breuer D, Timme M, Memmesheimer R (2014) Non-additive dendrites in

single neurons and associative memory networks. Phys Rev. In press.

100. Tuckwell H (1988) Introduction to theoretical neurobiology. Cambridge:
Cambridge Univ. Press.

101. Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-
fire neurons with low firing rate. Neural Comput 11: 1621–1671.

102. Staff N, Jung HY, Thiagarajan T, Yao M, Spruston N (2000) Resting and
active properties of pyramidal neurons in subiculum and CA1 of rat

hippocampus. J Neurophysiol 84: 2398–2408.

103. Jonas P, Major G, BSakmann (1993) Quantal components of unitary EPSCs at
the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J Physiol

472: 615–663.
104. Liu G, Tsien R (1995) Properties of synaptic transmission at single

hippocampal synaptic boutons. Nature 375: 404–408.

Oscillation-Induced Signal Transmission and Gating in Neural Circuits

PLOS Computational Biology | www.ploscompbiol.org 18 December 2014 | Volume 10 | Issue 12 | e1003940


