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Several vaccines against severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) have been approved for controlling the coronavirus disease

2019 (COVID-19) pandemic worldwide. Antibody response is essential to

understand the immune response to different viral targets after vaccination

with different vaccine platforms. Thus, the main aim of this study was to

describe how vaccination with two distinct SARS-CoV-2 vaccine preparations

elicit IgG antibody specific responses against two antigenically relevant SARS-

CoV-2 viral proteins: the receptor-binding domain (RBD) and the full-length

spike (S). To do so, SARS-CoV-2 protein specific in-house enzyme-linked

immunosorbent assays (ELISAs) were standardized and tested against serum

samples collected from 89 adults, recipients of either a single-dose of the

Spike-encoding mRNA-based Pfizer/BioNTech (Pf-BNT) (70%, 62/89) or the

Spike-encoding-Adenovirus-5-based CanSino Biologics Inc. (CSBIO) (30%,

27/89) in Merida, Mexico. Overall, we identified an IgG seroconversion rate

of 88% (68/78) in all vaccinees after more than 25 days post-vaccination

(dpv). Anti-RBD IgG-specific responses ranged from 90% (46/51) in the Pf-

BNT vaccine at 25 dpv to 74% (20/27) in the CSBIO vaccine at 42 dpv.

Compared to the S, the RBD IgG reactivity was significantly higher in both Pf-

BNT (p < 0.004) and CSBIO (p < 0.003) vaccinees. Interestingly, in more than

50% of vaccine recipients, with no history of COVID-19 infection, antibodies

against the nucleocapsid (N) protein were detected. Thus, participants were

grouped either as naïve or pre-exposed vaccinees. Seroconversion rates after
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25 and more dpv varies between 100% in Pf-BNT (22/22) and 75% (9/12)

in CSBIO pre-exposed vaccinees, and 89% (26/29) and 73% (11/15) in Pf-

BNT and CSBIO naïve vaccine recipients, respectively. In summary, observed

seroconversion rates varied depending on the type of vaccine, previous

infection with SARS-CoV-2, and the target viral antigen. Our results indicate

that both vaccine preparations can induce detectable levels of IgG against

the RBD or Spike in both naïve and SARS-CoV-2 pre-exposed vaccinees. Our

study provides valuable and novel information about the serodiagnosis and

the antibody response to vaccines in Mexico.

KEYWORDS

SARS-CoV-2 antigens, vaccinees, IgG response, Pfizer, CanSino

Introduction

The coronavirus disease 2019, better known as COVID-19,
is an ongoing pandemic caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (1). The first
known COVID-19 case was identified in December 2019
in Wuhan, China (2, 3). Since then, SARS-CoV-2 has
rapidly spread around the world causing over 340 million
cases and claimed over 5 million lives worldwide (1).
The COVID-19 pandemic has posed an extraordinary
threat to the global public health, and the global economy
(4, 5).

Severe acute respiratory syndrome coronavirus 2 is an
enveloped, single-positive-strand RNA virus belonging to the
β-coronavirus genus (6, 7). The coronavirus genome encodes
4 major structural proteins: spike (S), envelope (E), membrane
(M), and nucleocapsid (N), and approximately 16 non-
structural proteins (nsp1–16), and 5–8 accessory proteins
(2, 7, 8). During infection with SARS-CoV-2, the structural
proteins, S and N, constitute the main targets to generate
antibodies that neutralize viral particles and prevent infection
of host cells (8–13). These antibody responses have shown
different times for seroconversion against distinct viral antigens
depending on the severity of the disease (14–16). The S and
N proteins have shown to be highly immunogenic, being
the S the main target for neutralizing antibodies (6, 8, 9,
17). While protective antibodies can potentially bind a large
portion to the S protein, for SARS-CoV-2 the receptor-binding
domain (RBD) is especially important as it interacts with
the host cell receptor, the angiotensin converting enzyme 2
(ACE2) resulting in virus entry and infection. Thus, the RBD
within the S represents a critical target when looking at
humoral immune responses (18–20). Importantly, neutralizing
antibodies against the RBD have been widely studied and shown
to be effective in SARS-CoV-2 protection in vitro and in vivo
(9, 20, 21). Most of the antibodies targeting other structural
proteins such as N do not have neutralizing activity against
SARS-CoV-2 infection; however, they have been reported to

be highly useful for diagnosis and epidemiology purposes
(22–24).

Several vaccine candidates, mainly directed against the S
protein of SARS-CoV-2, have been approved by the World
Health Organization (WHO) Strategic Advisory Group of
Experts on Immunization (SAGE) for emergency use (25).
Since December 2020, 10 of these WHO-approved vaccines
have been deployed and administrated in more than 64% (>77
million people) of the population of Mexico. These include one
protein subunit-based vaccine (CIGB-66) by Center for Genetic
Engineering and Biotechnology (CIGB); two mRNA-based
vaccines by Moderna (mRNA-1273) and Pfizer/BioNTech (Pf-
BNT) (BNT162b2, aka Comirnaty); four non-replicating viral
vector by CanSino (Ad5-nCoV, aka Convidencia), Gamaleya
(Gam-COVID-Vac, Sputnik V), Johnson & Johnson (Janssen,
Ad26.COV2.S), and Oxford/AstraZeneca (Vaxzevria, ChAdOx1
nCoV-19 or AZD1222); and three virus inactivated-based
vaccines by Bharat Biotech (Covaxin), Sinopharm-Beijing
(Covilo, BBIBP-CorV), and Sinovac (CoronaVac) (26, 27).

The COVID-19 disease may course from asymptomatic
to symptomatic mild and sometimes life-threatening
complications such as the acute respiratory distress syndrome
(ARDS) (3, 4). Several studies have estimated a wide range of
asymptomatic infections between 4 and 80% (28–33). As SARS-
CoV-2 continues spreading globally with new viral variants
emerging, and with many patients without any symptoms that
can still transmit the virus, understanding the dynamics of
the immune responses after natural infection or vaccination
against SARS-CoV-2 becomes a critical need for public health
systems worldwide. Most COVID-19 serological assays identify
serum antibodies focused on two viral structural proteins, the
S and N proteins (10, 12, 14, 15, 21, 23, 34, 35). However, the
time it takes to develop detectable antibodies against these
proteins has been shown to vary based on disease severity after
natural infection (14–16). Antibodies against the S protein of
SARS-CoV-2 are not normally detected at early days of infection
(from day 0 to day 3), and peaks at day 25. On the other hand,
seroconversion against the N protein seems to happen faster
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as early as 3 days after illness onset, being a good marker of a
more recent infection (12, 35–39). Despite this, few studies have
addressed the dynamics of anti-SARS-CoV-2 IgG responses
following vaccination in Mexico (40).

Here, we measure the IgG-specific responses in vaccinated
individuals against three main SARS-CoV-2 viral targets, using
standardized in-house indirect enzyme-linked immunosorbent
assays (ELISAs). We report seroconversion and variable IgG
reactivity against the three viral targets, RBD, S, and N after
vaccination with two distinct SARS-CoV-2 vaccines, an mRNA-
based vaccine Pf-BNT and CSBIO.

Materials and methods

Ethics statement and study approval

This study was approved by the Ethics Committee
Board of the Research Center “Dr. Hideyo Noguchi” of the
Autonomous University of Yucatan (CIR-UADY) (Protocol
number: Record CEI-11-2020) and the Ethics Commission of
the State Laboratories of the Public Health Services of Yucatan.
All participants provided verbal understanding and completed a
written informed consent.

Study participants and collection of human
samples

Between April and June 2021, a total of 89 adult volunteers
were enrolled into a prospective observational study led by the
Virology Laboratory at CIR-UADY. Participants were employees
of UADY and SSY and had been previously vaccinated through
the National Immunization Program against COVID, with a
single dose of the mRNA-based vaccine Pf-BNT (n = 62) or the
CSBIO (n = 27).

A total of 140 serum samples (5 mL of whole-blood)
were collected by venipuncture using golden-cap tubes (SSTTM

13 mm × 100 mm, BD Vacutainer) and sterile-non-pyrogenic
needles (21G, Greiner bio-one). In 113 participants, serum
samples were collected from the Pf-BNT group after 5 (n = 62)
and 25 (n = 51) days post-vaccination (dpv). Although no
basal serum samples were collected before the first dose of the
Pf-BNT vaccine, a sample at 5 dpv was taken as the earliest post-
vaccination time point. Also, by the time a second sample was
collected at 25 dpv, participants had not received their second
dose of the Pf-BNT vaccine, as it was administrated by the
government after more than 40 days from the first dose.

The remaining 27 serum samples belonged to the CSBIO
vaccinees. These samples were collected from vaccinees that
voluntarily attended to the Virology Laboratory at CIR-UADY
to be tested for anti-SARS-CoV-2 IgG antibodies at variable dpv
ranging from 30 to 57 days. All serum samples were processed
under biosafety level A2, and heat inactivated at 56◦C for 1 h
prior to short-term storage at 4◦C or long-term storage at

−80◦C following standard protocols for sampling and handling
human blood samples established at the Virology Laboratory
CIR-UADY. Basic data (age, sex, and date of vaccination) were
collected from each participant. All participants were residents
of the city of Merida, Yucatan, Mexico.

Severe acute respiratory syndrome coronavirus
2 protein antigens

Protein expression and purification was performed
following standard protocols as previously described by
Stadlbauer et al. (21) and Byrum et al. (41) with some
modifications. The viral proteins RBD, S, and N are based on
the genomic sequence of the Wuhan-Hu-1 isolate (2). Plasmids
pCAGGS encoding SARS-CoV-2 Spike (with a C-terminal
hexa-histidine tag), and the RBD genes (with a C-terminal
hexa-histidine tag) were obtained from a donation of Dr.
Florian Krammer (Department of Microbiology, Icahn School
of Medicine at Mount Sinai, NY, United States) (21). Plasmid
pET-28 vector (41) encoding SARS-CoV-2 N gene was donated
by Dr. Eva Harris and Dr. Scott Biering (Division of Infectious
Diseases and Vaccinology University of California, Berkeley,
CA, United States).

All SARS-CoV-2 protein-encoding plasmids were initially
amplified by transforming chemically competent Escherichia
coli DH5α cells using approximately 100 ng of purified
plasmid (QIAGEN Plasmid Midi Kit, United States) grown in
LB medium supplemented with Ampicillin (1 µg/mL). PCR
positive colonies were grown for mass production, and plasmids
were recovered and purified following manufacturer’s protocols
for standard DNA plasmid purification (ZippyTM Plasmid
Midiprep Kit, ZYMO Research).

Cell cultures, reagents, antibodies, and
references sera

Expi293FTM cells were maintained following the
manufacturer’s instructions under standard culture conditions
of 8% CO2 and 37◦C on an orbital oscillation platform
(100–120 rpm) using Expi293 Expression Medium (Gibco
#A1435102). A mouse anti-6X His-tag R© monoclonal antibody
([HIS.H8], Abcam 18184) and Peroxidase Affinity Pure Goat
Anti-Mouse IgG (H + L) (Jackson Immuno Research #
115-035-003) was used for ELISA confirmation of the three
recombinant proteins and western blot analyses. Anti-Human
IgG (Fc specific)–peroxidase antibody produced in goat (Sigma,
#A0170) was used for detection of SARS-CoV-2 IgG-specific
antibodies present in human sera. Bovine serum albumin was
used to block ELISA plates (Sigma, A9647-100G). Opti-MEM R©

(1×) reduced serum medium for transfection experiments.
Non-fat Omniblock skimmed milk (#AB101009, Americanbio)
was used for blocking ELISA and western blot. Microtiter
plates (Immunolon 4 HBX, Ultra-high binding polystyrene
microtiter plates) for ELISA. A reference negative control serum
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(Accurun R© 810 Multi-Marker, 2017-11-11, Lot: 10087801,
Seracare, United States) was used as a negative control.

Recombinant production of antigens
Purified plasmids were used to transfect high density (4–

5 × 106 viable cells/mL) cultures of suspension-adapted human
embryonic kidney (HEK) cells (Expi293FTM cells, Thermo
Scientific Inc., kindly donated by Dr. Jesus Hernandez at
the Immunology Laboratory of the Research Center for Food
and Development, Mexico) using the ExpiFectamineTM 293
Transfection Kit (Gibco, A14524) and the Expi293 Expression
Medium supplemented with GlutaMAXTM following the
manufacturer’s instructions. Cell-free supernatants containing
soluble SARS-CoV-2 proteins were harvested and concentrated
using Amicon R© Ultra-15 centrifugal filters with a 100 kDa cut-
off for the full-length S [∼190 kDa molecular weight (mw)]
and the N (∼114 mw), or the 10 kDa cut-off filters for the
RBD (∼30 kDa mw) and purified following standard protocols
for His-tagged protein purification using Ni-NTA agarose
(QIAGEN) packed on polypropylene columns (QIAGEN), and
imidazole (Sigma) for washing and elution buffers (21). Eluted
proteins were buffer exchanged into sterile PBS using either
Amicon Filters with 10 kDa mw cut-off for the RBD or 100 kDa
for S or N and quantified using a standard Biuret Protein
Assay with BSA as standard protein, then stored at −80◦C
until further use.

Severe acute respiratory syndrome coronavirus
2 IgG indirect enzyme-linked immunosorbent
assay

Three ELISAs were standardized for detection and titration
of human IgG antibodies to the RBD, the S, and the N proteins.
Indirect ELISA protocols were adapted from Stadlbauer et al.
(21), which used a final concentration of 2 µg/mL to sensitize
the ELISA plates. Here, following this standard protocol, we
initially optimized a final concentration of 1 µg/mL [R2 = RBD
(0.9727); S (0.9573), N (0.9775)] of each antigen to coat the
ELISA plates (Figure 1A). Each R square denotes the linearity
of different absorbance values obtained from each ELISA curve.
Later, based on the differential mw of these three SARS-CoV-2
proteins, RBD (∼25–27 kDa), N (∼45 kDa), and S (∼180 kDa),
we adjusted all SARS-CoV-2 proteins concentrations into a
similar molar concentration of 37 nM, finally used to sensitize
each ELISA as follows: RBD (1 µg/mL), N (1.6 µg/mL), and S
(6 µ g/mL).

Baseline absorbance for all three viral antigens was derived
from different antigen concentrations (range 10–0.78 µg/mL)
in a repeatability test (n = 6) with the reference negative
serum (dilution 1:100) and a set of 88 human sera (dilution
1:100) collected before the pandemic in 2016 (Supplementary
Figure 1B). A total of 546 ELISA wells were processed against
the targets, RBD, S, and N, using the reference negative serum
and the 2016-sera, finding an average OD value of 0.092 (Min:

0.054; Max: 0.141). No statistical differences were identified
between OD values obtained after testing these negative sera
against the RBD (n = 182 wells), S (n = 182 wells), or the N
(n = 182 wells) either among all groups (one-way ANOVA,
Alpha; 0.05; CV = 0.172, 95% CI) or within individual groups
(Student t distribution p-value = 0.1047) (Supplementary
Figures 1B,C). Regarding the pool positive sera, variable OD
values were obtained when testing for the RBD (avg. 2.25; Min:
1.77; Max: 3.20; n = 48), S (0.58; Min: 0.39; Max: 0.93; n = 104),
and the N (0.41; Min: 0.21; Max: 0.77; n = 88), but not significant
(Supplementary Figure 1D). Based on these set of data, we
established an absorbance OD threshold (cut-off) value >0.20
(avg. OD = 0.092 + 3xSD) (Supplementary Figures 1B–D).

Briefly, 96-well ELISA plates (Immunolon R© 4 HBX, Ultra-
high binding polystyrene microtiter plates) were coated
overnight at 4◦C with 50 µL/well of individual SARS-CoV-
2 antigens at approximately 37 nM (final concentration) in
sterile Phosphate Buffered Saline (PBS 1×, pH 7.4, Gibco).
The next day, plates were washed in PBS and blocked for 1 h
at 37◦C using a 100 µL of blocking buffer (BB) containing
2% BSA/0.05% Tween-20 in PBS. Then, 50 µL of twofold
serially diluted human serum (1:100 starting dilution) in
diluent buffer (1% non-fat dry milk in PBS-T 0.05%), was
added to each well and incubated at room temperature (RT)
for 30 min in gentle oscillation. Plates were washed five
times using PBS-Tween 20 (PBS-T 0.1%). The IgG titer was
determined using 50 µL per well of a secondary mouse
anti-human IgG monoclonal antibody HRP labeled, diluted
1:10,000 in PBS-T. Enzymatic reaction was detected with HRP-
substrate (TMB, Sigma). Color development was stopped by
adding 50 µL of 1N hydrochloric acid (HCL) and absorbance
values were recorded at 450 nm using a microplate reader
(Victort X3, 2030 multilabel reader, PerkinElmer). Pooled
anti-SARS-CoV-2 positive human sera (n = 5) determined
by the commercial ELISA kit (EDITM Novel Coronavirus
COVID-19 IgG ELISA kit, Epitope Diagnosis, OD ≥ 2.0)
(11), were used to prepare a standard serum for each
antigen. This positive control pool was used at 1:100 dilution
throughout the study.

To discriminate amongst positive and negative results,
a cut-off value was estimated using known independent
negative sera (Accurun R© 810 Multi-Marker), along with the
pool positive human sera (see above). To set up the cut-off
value we used the formula (42): Cut − off value = a.x̄+
f .SD, where x̂ is the mean and SD the standard deviation
of independent negative control readings, and a and f two
multipliers. Based on this formula, we arbitrarily set an a = 1
with f = 3 (i.e., cut-off = mean +3 times the SD). The
magnitude of the IgG response against SARS-CoV-2 antigens
from vaccinees was defined by determining the area under
the curve (AUC) for all dose-response curves, considering
that all peaks above the base (cut-off) line when OD ≥ 0.20.
Additional analyses were performed to identify the endpoint
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FIGURE 1

IgG-specific responses to the RBD, S, and N proteins of SARS-CoV-2 in two groups of vaccinees. IgG levels expressed as OD values against RBD
(A), and S (B), proteins determined from positive and negative serum samples [here expressed as IgG reactivity % (y-axis)] based on previously
established cut-off values >0.20 (horizontal dotted line and gray zone) (C). Serum samples for Pf-BNT and CSBIO vaccinees were collected
after 5 (n = 62) and 25 (n = 51), and 43 (n = 27) dpv, respectively [vaccine values separated by vertical dotted line (x-axis)]. Mann–Whitney test:
****p < 0.0001; **p < 0.001; *p < 0.05. n.s., non-significant differences. (A,B) Each group of data in the scatter plots represent absorbance
values (OD) obtained from individual serum sample per vaccine group including the mean ± SEM (standard error) of individual groups.
Participants with record of COVID-19 (PCR-positive test) before vaccination are highlighted in light green. (C) Stacked bars represent the
percentage of serum samples per vaccine group showing IgG positive (+, green) or negative (–, light blue) OD values against individual
SARS-CoV-2 viral targets. dpv, days post-vaccination.

dilution titer, defined as the concentration required for three
times the background signal of the negative sera, and the
relative binding of IgG, expressed as the reciprocal of the

endpoint serum dilution that results in 50% of IgG binding
to the target protein measured at the high dilution tested
for all samples.
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Data collection and statistical analysis

All statistical analyses and graphs were performed and
generated using GraphPad Prism 6 software (GraphPad
Prism 6.07). Overall, Student’s t-test, one-way ANOVA
and unpaired non-parametric tests were used to evaluate
differences between two or more groups and individual
groups, respectively. Statistically significant differences
among means were considered as p-values < 0.05. For
dose-response curves, a one-way ANOVA with multiple
comparisons was used to determine significance between
different serum dilutions. EC50 values were calculated from
Log10 normalized data followed by non-linear regression
fit analyses with sigmoidal dose response (variable slope)
equation of Prism 6. The mean EC50 and Hill slope values
of the curves with 95% confidence intervals (95% Cis)
were determined. Similarly, the AUC was calculated using
Prism. Endpoints were compared within group but between
days or doses by Wilcoxon signed rank test (Wilcoxon) for
repeated measurements without normal distribution. Paired
analyses of EC50 values were performed by t-test (Mann–
Whitney test) with significant differences of p < 0.05. One
sample t-test analysis was performed to found significant
differences within each study group of data (significant,
alpha = 0.05). Linear regression analysis for dose-response
curves was also performed.

Results

Study participants were 63.3 % female (59/89) and
33.7% male (30/89), either vaccinated with a single dose
of the Pf-BNT vaccine (69.7%, 62/89) or the CSBIO
vaccine (30.3%, 27/89). The age of participants varied
between 20 and 63 (avg. 42) and 23 and 59 (avg.
43) for Pf-BNT or CSBIO vaccinees, respectively. Of
those who received the Pf-BNT vaccine, 25.8% (16/62)
reported mild (non-severe) symptoms of COVID-
19 with a confirmatory PCR positive test before

vaccination. The remaining vaccine recipients did not
report any history of symptomatic infection before
vaccine administration. From the total of 140 serum
samples, 80.7% belonged to volunteers receiving the
Pf-BNT vaccine and the remaining 19.3% received the
CSBIO (Table 1).

IgG antibody responses to
receptor-binding domain and spike
after vaccination

An overall IgG seroconversion of 73% (102/140) was
detected against RBD and/or S in all vaccinees. IgG
seroprevalence in Pf-BNT vaccinees at 5 dpv against any
of the two viral antigens were detected in 55% (34/62)
of participants, whereas at 25 dpv, we observed an IgG
seroprevalence of 94% (48/51). The percentage of positivity at
5 dpv against the RBD antigen was of 24% (15/62) and 52%
(32/62) for S antigen. At 25 dpv the percentage of positivity
was of 90% (46/51) against RBD and 90% (46/51) to the S
antigen (Table 2).

In CSBIO vaccinees, the overall seroprevalence was of 78%
(20/27), where 74% (20/27) and 29% (8/27) had detectable IgG
levels against the RBD and S, respectively (Figures 1A–C). In
this group of vaccinees, the time of sample collection varied
between 23 up and 57 dpv (x̄ = 42 days) (Table 1).

A robust and higher IgG antibody responses against
the RBD and S were significantly detected at 25 dpv
compared to the early time point of sample collection
(5 dpv) in the Pf-BNT group (Figures 1A,B) (Mann–
Whitney test, p < 0.0001). A multiple comparison analysis
showed that regardless of the viral target (e.g., RBD
or S), Pf-BNT vaccinees showed higher IgG positive
reactivities, particularly after 25 dpv, compared to the CSBIO
(42 dpv) (Figures 1A,B). Interestingly, those participants
with previous history of COVID-19 before vaccination
had high detectable levels of IgG antibodies against the
RBD and the S protein of SARS-CoV-2 (Figures 1A,B,
green squares).

TABLE 1 Demographics features of enrolled participants vaccinated against COVID-19 including type of vaccine, days post-vaccination, sex, age,
and previous reports of confirmed symptomatic COVID-19.

Vaccine Days
post-vaccination

Sex Age Mdn (range) Previous SARS-CoV-2
infection∧∧

Female Male Total

Pf-BIONT 5 43 19 62 42 (20–63) 16*

25 37 14 51

CSBIO 42 (30–57) 16 11 27 45 (23–59) 0

∧∧Recorded symptomatic SARS-CoV-2-like infection.
*Confirmed by RT-PCR.
Mdn, median.

Frontiers in Medicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2022.916241
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-916241 July 19, 2022 Time: 13:55 # 7

Puerta-Guardo et al. 10.3389/fmed.2022.916241

TABLE 2 Number of individuals showing IgG reactivity against the SARS-CoV-2 antigens RBD, S, and N in serum collected from Pf-BNT and CSBIO
vaccine recipients.

Vaccine Days post-vaccination IgG positivity (n) to:

Individual viral proteins Both proteins

RBD S N RBD S

Pf-BIONT 5 (n = 62) 15 32 38 13

25 (n = 51) 46 46 22 11

CSBIO 42# (n = 27) 20 8 12 7

#Days post-vaccination (dpv) range: 30–57 days.

To notice, seropositivity to both antigens, RBD and S, were
detected in percentages of 21% (13/62) or 86% (44/51) in Pf-
BNT at 5 or 25 dpv, while 26% (8/27) for CSBIO (Table 2).

Finally, we analyzed whether IgG levels against the antigens
varies depending on the age at the time of vaccination. In
Pf-BNT vaccinees age varied between 20 and 61 years, and
for CSBIO vaccinees (20–59 years) (Table 1 and Figure 2).
For both group of vaccinees, no significant relationships were
found between the age and the IgG levels (OD); however,
a t-test distribution analyses between age groups, identified
significant differences in the IgG levels detected against the
RBD between all groups of age (t-test p < 0.0001) in the
Pf-BNT recipients at 5 and 25 dpv (Figure 2A, left panel).
A similar pattern was identified for the IgG levels detected
against the S protein (Figures 2A,B, left panel). Regarding
the CSBIO vaccine group, significant differences in the IgG
levels against the RBD were only detected between age groups
of 30–39 and 50–61 years of age when compared to those
vaccinees between 40 and 49 years old (t-test p < 0.05)
(Figure 2, right panel) while only the group of 30–39 years
old had higher levels of IgG against the S protein (Figure 2B,
right panel).

Antibody response to severe acute
respiratory syndrome coronavirus 2
after natural infection

In general, we observed that 53% of all individuals
vaccinated with Pf-BNT and 44% vaccinated with CSBIO had
reactive IgG antibodies against the N protein (Figure 3A and
Table 3). Of these, 42% (16/38) belongs to the previously
confirmed COVID-19 group (green squares). The remaining
58% (22/38) with anti-N IgG positive ELISA, did not recall being
exposed to SARS-CoV-2 before to the vaccine. These results
suggest a previous natural infection, possibly asymptomatic.
A breakdown of IgG specific reactivity based on the time post-
vaccination, shows an observed seroprevalence of 61 or 43% at
5 and 25 dpv in Pf-BNT vaccinees (Figure 3B). Of the sixteen
Pf-BNT participants with previous confirmed COVID-19, only

69% (11/16) had IgG seropositivity to N. Of note, 93.75% had
IgG reactivity against either RBD or S at 5 dpv (Table 3).

Based on the N IgG positive results, suggesting previous
exposure to SARS-CoV-2, participants were divided into two
groups, naïve and pre-exposed. The analysis identified that
few Pf-BNT vaccinees (16%) within the naïve group (4/24)
seroconverted after 5 dpv against either the RBD or S. At the
second sample collection (25 dpv), seroconversion increased
significantly to 83% (24/29) against the RBD, and 89% (26/29)
to S. Regarding the CSBIO vaccine, 73% seroconverted against
the RBD and 20% against the S (Figure 3C and Table 3).

Analyzing the pre-exposed group (anti-N IgG positive),
compared to the naïve group, seroprevalence increased for all
antigens irrespective of the time of collection or the vaccine
composition (Figure 3C and Table 3). Vaccination in the study
participants with previous exposure to SARS-CoV-2 infection
was positively related to seroconversion against both SARS-
CoV-2 antigens, the RBD [odd ratio (OR) = 2.04, 95% CI 0.57,
7.34] and S (OR = 23.83, 95% CI 4.81, 118.17) in the case
of Pf-BNT vaccine recipients as well as the RBD (OR = 1.09,
95% CI 0.19, 6.2) and S (OR = 2.86, 95% CI 0.52, 15.77)
regarding the CSBIO vaccinees. Our results underline that
in both vaccine schemes, IgG seroconversion was positively
boosted by previous exposure to SARS-CoV-2 antigens even in
asymptomatic infections.

Severe acute respiratory syndrome
coronavirus 2 vaccines induce variable
IgG reactivity against receptor-binding
domain and spike

To follow up our first ELISA screening we further assessed
the reactivity (titers) of the IgG antibodies produced in response
to the Pf-BNT and CSBIO vaccines. Based on the dose-response
curves (Supplementary Figure 2), we could identify those sera
collected after 25 dpv from the Pf-BNT group with IgG levels
above the cut-off value (n = 46) had significantly different IgG
reactivity against the SARS-CoV-2 RBD (p < 0.0001) compared
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FIGURE 2

IgG-specific responses to the SARS-CoV-2 RBD by age groups. IgG levels expressed as OD values against the (A) RBD and (B) S viral targets.
A cut-off value >0.20 (horizontal dotted line and gray zone, y axis) was used to define IgG positive or negative serum samples against
SARS-CoV-2 RBD at four age groups, 20–29, 30–39, 40–49, and 50–61 (x axis). Serum samples for Pf-BNT (left panel) and CSBIO (right panel)
vaccinees were collected after 5 and 25 (separated by dotted line on x axis, left panel), and 43 (n = 27) dpv, respectively [vaccine values
separated by vertical dotted line (x-axis)]. Mann–Whitney test: ****p < 0.0001; p < 0.001; *p < 0.05. One-way ANOVA (p < 0.05). n.s., no
significant differences. Each group of data in the scatter plots represent absorbance values (OD) obtained from individual serum sample per
vaccine group including the mean ± SEM (standard error) of individual groups.

to sera collected at 5 dpv (n = 15) (t-test, p-value = 0.9991)
(Figure 4A). This did not occur when sera were diluted in
the presence of S protein, in which no significant variability
in the dose-response curves (p < 0.9442; p < 0.9858) was
identified regardless the vaccine preparation (Figure 4A and
Supplementary Figure 2). A further comparison between the
IgG-specific reactivity (AUC) obtained between the RBD and

the S proteins at 25 pdv, showed that the IgG-specific responses
to the RBD were significantly different that those obtained
against the S protein (t-test, p = 0.0020) (Figure 4A). These
differences were not detected in the CSBIO vaccinees.

Finally, we examined whether the post-vaccination timing
affects the IgG levels generated against SARS-CoV-2 RBD
and S, after a single-dose of this vaccine (Figure 4B and
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FIGURE 3

IgG-specific responses to SARS-CoV-2 after natural infection. (A) IgG levels expressed as OD values against SARS-CoV-2 N protein determined
from positive and negative serum samples based on previously established cut-off values >0.20 (horizontal dotted line and gray zone). Serum
samples for Pf-BNT and CSBIO vaccinees were collected after 5 (n = 62) and 25 (n = 51), and 43 (n = 27) dpv, respectively [vaccine values
separated by vertical dotted line (x-axis)]. Mann–Whitney test: *p < 0.05. n.s., non-significant differences. Each group of data in the scatter plots
represent absorbance values (OD) obtained from individual serum sample per vaccine group including the mean ± SEM (standard error) of
individual groups. Participants with record of COVID-19 (PCR-positive test) before vaccination are highlighted in light green. Stacked bars
represent (B) total percentage of serum samples per vaccine group showing IgG positive (+, green) or negative (–, light blue) OD values against
SARS-CoV-2 N protein and (C) the IgG reactivity to RBD and S in naïve (no-previously exposed) or pre-exposed vaccinees to SARS-CoV-2
infection.
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TABLE 3 Number of individuals with and without previous exposure to SARS-CoV-2 showing IgG reactivity against the SARS-CoV-2 antigens RBD
and S in serum collected from Pf-BNT and CSBIO vaccine recipients.

Vaccine IgG positivity (n)

dpv (n) Naïve dpv (n) Pre-exposed

RBD S RBD S

Pfizer/BIONT 5 (n = 24) 4 4 5 (n = 38) 11 28

25 (n = 29) 24 26 25 (n = 22) 22 20

CSBIO 42* (n = 15) 11 3 42# (n = 12) 9 5

#Days post-vaccination (dpv) range: 30-57 days.

Supplementary Figure 3). A paired analyses of the EC50 values
obtained from each seropositive pair of human sera tested
against the RBD (n = 11), S (n = 12), and N (n = 13) clearly
identified that Pf-BNT vaccinees had a significant increment in
the levels of RBD-specific IgG antibodies between day 5 and
25 post-vaccination (t-test p < 0.0001); not detected against
the two other viral targets (t-test p < 0.0519; p < 0.2428). An
increment between 0.9- and 11.9-fold in the IgG levels was
observed. Noteworthy, more than 80% of Pf-BNT vaccinees
with increased levels of IgG had symptomatic and RT-PCR
confirmed-COVID-19 infection, which confirm that previous
infections with SARS-CoV-2 results in increased IgG responses
after vaccination.

Discussion

In this study, we standardized three serological methods
to assess seroconversion against three antigenically important
SARS-CoV-2 viral proteins including the RBD, the S, and the N,
upon SARS-CoV-2 vaccination in adults of the city of Merida,
Mexico. We examined the IgG immune responses of 140 serum
samples collected from 89 vaccine recipients. According to their
SARS-CoV-2 vaccine schedule, participants had received either
a single-dose of Pf-BNT (n = 62) or a single-dose of CSBIO
(n = 27). Our results show an overall seropositivity of 88%
after 25 days or more of vaccination, against the RBD and/or
the S proteins of SARS-CoV-2. Interestingly, we also detect
anti-N IgG antibodies in 51% of all vaccinees, suggesting that
those individuals were pre-exposed to SARS-CoV-2 infection
before vaccination.

During natural SARS-CoV-2 infection, antibody responses
have shown different times for seroconversion against distinct
viral antigens depending on the severity of the disease (14–16).
The S and N proteins have shown to be highly immunogenic,
being the S the main target for neutralizing antibodies (6,
8, 9, 17). Additionally, the RBD within the S represents a
critical target when looking at humoral immune responses, as
it recognizes the receptor ACE2 specifically mediating virus
entry in the cell host (18–20). Here, based on the positive IgG
responses detected by our in-house ELISA against any of the

two SARS-CoV-2 viral proteins, RBD or S, we detected a total
seroconversion rate of 90% (46/51) and 74% (20/27) in the Pf-
BNT and the CSBIO vaccine groups after 25 and more dpv,
respectively. The seroconversion rates in the naïve (anti-N IgG
negative) populations were 89% in Pf-BNT and 73% in CSBIO
vaccine recipients. As expected, seroconversion in SARS-CoV-2
pre-exposed individuals increased up to 100% in Pf-BNT and
75% in CSBIO vaccinees. These findings agree with previous
studies showing increased seroconversion efficiencies (around
100%) in Pf-BNT (mRNA-base vaccine) and AstraZeneca
(Ad-based vaccine) vaccinees with and without evidence of
prior SARS-CoV-2 infection (43). Here, only 16 out of 62
individuals vaccinated with Pf-BNT had a laboratory positive
test of COVID-19. Despite this, 56% (26/46) with no record
of laboratory diagnosis nor symptomatic infection had anti-N
IgG antibodies at 5 dpv. In addition, for the CSBIO vaccinees,
none of the participants had a record of previous symptomatic
COVID-19 nor laboratory diagnosis. Therefore, the results of
pre-exposed vaccinees are a meaningful finding for our study.

In Mexico, vaccination against COVID-19 was implemented
following a vaccination scheme based on group of age
and risk, first all individuals ≥60 years old with/without
comorbidities, and health personnel; followed by all individuals
50–59 years old with/without comorbidities; and then the
rest of the Mexican population.1 The vaccines available in
Mexico are Pfizer-BioNTech, CanSino, COVAX, AstraZeneca,
Sputnik V, Sinovac, Janssen, and Moderna. However, in
order of number of doses administered, AstraZeneca,
CanSino, and Pfizer are the main vaccines in use in
Mexico.2

Our study analyzed seroconversion in a group of workers
with health-related activities who had received only a first
dose of Pf-BNT vaccine in April 2021. The second group
corresponded to university personnel who were vaccinated
with a single dose of CSBIO in May 2021. Unfortunately
for this second group, we could only have access to

1 http://vacunacovid.gob.mx/wordpress/priorizacion-de-personas-
a-vacunar/

2 http://vacunacovid.gob.mx/wordpress/informacion-de-la-vacuna/
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FIGURE 4

Severe acute respiratory syndrome coronavirus 2 IgG Dose-response against the RBD and the S proteins. An area under curve (A) values were
estimated from dose response curves with non-linear regression obtained from twofold serially diluted (eight dilutions) IgG positive serum
samples against the RBD (left panel) and S (right panel) proteins of SARS-CoV-2 for both vaccine recipients, Pf-BNT and CSBIO at different dpv.
Participants with record of COVID-19 (PCR-positive test) before vaccination are highlighted in light green. (B) Comparison between EC50 values
obtained from paired-serum samples collected after 5 and 25 dpv for Pf-BNT vaccinees against the SARS-CoV-2 RBD (left panel) and S (right
panel) proteins. Mann–Whitney test: *p < 0.05, **p < 0.01; paired t-test: ***p < 0.001. n.s., non-significant differences. Each group of data in
the scatter plots represent either the area under the curve (AUC) (A) or the IgG-binding concentration 50 (EC50) (B) based on the absorbance
(OD) values obtained from individual serum sample per vaccine group against the three SARS-CoV-2 antigens, including the mean ± SEM
(standard error) of individual groups.
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one post-vaccination sample collection (avg. 42 dpv), as
samples were collected onside while attending for lab testing
at CIR-UADY. Our results consistently showed that the
IgG-antibody responses against the RBD expressed as IgG
levels (OD values), IgG titers (endpoint dilution), relative
binding (EC50), and dose-responses (AUC), significantly
peaked in the vaccinees after 25 dpv regardless of the
vaccine preparation. A similar pattern was detected when
S protein was used as target for seroconversion. The IgG
levels (OD) against both RBD and S proteins increased
in pre-exposed vaccinees, particularly those with confirmed
evidence of prior SARS-CoV-2 infection. Our findings are in
line with previous reports in which previously SARS-CoV-
2 infected vaccinees had higher antibody titers compared
with previously uninfected vaccine recipients (44–46). Overall,
all these parameters used to assess IgG seroconversion
against SARS-CoV-2 were always higher against the RBD
compared to the full-length S protein. These results together
underline the high immunogenicity induced by the RBD
of the SARS-CoV-2 spike protein as previously reported
(47–51).

On the other hand, the levels of anti-RBD IgG antibodies
detected in both natural SARS-CoV-2 infection and vaccinees
have been strongly correlated with the neutralizing capacity
of the antibody responses (50, 51). In fact, the RBD has
become a major target for therapeutic development as many
monoclonal antibodies binding to the RBD can potently
neutralize SARS-CoV-2 and have been proposed as potential
strategy for effective COVID-19 treatment (22, 51, 52).
Regarding the other structural proteins of SARS-CoV-2 such as
the N protein, most antibody responses against it has shown
not to efficiently neutralize viral infection and so far, few
monoclonal antibodies targeting them have been developed.
However, they can be used for other applications, such as
diagnosis and epidemiology, providing a tool for the early
and accurate diagnosis on clinical samples of SARS-CoV-2
(24, 53, 54). One limitation of this study is that we could
not evaluate the neutralizing capacity of the anti-SARS-CoV-
2 IgG antibodies elicited by the two vaccines, which is critical
to understand either the incidence of COVID-19 and the
effectiveness of vaccines. This process has been hindered by
the lack of a BSL-3 facility used to perform neutralization
assays using either wild type virus and/or other in vitro
approaches (55).

The COVID-19 disease courses from asymptomatic and
mild respiratory infections to pneumonia and life-threatening
complications such as the ARDS (3, 4). Patients without any
symptoms at the screening point are defined as asymptomatic
infections, however, can turn into infected people who either
develop symptoms later (presymptomatic infections), or never
develop any symptoms (true asymptomatic or covert infections)
(28–31, 40, 56, 57). In this study, we identified a high percentage
of IgG positivity against the viral protein N (56%, 50/89)

among the Pf-BNT at 5 dpv and CSBIO at 42 dpv. For
both groups of vaccinees, only 16 participants (32%) had
history of COVID-19 symptoms, confirmed by PCR laboratory
results, which indicates that more than half of these groups
of vaccinees went potentially through an asymptomatic SARS-
CoV-2 infection.

During the COVID-19 pandemic, several meta-analyses
have estimated asymptomatic infections in a wide range,
as low as 4% and as high as 80% (28–33). In agreement
with these studies, we identified a comparable asymptomatic
prevalence of 52% (38/73) in those participants with no
history of COVID-19 before vaccination, including Pf-BNT
(26/46) and CSBIO (12/27) vaccinees. Here, we could also
identify that both anti-N IgG seropositivity as well as the
IgG levels (OD values) detected against the N, particularly
in the Pf-BNT vaccinees, decayed from >60% (OD mean:
0.4724) to less than 40% (OD mean: 0.2977) after 25 dpv,
which indicates that anti-N IgG-specific antibodies were
waning at some point.

A limitation of our study is that no basal serum sample
was collected before vaccination of the participants and only
short-post-vaccination times (less than a month) were examined
which hinders the long-term estimations of antibody duration
after vaccination. For the Pf-BNT vaccinees, we could collect an
early post-vaccination time point at 5 days after the first dose
was administrated. This allowed us to identify asymptomatic
individuals and differentiate our study population, between
naïve and pre-exposed, which is a critical aspect to understand
the antibody dynamics for SARS-CoV-2. Regarding the CSBIO
vaccine, we only had access to post-vaccination samples
(42 dpv). Our study and the data reported by Melgoza-
Gonzalez et al. (45), are the first results on the antibody
IgG response to COVID-19 vaccines in Mexico, including
CSBIO, widely used to immunize the education-academic
sector (approximately 3.03 million people) even before WHO
approval.3

In summary, we have demonstrated that vaccination
with two distinct vaccine preparations elicited IgG antibody
responses that recognized two main targets of SARS-CoV-
2, RBD, and S proteins. The ability to accurately detect,
measure and characterize the various antibodies specific
to SARS-CoV-2 is necessary for vaccine development,
manage risk and exposure for healthcare and at-risk
workers, and for monitoring reinfections with genetic
variants and new strains of the virus. Having a thorough
understanding of the benefits and cautions of standardized
serological testing at a community level remains critically
important in the design and implementation of future
vaccination campaigns, epidemiological models of immunity,

3 https://www.who.int/news/item/19-05-2022-who-validates-11th-
vaccine-for-covid-19
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and public health measures that rely heavily on up-to-date
knowledge of transmission dynamics.
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SUPPLEMENTARY FIGURE 1

Optimization of an in-house ELISA for detection of human IgG against
SARS-CoV-2 recombinant proteins. (A) Non-linear curve fit regression
analysis of serially diluted (twofold, eight-dilutions) dose response
curves of SARS-CoV-2 viral targets – RBD, S, and the N – to detect
human IgG-specific antibodies using an in-house indirect IgG ELISA
format. A single dilution of human serum (1:100) along with a
combination of anti-human IgG-conjugated to HRP and a colorimetric
substrate (TMB) were used to detect the IgG-specific reactivity against
SARS-CoV-2 antigens by spectrophotometry (absorbance: OD) at
450 nm. A concentration of 1 µg/mL was determined as the protein
assay concentration to coat the ELISA plates. (B–D) Determining a
cut-off value of >0.20 (horizontal dotted line and gray zone) to define
IgG positive and negative samples using a reference serum and sera
collected in 2016 (n = 88) (B,C), and a pool of IgG-positive serum
against each SARS-CoV-2 viral proteins (D). Antigen dilution range:
10–0.078 µg/mL used to coat ELISA plates. R square detected for each
protein in dose response curves: R2 = RBD (0.9727); S (0.9573), N
(0.9775). Each point represents a geometric mean with 95% confident
interval (CI) obtained from three independent experiments. One-way
ANOVA p < 00.5; non-parametric Student’s t-test p < 0.05. n.s.,
non-significant differences.

SUPPLEMENTARY FIGURE 2

Dose response binding curves of IgG positive sera to the SARS-CoV-2
viral proteins RBD and S. Binding of human sera to the SARS-CoV-2 viral
proteins RBD and S was estimated from twofold serially diluted (eight
dilutions, range: 1:100–1:12,800) IgG positive serum collected from
both vaccine recipients, Pf-BNT and CSBIO at 5 and 25 dpv for Pf-BNT,
and 43 dpv for CSBIO vaccinees. Statistically significant differences
(p < 0.05) were estimated after linear regression analyses within each
data points included in the dose response curves obtained by ELISA (OD
values) against individual viral antigen and times post-vaccination.
Different colors indicate each individual sample. Each group of data in
the plot graphs (dots connected lines) represent the relative IgG binding
capacity of individual IgG positive serum samples diluted eight times
(twofold) starting at 10−2. Absorbance values obtained at the dilution of
10−2 were considered as the 100% of IgG binding capacity for each
individual sample against the SARS-CoV-2 antigen tested.

SUPPLEMENTARY FIGURE 3

Binding of IgG positive sera to the SARS-CoV-2 viral proteins RBD and S.
(A) End-point dilution titers and (B) EC50 values were extracted from
dose response binding curves of twofold serially diluted (eight dilutions,
range: 1:100–1:12,800) IgG positive serum samples. Mann–Whitney
test: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. n.s., non-significant
differences. Each group of data in the scatter plots represent Log
transformed end-point dilution titers (A) and EC50 (B) obtained from
individual serum sample per vaccine group including the mean ± SEM
(standard error) of individual groups.
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