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Amyotrophic lateral sclerosis (ALS), a progressive disorder, causes motor neuron degeneration and neuromuscular synapse
denervation. Because this is a complex disease, there are no effective drugs for the treatment of patients with ALS. For example,
riluzole is used in many countries but has many side effects and only increases the lifespan of patients by approximately 2-3
months. Therefore, patients with ALS often turn to complementary and alternative medicine, such as acupuncture, homeopathy,
and herbal medicine, with the hope and belief of recovery, despite the lack of definite evidence on the efficacy of these methods.
Gamisoyo-San (GSS), a herbal medicine known to improve health, has been used for stress-related neuropsychological
disorders, including anorexia, in Asian countries, such as China, Korea, and Japan. To evaluate the effects of GSS on the spinal
cord, we investigated the expression of neuroinflammatory and metabolic proteins in symptomatic hSOD1G93A mice. We
observed that GSS reduces the expression of glial markers, including those for microglia and astrocytes, and prevents neuronal
loss. Moreover, we found that GSS inhibits the expression of proteins related to Toll-like receptor 4 signaling and oxidative
stress, known to cause neuroinflammation. Notably, GSS also regulates metabolism in the spinal cord of transgenic mice. These
results suggest that GSS could be used for improving the immune system and increasing the life quality of patients with ALS.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenera-
tive disease characterized by the loss of motor neurons and
muscular paralysis. It is a complex syndrome causing the
progressive degeneration of motor neurons in the central
nervous system (CNS) and denervation of neuromuscular
synapses in the peripheral nervous system. However, the
cause and pathogenesis of ALS remain unclear until now,
despite some studies demonstrating that excitotoxicity, oxi-
dative stress, endoplasmic reticulum stress, and immune
and inflammatory responses accompany motor neuron
degeneration [1–3]. A point mutation in the gene encoding
the Cu2+/Zn2+ superoxide dismutase 1 (SOD1) was shown
to cause an ALS-like phenotype in mice; hence, mice harbor-
ing this mutation have been used as a model for ALS for
determining ALS pathological mechanisms and developing
drugs against this disease [4].

Neuroinflammation is defined as nonneuronal cell toxic-
ity and is established as an important factor, not only in the
pathogenesis of ALS but also in many other neurodegenera-
tive diseases, including Parkinson’s disease (PD), Alzheimer’s
disease (AD), and multiple sclerosis [5–7]. In addition, the
relationship between neuroinflammation and disease
progression has been demonstrated in ALS animal models
[8–10]. In ALS, nonneuronal cells, including astrocytes and
microglial cells, as well as peripheral immune cells,
contribute to the immune response via the activation of
Toll-like receptors (TLRs) in the CNS [11, 12]. Astrocytes
and microglial cells expressing the mutant SOD1 (mSOD1)
protein have been shown to accelerate disease progression
compared with wild-type microglia and astrocytes [13, 14].
Other nonneuronal cells, such as oligodendrocytes, have
also been shown to contribute to motor neuron injury,
although through noninflammatory mechanisms [15, 16].
Nonneuronal cells secrete proinflammatory factors
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including tumor necrosis factor- (TNF-) α, interleukin 1a, and
complement component 1q, thus contributing to neuronal
cell death [17]. Oxidative stress and neuroinflammation are
closely linked with regard to inducing cell death in
neurodegenerative diseases, such as AD, PD, and ALS [18].
More specifically, Blasco et al. observed a correlation
between several clinical parameters, including total
antioxidant status, 8-hydroxy-2′-deoxyguanosine and
malondialdehyde levels, and inflammation and oxidative
stress markers in patients with ALS [19]. TNF-α contributes
to neurodegeneration by promoting the formation of
reactive oxidative species (ROS) and activating the nuclear
factor-kappa B (NF-κB) in glial cells, thus inducing neuronal
cell death, which in turn activates microglia and astrocytes
in the CNS.

Because of the diverse mechanisms underlying ALS,
there are still no drugs for the effective treatment of
patients with the disease. One of the few available drugs,
riluzole, has been used in several countries for the treat-
ment of ALS; however, it has many side effects and only
prolongs the lifespan of patients by 2-3 months [20].
Therefore, complementary alternative medicines, including
acupuncture, homeopathy, and herbal medicine, have been
another resort for ALS patients, in their hope for recovery,
despite the fact that there is no direct evidence on the effi-
cacy of these treatments.

Gamisoyo-San (GSS), a herbal product known for its
benefits in women’s health, consists of Paeoniae Radix,
Atractylodis Rhizoma Alba, Anemarrhenae Rhizoma, Lycii
Radicis Cortex, Angelicae Gigantis Radix, Poria Sclerotium,
Liriope Tuber, Rehmanniae Radix Crudus, Gardeniae Fruc-
tus, Phellodendri Cortex, Platycodi Radix, and Glycyrrhizae
Radix et Rhizoma [21, 22]. GSS has often been used to treat
symptoms of stress-related neuropsychological disorders,
anorexia, and headache in menopausal women and has been
reported to alleviate symptoms in women treated for breast
cancer [22–26]. GSS inhibits the inducible nitric oxide syn-
thase (iNOS), cyclooxygenase 2 (COX2), and TNF-α and
exerts anti-inflammatory effects on macrophages [27]. Based
on our observations, GSS reduces neuroinflammation by
inhibiting the expression of TLR4 and cluster of differentia-
tion (CD) molecule 11B, as well as of oxidative stress-
related proteins in the gastrocnemius muscle of human
SOD1 (hSOD1) transgenic (Tg) mice (Park et al., 2018,
unpublished results). These mice carry a single amino acid
substitution of glycine to alanine at the 93rd codon
(hSOD1G93A) and have been used as a model of ALS. There-
fore, we sought to examine the effects of GSS on neuroin-
flammation in the spinal cord of these mice. We found that
GSS reduces the expression of microglial and astrocytic
markers and prevents the loss of neurons. In addition, GSS
inhibits the expression of TLR4-related signaling proteins,
such as TLR4, CD14, and COX-2, and of oxidative stress-
related proteins, including transferrin and heme oxygenase
1 (HO-1), thus causing neuroinflammation. Further, GSS
regulates metabolism in the spinal cord of hSOD1G93A Tg
mice. These results suggest that GSS could be used for
strengthening the immune system and improving the life
quality of patients with ALS.

2. Materials and Methods

2.1. Animals. Hemizygous 5-week-old hSOD1G93A mice car-
rying a single amino acid substitution of glycine to alanine at
the 93rd codon were purchased from the Jackson Laboratory
and maintained in our facility. All mice were allowed access
to water and food ad libitum and were maintained under
constant temperature (21± 3°C) and humidity (50± 10%)
on a 12 h light/dark cycle (lights on 07:00–19:00). Offspring
were genotyped by PCR, as previously described [28]. For
the experiments, 2-month-old female mice were randomly
divided into three groups of 4 mice each: non-Tg (Non-Tg),
Tg, and Tg mice treated with GSS (Tg+GSS). Animal treat-
ment and maintenance were performed in accordance with
the animal care guidelines of the Korean Institute of Oriental
Medicine, Daejeon, Korea (IACUC experiment approval
number 15-036).

2.2. Materials. GSS was purchased from the HANKOOK
SHINYAK Corporation (Chungcheongnam-do, South
Korea). Primary antibodies used for Western blotting were
as follows: anti-ionized calcium-binding adapter molecule 1
(Iba-1; 1 : 1000; Wako, Japan), anti-glial fibrillary acidic pro-
tein (GFAP; 1 : 3000; Millipore, MA, USA), anti-survival
motor neuron (SMN; 1 : 1000; Santa Cruz Biotechnology,
CA, USA), anti-TLR4 (1 : 1000; Santa Cruz Biotechnology),
anti-CD14 (1 : 1000; BD Pharmingen, CA, USA), anti-COX2
(1 : 1000; Abcam, MA, USA), anti-transferrin (1 : 1000; Santa
Cruz Biotechnology), anti-HO1 (1 : 1000; Abcam), anti-Bcl2
associated X (Bax, 1 : 1000; Santa Cruz Biotechnology), anti-
phospho 5′-adenosine monophosphate-activated protein
kinase (pAMPK; 1 : 1000; Cell Signaling, MA, USA), anti-
AMPK (1 : 1000; Cell Signaling), and anti-phospho mamma-
lian target of rapamycin (mTOR; 1 : 1000; Cell Signaling).
Anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH;
1 : 1000; Santa Cruz Biotechnology) was used to control for
protein loading. Peroxidase-conjugated secondary antibodies
were purchased from Santa Cruz Biotechnology.

2.3. GSS Treatment. GSS (1 g/kg, p.o.) was administered once
a day for 6 weeks, starting from 2 months of age (presymp-
tomatic stage). As a control, the same volume of distilled
water was administered orally in both the Non-Tg and the
Tg groups, following the same time schedule as for GSS.

2.4. Western Blotting. At the day after the last administration
of GSS, we sacrificed the mice and collected the spinal cord
tissues. Mice were anesthetized with an intraperitoneal injec-
tion of pentobarbital (2.5mg/g) and perfused with
phosphate-buffered saline (PBS). The lumbar spinal cord
(L4-L5) of each mouse was dissected and homogenized in
RIPA buffer (50mM Tris-HCl, pH7.4; 1% NP-40; 0.1%
SDS; 150mM NaCl) containing a protease inhibitor cocktail
(Calbiochem, CA, USA). Homogenized tissues were centri-
fuged at 14,000 rpm for 15min at 4°C, and the supernatants
were kept for further analysis. The protein concentration
was determined using the BCA assay kit (Pierce, IL, USA).
The samples were denatured with sodium dodecyl sulfate
sampling buffer, separated through SDS-PAGE electrophore-
sis, and transferred to a PVDF membrane (Bio-Rad, CA,
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USA). For the detection of target proteins, membranes were
blocked with 5% nonfat milk in TBS (50mM Tris-HCl,
pH7.6, 150mM NaCl), incubated first with the various pri-
mary antibodies and then with horseradish peroxidase-
conjugated secondary antibodies, and finally visualized using
the SuperSignal West Femto Substrate Maximum Sensitivity
Substrate (Thermo Fisher Scientific, WI, USA). The Chemi-
Doc imaging system was used to detect the immunoreactive
bands (Bio-Rad, CA, USA), which were then quantified by
using the NIH ImageJ program.

2.5. Statistical Analysis. All data were analyzed using Graph-
Pad Prism 5.0 (GraphPad Software, CA, USA) and presented
as the mean± standard error of the mean (SEM). Western
blot results were analyzed using one-way analysis of
variance (ANOVA), followed by Newman-Keuls’ post hoc
tests for multiple comparisons. Statistical significance was
set at p < 0 05.

3. Results

3.1. GSS Attenuates Neuronal Loss in the Spinal Cord of
hSOD1G93A Tg Mice. To determine whether GSS administra-
tion affects neuronal cell death and neuroinflammation, we
collected the L4-L5 spinal cord region of Non-Tg, Tg, and
Tg+GSS mice and performed Western blot analysis for var-
ious markers. The SMN protein is ubiquitously expressed
throughout the body but is enriched in spinal cord motor
neurons [29, 30]. We found that the expression of SMN32
was significantly lower (4.5-fold) in Tg than in Non-Tg mice,
while treatment of Tg mice with GSS significantly attenuated
neuronal loss by 3.6-fold (Figure 1). To examine the effects of
GSS treatment on microglial and astrocytic activation in the
spinal cord of hSOD1G93A Tg mice, we analyzed the

expression of Iba-1, CD11b, and GFAP by Western blotting.
As shown in Figure 1, the levels of Iba-1 and GFAP were sig-
nificantly lower (1.9- and 1.6-fold, resp.) in the spinal cord of
Tg mice treated with GSS than in untreated Tg mice.

3.2. GSS Inhibits TLR4 Signaling-Related Proteins in the
Spinal Cord of hSOD1G93A Tg Mice. It is known that GSS
ameliorates systemic circulation and energy production
[21]. In order to determine the effects of GSS administration
in the innate immune responses of ALS mice, we examined
the expression of immune system-related proteins, like
TLR4, CD14, andCOX2.As shown in Figure 2, the expression
of TLR4, CD14, and COX2 dramatically increased by 2.4-,
1.8-, and 4.6-fold, respectively, in Tg versus Non-Tg mice.
In contrast, GSS administration significantly reduced the
expression of these three proteins by 1.8-, 1.5-, and 1.5-fold,
respectively, in Tg mice compared with untreated Tg mice.

3.3. GSS Decreases Oxidative Stress-Related Proteins in the
Spinal Cord of hSOD1G93A Tg Mice. Oxidative stress plays a
key role in motor neuron injury and consists of a thera-
peutic target in ALS [31]. To evaluate the effects of GSS
administration on oxidative stress in the spinal cord of
hSOD1G93A Tg mice, we examined the expression of trans-
ferrin, as a measure of free iron, and HO-1. As shown in
Figure 3, transferrin expression was reduced by 2.1-fold in
the spinal cord of hSOD1G93A Tg mice after GSS adminis-
tration. The expression of HO-1 was also significantly
decreased by 1.6-fold. Kirkland et al. demonstrated that
Bax induces oxidative stress, which is critical for cytochrome
C release during programmed neuronal cell death [32]. To
demonstrate the effect of GSS on cell death, we investigated
the expression of Bax in the spinal cord of hSOD1G93A Tg
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Figure 1: GSS administration increases motor neuron survival and modulates inflammation in the spinal cord of hSOD1G93A transgenic (Tg)
mice. (a) Representative Western blot showing the expression of SMN (marker of motor neurons), Iba-1 or CD11b (microglia activation
markers), and GFAP (astrocyte activation marker) in the spinal cord of control (Non-Tg), hSOD1G93A Tg, and Tg mice treated with GSS
(Tg +GSS). GAPDH was used as a loading control. (b) Quantitative analysis of the normalized levels of SMN, Iba-1, GFAP, and CD11b
against GAPDH. Data represent the means± SEM (n = 4) and were evaluated by one-way ANOVA and Newman-Keuls’ post hoc test. ∗p
< 0 05 and ∗∗p < 0 01.
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mice. We found that Bax levels significantly decreased by 1.6-
fold after GSS treatment (Figure 3).

3.4. GSS Administration Regulates Energy Metabolism in the
Spinal Cord of hSOD1G93A Tg Mice. Perera and Turner
reported that metabolic homeostasis is important in ALS,
suggesting that regulatory factors of energy metabolism can
be candidates in the development of a drug for ALS treatment
[33]. To investigate the effects of GSS on spinal cord energy
metabolism in hSOD1G93A Tg mice, we examined the expres-
sion of metabolism-related proteins, including pAMPK and
pmTOR. We found that the levels of pAMPK were signifi-
cantly lower (2.6-fold), whereas the levels of pmTOR were
1.5-fold lower in the spinal cord of GSS-treated than of
untreated Tg mice (Figure 4).

4. Discussion

This study demonstrated that the administration of GSS
inhibits neuronal cell death and neuroinflammation, as well
as oxidative stress, in the spinal cord of hSOD1G93A Tg mice.
In addition, it reduces the immune response and regulates
the defective energy metabolism, observed in these Tg mice.

ALS is an adult-onset neurodegenerative disease that
specifically affects motor neurons, thus causing cell death.
Approximately 5–10% of patients are diagnosed with
familial ALS, caused by mutations in various genes,
including SOD1, fused in sarcoma, TAR DNA-binding
protein, and dynactin subunit 1; patients with sporadic ALS

constitute approximately 90% of the cases, while the causes
for this form of ALS have not been defined.

Although several pathological mechanisms have been
identified and many therapies have been suggested for the
treatment of ALS, only two drugs (riluzole and edaravone)
have been approved so far by the Food and Drug Administra-
tion, albeit with no significant results regarding disease pro-
gression [20, 34]. Therefore, the development of effective
treatments is essential for improving the life quality and
expectancy of patients with ALS. GSS is a traditional herbal
prescription comprising 12 different ingredients and has
been used in Asia to treat dysmenorrhea, insomnia, and anx-
iety [21]. Most of its components have been shown to have
anti-inflammatory effects [27].

A major characteristic of ALS pathogenesis is the neuro-
inflammation caused by reactive astrocytes and microglia,
leading to motor neuron death. mSOD1 deletion in astro-
cytes and microglia of hSOD1G93A mice has been shown to
prolong survival [13, 35]. In addition, T lymphocytes play a
neuroprotective role by modulating inflammation in
hSOD1G93A mice [36]. We have previously demonstrated
the higher expression of Iba-1 and GFAP, as well as of proin-
flammatory cytokines in the spinal cord of symptomatic
hSOD1G93A mice [37].

Lee et al. have demonstrated that TLR4 signaling contrib-
utes to the reduction of microglia and astrocytes, thus leading
to the extension of the life span of hSOD1G93A mice [38].
TLR4 signaling in nonneuronal cells induces NF-κB activa-
tion and triggers inflammatory mediators (such as IL-1β,
TNF-a, and COX-2) and reactive oxygen species [39]. In

CD14

TLR4

GAPDH

COX-2

GSS

TgNon-Tg

−

Tg

− +

(a)

Non-Tg

Ex
pr

es
sio

n 
of

TL
R4

/G
A

PD
H

Ex
pr

es
sio

n 
of

CO
X-

2/
G

A
PD

H

Ex
pr

es
sio

n 
of

CD
14

/G
A

PD
H

Tg Tg + GSS
0

1

2

3

⁎ ⁎

Non-Tg Tg Tg + GSS
0.0

0.5

1.0

1.5

2.0
⁎⁎⁎ ⁎⁎⁎

Non-Tg Tg Tg + GSS
0

2

4

6
⁎⁎⁎ ⁎

(b)

Figure 2: GSS administration downregulates TLR4 signaling-related proteins in the spinal cord of hSOD1G93A transgenic mice. (a)
Representative Western blot images displaying the protein levels of TLR4, CD14, and COX2 in the spinal cord of control (Non-Tg),
hSOD1G93A transgenic (Tg), and Tg mice treated with GSS (Tg +GSS). GAPDH was used as a loading control. (b) Quantitative analysis of
the normalized levels of TLR4, CD14, and COX2 over GAPDH. The data shown are the means± SEM (n = 4) and were evaluated by one-
way ANOVA and Newman-Keuls’ post hoc test. ∗p < 0 05 and ∗∗∗p < 0 001.
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addition, Zhao et al. reported that binding of mSOD1 to
CD14, a co-receptor of TLR4, causes microglial activation
[40]. Furthermore, inhibition of TLR4 downstream signaling
via interaction with the TLR4-CD14 receptor complex pre-
vents the neuroinflammation-induced neurodegeneration in
an animal model of AD [41]. Therefore, blocking of TLR4
signaling could be helpful in reducing neuroinflammation
in neurodegenerative diseases. Our experiments showed that
GSS treatment attenuates neuronal death via inhibition of
TLR4 signaling effectors. This suggests that GSS could be
useful in preventing the neuroinflammation observed in
motor neuron diseases.

Protein oxidation, nitration, carbonylation, and lipid
peroxidation are suggestive of oxidative stress and have
been detected in both neurons and glial cells of patients
with ALS and the respective animal models. Moreover,
they have been shown to correlate to disease progression
[42–44]. Oxidative stress increases ROS production, thus
leading to the accumulation of abnormal protein inclu-
sions and neuroinflammatory events. Nicotinamide ade-
nine dinucleotide phosphate-oxidase 2 (NOX2), one of
the major ROS generators in the CNS, is activated in
microglia and has been shown to cause neuronal toxicity
in both familial and sporadic ALS [45]. In the ALS mouse
model, NOX2 inhibition was reported to delay disease
progression and prolong survival [46, 47]. Furthermore,
ROS production is known to recruit the inflammasome,
thus inducing the release of the cytokines IL-1b and IL-
18 and of inflammatory and neurotoxic molecules,

including COX-2 and iNOS, by microglia [48]. Moreover,
oxidative stress is related to impaired iron homeostasis,
involving ferritin and transferrin, thus contributing to
motor neuron degeneration in ALS [49, 50]. Transferrin
mediates iron internalization into cells, whereas ferritin is
an intracellular iron-binding protein. Both proteins are
regulated by the intracellular iron concentration, via the
iron-responsive element/iron regulatory protein system.
Hadzhieva et al. demonstrated that ROS increases iron
concentration, as well as the expression of the transferrin
receptor in the spinal cord of hSOD1G93A mice [51]. In
our previous study, we confirmed that transferrin expres-
sion is increased in the spinal cord of these mice [52].
In the present study, we showed that GSS treatment
reduces the expression of HO-1 and transferrin in the spi-
nal cord of symptomatic Tg mice. These data suggest that
GSS treatment may alleviate the metabolic dysfunction
observed in these mice.

In patients with ALS, energy metabolism is dysregulated
by hypermetabolism and abnormal metabolism of lipids,
which contribute to disease progression [53, 54]. In general,
neurons secrete glutamate into the synaptic cleft, which is
taken up by astrocytes, a process known as metabolic cou-
pling. However, several research groups have reported the
loss of glutamate transporters in spinal cord and brain astro-
cytes of patients with ALS, as well as excitotoxicity,
induced by deficiencies in the glutamate uptake cycle
[55–57]. In addition, astrocyte-neuron lactate dysregula-
tion by the astrocytic lactate efflux transporter
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Figure 3: GSS treatment reduces oxidative stress in the spinal cord of hSOD1G93A transgenic (Tg) mice. (a) Representative images showing
the expression levels of transferrin, HO-1, and Bax in the spinal cord of control (Non-Tg), hSOD1G93A Tg, and GSS-treated Tg mice
(Tg +GSS). GAPDH was used to control for protein loading. (b) Quantification of the expression of transferrin, HO-1, and Bax. Data
were normalized to GAPDH and represent the means± SEM (n = 4). Statistical assessment was performed by one-way ANOVA and
Newman-Keuls’ post hoc test. ∗p < 0 05, ∗∗p < 0 01, and ∗∗∗p < 0 001.
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(monocarboxylate transporter 4, SLC16A4) results in the
reduction of lactate levels in the spinal cord of hSOD1G93A

mice [58]. These findings imply that metabolic dysfunc-
tions between neurons and astrocytes contribute to the
energy metabolism dysfunction observed in the CNS of
ALS animal models. As part of the CNS energy metabolism,
the AMPK signaling pathway plays a role in the
maintenance of energy homeostasis and pathophysiological
states [59, 60]. Studies on ALS animal models have revealed
that AMPK is activated in the spinal cord and motor
neurons and causes the disease onset, consistent with the
energy dysregulation and hypermetabolism seen in ALS
[61–63]. In our study, GSS administration reduced the
activation of AMPK and mTOR in the spinal cord of
symptomatic Tg mice. These findings suggest that GSS
could be used for reducing the hypermetabolism observed
in ALS, by regulating AMPK-related metabolic signaling.
AMPK activation is also associated with the mislocalization
of human antigen R, mRNA stabilization, and cellular stress
granules; however, further studies are required for
investigating whether GSS could regulate RNA homeostasis.

Altogether, this study demonstrates that GSS is an effec-
tive treatment against neuroinflammation, oxidative stress,
and metabolic dysfunction observed in the symptomatic
ALS animal model. GSS treatment increases motor neuron
survival, attenuates the activation of microglia and astrocytes,
and inhibits neuroinflammation via inhibition of the TLR4
signaling pathway.

5. Conclusions

Since this study focused specifically on the examination of
GSS effects on neuroinflammation, oxidative stress, and
metabolism, further studies on motor activity, disease onset,
and survival in the symptomatic ALS animal model are
necessary. In addition, the bioactive compound in GSS and
the molecular mechanisms of its actions need to be
determined, before using this medication for the treatment
of ALS patients.
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Figure 4: GSS modulates energy metabolism-related proteins in the spinal cord of hSOD1G93A transgenic (Tg) mice. (a) Representative
Western blots showing the expression of pAMPK, AMPK, pmTOR, and mTOR in the spinal cord of control (Non-Tg), hSOD1G93A Tg,
and GSS-treated Tg mice (Tg +GSS) mice. GAPDH was used to control for protein loading. (b) Quantification of the ratio of pAMPK/
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