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Abstract
Objectives  Functional connectivity (FC) is increasingly used as target for neuromodulation and enhancement of perfor-
mance. A reliable assessment of FC with electroencephalography (EEG) currently requires a laboratory environment with 
high-density montages and a long preparation time. This study investigated the feasibility of reconstructing source FC with 
a low-density EEG montage towards a usage in real life applications.
Methods  Source FC was reconstructed with inverse solutions and quantified as node degree of absolute imaginary coher-
ence in alpha frequencies. We used simulated coherent point sources as well as two real datasets to investigate the impact of 
electrode density (19 vs. 128 electrodes) and usage of template vs. individual MRI-based head models on localization accu-
racy. In addition, we checked whether low-density EEG is able to capture inter-individual variations in coherence strength.
Results  In numerical simulations as well as real data, a reduction of the number of electrodes led to less reliable reconstruc-
tions of coherent sources and of coupling strength. Yet, when comparing different approaches to reconstructing FC from 
19 electrodes, source FC obtained with beamformers outperformed sensor FC, FC computed after independent component 
analysis, and source FC obtained with sLORETA. In particular, only source FC based on beamformers was able to capture 
neural correlates of motor behavior.
Conclusion  Reconstructions of FC from low-density EEG is challenging, but may be feasible when using source reconstruc-
tions with beamformers.
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Introduction

Interregional neural communication is thought to be accom-
panied by a synchronization of oscillations between differ-
ent brain regions (Aertsen et al. 1989; Varela et al. 2001). 
This interregional synchronization can be quantified with 
the concept of “functional connectivity” (FC) which is a 
measure of statistical dependency between activity in dif-
ferent brain regions and is therefore considered to be an 
index of functional interaction (Nunez et al. 1997; Varela 

et al. 2001; Nolte et al. 2004). FC magnitude computed 
from fMRI was found to correlate with performance, e.g., 
with reading competency, executive function, and episodic 
memory capacity (Wang et al. 2010; Koyama et al. 2011; 
Reineberg et al. 2015). fMRI-FC was also associated with 
motor performance in a sit-to-stand-to-sit task in low back 
pain patients (Pijnenburg et al. 2015). In electroencepha-
lography (EEG), neural assemblies spontaneously produce 
prominent oscillations at a frequency of about 8 to 12 cycles 
per second even when the recorded subjects are at rest (Hin-
driks et al. 2014), which is also the preferred frequency for 
interregional communication (Chapeton et al. 2019). Alpha-
band FC between a brain area and the rest of the brain (i.e., 
the node degree of a brain area) correlates with behavio-
ral performance in healthy participants (Guggisberg et al. 
2015), and with neurological deficits in patients (Dubovik 
et al. 2012). For instance, the more spontaneous alpha activ-
ity in Broca’s area is coherent with the rest of the brain, the 
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better subjects are able to produce words. Recent findings 
have demonstrated that spontaneous FC in the alpha band 
enables particularly high performance and is thus a better 
predictor of performance than classical task-induced activa-
tions (Allaman et al. 2020).

Thus, FC is increasingly used as marker to probe for novel 
disease biomarkers (Fox and Greicius 2010) or predictors of 
outcome (Westlake et al. 2012; Nicolo et al. 2015). Further-
more, it has become a target for new treatment approaches 
aiming at enhancing performance or reducing neurological 
deficits. Patients were able to improve their motor function 
when asked to enhance the FC in their motor cortex; which 
was not the case when a non-related brain area was trained 
(Mottaz et al. 2018). However, the setup of a neurofeed-
back as performed in a laboratory is time-consuming and 
tiring for the patients. Not only it requires individual head 
models based on magnetic resonance imaging (MRI), but 
also high-density electroencephalography (hd-EEG). Such 
installation is hardly feasible in routine clinical practice or 
at a larger scale.

For end-users and patients to use EEG in clinical settings, 
the montage must be user-friendly and easily set up. One 
solution is to reduce the number of channels, which reduces 
the setup time and makes the entire EEG installation more 
mobile. Motor-disabled patients have successfully used low-
density EEG for brain-computer interface (BCI) tasks (Leeb 
et al. 2013). In clinical practice, low-density EEG is already 
part of standard practice. For diagnosis purposes, 9 to 21 
electrodes are used in epileptology (Koutroumanidis et al. 
2017; Rossetti et al. 2012; Wilmshurst et al. 2015).

However, reducing the number of electrodes is more 
delicate when the aim is to reconstruct FC. The electro-
magnetic potential spreads throughout the brain because of 
volume conduction and is thus received to some degree by 
all sensors. This leads to a mix of signals from multiple 
brain areas at each electrode, which makes the targeting of 
a given brain lobe of interest difficult. Furthermore, volume 
conduction induces a massive overestimation and distortion 
of FC (Srinivasan 2007; Schoffelen and Gross 2009). The 
computation of inverse solutions allows to partially revert 
volume conduction and obtain the signal at the source. This 
gives access to signals at regions of interest and reduces 
volume conduction issues in the computation of FC. Yet, 
the usage of inverse solutions usually requires a good spatial 
sampling and thus hd-EEG recordings (Michel et al. 2004).

This study aimed to evaluate the feasibility of using 
a low-density EEG (with 19 channels) for reconstructing 
FC markers of performance and disability in the exam-
ple of motor performance. Reducing the number of chan-
nels would reduce the time spent on the installation, de-
installation, maintenance, and care of the participant and 
the whole equipment. If feasible, we could then make 
FC markers and treatment targets accessible to clinical 

practice. To this end, we will need to satisfy two main 
requirements. First, we need to be able to capture vari-
ance in FC magnitude, such that periods or subjects having 
lower neural coupling show proportionally lower values of 
reconstructed FC. Second, we need to have some fidelity in 
localization accuracy such that neural coupling at a target 
brain area is correctly captured.

We compared different technical approaches to the prob-
lem. Mixed signals captured by average and Laplacian re-
referenced (McFarland et al. 1997) electrodes were used 
to compute sensor FC. To obtain unmixed signals we used 
inverse solutions (Pascual-Marqui 2002; Sekihara et al. 
2004) and independent component analyses (ICA), which 
allowed computing FC between sources or independent 
components, respectively. Each of these approaches was 
then evaluated with regards to localization error and with 
regards to the correlation of reconstructed FC magnitude 
with behavior. This was first done with numerical simula-
tions and then tested in different real datasets.

Materials and Methods

Datasets

The study comprised 3 datasets.

Dataset 1 :  70 healthy subjects (45 women, 
37.9 ± 17.6  years old) underwent resting-state EEG 
recording with a 128 channel Biosemi ActiveTwo EEG-
system (Biosemi B.V., Amsterdam, Netherlands).
Dataset 2:  20 healthy subjects (13 women; 
28.7 ± 5.6 years old) underwent resting-state EEG record-
ing with a 128 channel Biosemi ActiveTwo EEG-system 
and behavioral assessment of motor performance with a 
finger-tapping task. All had a normal or corrected-to-nor-
mal vision and no history of neurological or psychiatric 
disorders and were paid for their participation.
Dataset 3 :  20 healthy subjects (17 women, 
25.5 ± 5.4 years old) underwent resting-state EEG record-
ing with a 20 channel Enobio system with dry-gel elec-
trodes (neuroelectrics, Barcelona) and behavioral assess-
ment of motor performance with a finger-tapping task. 
All had a normal or corrected-to-normal vision and no 
history of neurological or psychiatric disorders and were 
paid for their participation.

All procedures were approved by the ethical committee of 
the canton of Geneva and performed according to the dec-
laration of Helsinki. All participants gave written informed 
consent after receiving an explanation on the nature of the 
experiments.
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Behavioral Assessments

Participants of dataset 2 and 3 performed a sequential finger-
tapping task (FTT) (Zhang et al. 2012) immediately after 
the resting-state EEG recording. The task was designed 
using E-Prime 2.0 software (Psychology Software Tools, 
Pittsburgh, PA). Participants were instructed to repeat a 
given five-item sequence with their left hand (little finger to 
index) on four horizontally arranged buttons numbered left 
to right on a Chronos box (Psychology Software Tools, Pitts-
burgh, PA; https://​pstnet.​com/​produ​cts/​chron​os/). The same 
sequence was used throughout the whole experiment (1-4-
2-3-1). It was continuously presented to participants while 
they had to perform it. They had to repeat the sequence as 
fast and accurately as possible during two blocks of 30 s. No 
feedback was given. Motor performance was quantified as 
the average number of correct motor sequences per minute.

Recordings

EEG was recorded with a 128-channel Biosemi ActiveTwo 
EEG-system using active gel electrodes (Biosemi B.V., 
Amsterdam, Netherlands) at a sampling rate of 512 Hz in 
datasets 1 and 2, or with a 20-channel Enobio system using 
dry-gel electrodes (neuroelectrics, Barcelona) at 500 Hz 
in dataset 4 in an awake, resting condition during which 
subjects kept their eyes closed. Artifacts and data segments 
with signs of drowsiness were excluded by visual inspec-
tion of the data. Electrodes containing artifacts persistent 
across multiple epochs were excluded. These electrodes 
were interpolated from neighboring electrodes using a 3D 

spline interpolation (< 5% interpolated electrodes) (Perrin 
et al. 1987) for analyses of sensor FC and for source recon-
structions with standardized low-resolution electromagnetic 
tomography (sLORETA), but not for source reconstruction 
with beamformers.

The 19 electrodes followed the positions of the interna-
tional 10–20 system. In datasets 1 and 2, they were selected 
from the full 128 montage. For comparison, sensor FC was 
also computed from sensor data with an average reference 
and a small Laplacian reference of each electrode.

The EEG was segmented into 300 non-overlapping, 
artifact-free epochs of 1 s duration and bandpass-filtered 
between 1 and 20 Hz.

Figure 1 gives a schematic overview of the different 
analysis steps that were taken in order to reconstruct FC in 
real data from low-density recordings, as compared to the 
high-density montages as gold standard.

Source Localization

For individual MRI-based head models, the MRI proto-
col contained a high-resolution T1-weighted, 3-D spoiled 
gradient-recalled echo in a steady state sequence cover-
ing the whole skull (192 coronal slices, 1.1 mm thickness, 
TR = 2500 ms, TE = 3 ms, flip angle = 8°).

Each subject’s brain was segmented into scalp, skull, grey 
and white matter with NUTMEG (http://​nutmeg.​berke​ley.​
edu) (Dalal et al. 2011) and the toolbox MARS (https://​www.​
parra​lab.​org/​mars/) (Huang and Parra 2015).

We computed the lead-potential with 10 mm grid spac-
ing (~ 1200 solution points) using a boundary element head 

Fig. 1   Schematic overview of analysis setups. High-density montages 
with 128 electrodes were compared to low-density subsets or sys-
tems with 19 electrodes, according to the international 10–20 stand-
ards. Unmixing of electrode signals was performed with either source 
localization or independent component analysis (ICA) and compared 

to the performance obtained without unmixing. MVBF minimum 
variance beamformer, sLORETA standardized low-resolution elec-
tromagnetic tomography, ICA independent component analysis, FC 
functional connectivity

https://pstnet.com/products/chronos/
http://nutmeg.berkeley.edu
http://nutmeg.berkeley.edu
https://www.parralab.org/mars/
https://www.parralab.org/mars/
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model (BEM). The BEM was created with the Helsinki BEM 
library (http://​peili.​hut.​fi/​BEM/) (Stenroos et al. 2007) and 
the NUTEEG plugin of NUTMEG, based on the individual 
T1 MRI of each subject as well as based on the Montreal 
Neurological Institute template brain.

Source FC was calculated in Matlab (The MathWorks 
Inc., Natick, USA) with NUTMEG (http://​nutmeg.​berke​ley.​
edu) (Dalal et al. 2011) and its functional connectivity map-
ping (FCM) toolbox (Guggisberg et al. 2011).

Most previous studies reporting correlations between 
alpha-band FC and behavior, and previous trials using neu-
rofeedback to train alpha-band FC were based on source 
reconstructions of hd-EEG arrays with beamformers (Dubo-
vik et al. 2012; Guggisberg et al. 2015; Mottaz et al. 2015, 
2018). Thus, we used the same approach here as a reference 
for comparison with other approaches. A scalar minimum 
variance beamformer (MVBF) was used to project preproc-
essed hd-EEG data to source space (Sekihara et al. 2004).

The MVBF uses the temporal covariance of the EEG 
data (in addition to the sensor geometry) to create a custom 
spatial filter depending on the signal characteristics. This 
enables more precise and focal source localization (Seki-
hara et al. 2005). However, beamformers are sensitive to the 
accuracy of the head model; measured data that is incon-
sistent with the head model is liable to be rejected as noise 
(Steinsträter et al. 2010). We thus compared beamformers 
to standardized low-resolution electromagnetic tomography 
(sLORETA) (Pascual-Marqui 2002) as a widely used inverse 
solution that does not have these limitations of beamformers. 
On the downside, it enables less focal reconstructions (Seki-
hara et al. 2005) and thus is likely to induce more spatial 
leakage of the reconstructed sources.

Dipole Orientation

For the localization of FC in the brain, we require an estima-
tion of neural network oscillations at each solution point. 
Vector weights obtained from the inverse solution allow only 
reconstructing squared power values; the reconstruction of 
neural oscillations requires a scalar weight matrix. In order 
to scalarize the lead-potential as input to scalar weights com-
putation, we need to determine the dipole orientation at each 
grid location. We computed the optimal dipole orientation 
at each solution point as the orientation yielding maximum 
output signal-to-noise ratio (SNR). For the MVBF, the opti-
mum orientation at each solution point v is given by (Seki-
hara et al. 2004):

where vmin is the eigenvector corresponding to the minimum 
eigenvalue of the matrix in {}, L is the vector lead-potential, 
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R the sensor covariance matrix, and superscript T denotes 
the matrix transpose.

For sLORETA, it is obtained as (Pascual-Marqui et al. 
2009):

where vmax is the eigenvector corresponding to the maximum 
generalized eigenvalue, and G the gram matrix defined as 
LLT.

The scalar lead-potential was then calculated as:

Independent Component Analysis (ICA)

EEG electrodes carry information from multiple brain 
sources that are mixed together. One approach to unmix 
these signals is independent component analysis (Hyvarinen 
1999; Reineberg et al. 2015). Average referenced sensor time 
series with 19 channels of all subjects were normalized to 
common amplitude and variance using z-scores, concat-
enated in the time dimension, and subjected to a FastICA 
algorithm (Hyvarinen 1999) with the FastICA package for 
MATLAB (https://​resea​rch.​ics.​aalto.​fi/​ica/​fasti​ca/). Default 
parameters were used. This led to 19 independent compo-
nents. The unmixing matrix obtained from all subjects was 
then applied to the sensor data of each subject.

Functional Connectivity (FC)

We used the absolute imaginary component of coherence 
(IC) as an index of FC (Nolte et al. 2004; Sekihara et al. 
2011). One FC value was obtained from all 300 epochs of 
data. For sensor FC, it was computed directly between the 
preprocessed and filtered EEG sensor data. For ICA data, IC 
was computed between independent components. For source 
FC, we used the source time series estimated with inverse 
solutions. From this, we calculated the weighted node degree 
(WND) for each voxel, component, or electrode as the mean 
of its coherence with all other voxels/components/electrodes 
(Newman 2004). The WND can been as index of the overall 
importance of a brain area in the network.

FC values can be influenced by the signal-to-noise ratio 
of the EEG. To minimize this potential confound, we nor-
malized WND values at each voxel by subtracting the mean 
WND across all voxels and then dividing by the standard 
deviation of all voxels, thus obtaining z-scores (Dubovik 
et al. 2012; Mottaz et al. 2015).

In case of individual head models, normalized WND val-
ues were spatially normalized to canonical Montreal Neu-
rological Institute space with functions from the Matlab 
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toolbox SPM8 (https://​www.​fil.​ion.​ucl.​ac.​uk/​spm/​softw​are/​
spm8/).

Regions, Independent Components, and Electrodes 
of Interest

For correlations between source FC and visuo-motor behav-
ior, we defined the right (i.e. contralateral to the moved 
hand) Precentral gyrus as region of interest (ROI) using 
the automated anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al. 2002). ROI values were obtained as the aver-
age WND across its containing voxels. For sensor FC, elec-
trode C4 was analyzed. For ICA processed data, we defined 
an independent component of interest. For this, we corre-
lated source time series obtained with the full EEG array, 
individual head models, and MVBF with the time series of 
each independent component. The independent component 
whose time series correlated positively with source time 
series at the right sensorimotor cortex was used for further 
analysis.

Statistical Analyses

To investigate the fidelity of source reconstructions with 
template head models and with low-density EEG arrays, 
we correlated normalized WND values obtained with indi-
vidual MRI-based head models and 128 channel data (gold 
standard) to normalized WND values obtained with template 
head models using 128 or 19 electrodes. Pearson correlation 
coefficients were computed over all 82 cortical ROIs of the 
AAL atlas for each of the 70 subjects of dataset 1, i.e., the 
normalized WND values of the gold standard at all ROIs 
were correlated with the values of the test setup at all ROIs. 
Fisher-Z transformed correlation coefficients of all subjects 
were then fed to a one-way ANOVA with the analysis setup 
as a dependent factor. Pairwise post-hoc comparisons were 
done with the Tukey–Kramer HSD correction.

For comparison between sensor and source FC, we 
matched each of the 19 electrodes of the international 10–20 
system to the ROI that had the shortest Euclidean distance 
from the electrode’s position. Source normalized WND 
obtained from 19 electrodes at these ROIs as well as sen-
sor normalized WND obtained from 19 average-referenced 
or Laplacian-referenced electrodes was then correlated to 
the normalized WND values obtained with individual MRI-
based head models and 128 channel data.

We also correlated source FC at the right precentral gyrus 
obtained with template head models and 19 electrodes to the 
source FC obtained with the gold standard, since this was 
our ROI for motor behavior. This time, the correlation was 
done over subjects.

Next, we investigated the ability of low-density EEG 
arrays to capture associations with behavioral performance. 

Pearson correlation coefficients were computed for associa-
tions between alpha-band FC and FTT performance in sub-
jects of datasets 2 and 3. This was done for the precentral 
ROI, C4 electrode, and the independent component of inter-
est. The correlation obtained with the gold standard (indi-
vidual MRI-based head models, 128 channel data, MVBF) 
was juxtaposed to the correlation coefficients obtained with 
19 channels using either source localization, sensor FC, or 
FC between independent components.

To check the feasibility of obtaining FC using even 
more convenient dry-gel electrodes, we then used data 
from patients in dataset 3 to correlate source FC with FTT 
performance.

Numerical Simulations

For 38 randomly selected subjects of dataset 1, we simulated 
3 cortical point sources with a 10 Hz sinusoidal rhythm. The 
main source of interest was placed to the center of the right 
primary motor cortex. Two additional sources with 10 Hz 
oscillation were defined at the left primary motor cortex and 
the right premotor area. They had a radial phase lag of π/2 
(= 25 ms) or − π/2, respectively, relative to the first point 
source. This phase difference leads to maximal values in 
the imaginary part of coherence, while the lag of π between 
sources 2 and 3 produce 0 imaginary coherence. The dipole 
orientations were fixed to point in a random orientation at 
each location. In addition, to test whether our settings are 
able to capture variance in coupling strength across subjects, 
we additionally simulated variance in coupling strength 
between point source 1 and point sources 2/3. This was 
achieved by simulating alpha activity in only 60% of the 300 
epochs. The number of epochs with alpha activity at both 
source 1 and sources 2/3 at the same time (i.e., with coher-
ent alpha activity) was then varied across subjects between 
a minimum of 57% and maximum of 100% of alpha epochs. 
Thus, the remaining epochs contained alpha activity either 
only at source 1 or only at sources 2/3. The cortical sources 
were then projected to the EEG sensors by using a scalar 
lead-potential calculated with a BEM head model based on 
individual MRIs. Four different levels of Gaussian random 
noise were added to the sensors (SNRs of 1, 2, 3, or 5). A 
total of 300 epochs of 1 s were created in this way to obtain 
the same data size as in real data. The simulated sensor data 
was then processed as the real data: it was bandpass filtered 
between 1 and 20 Hz, and projected back to all gray matter 
grid locations through a spatial filter matrix calculated with 
the MVBF and sLORETA inverse solutions described above. 
The WND of IC was computed at all cortical grid locations 
for the alpha frequency band as in the real data.

The Euclidean distance between the WND peak and the 
coordinate of source 1 was then calculated to determine 
the localization error. Errors were subjected to a three-way 

https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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ANOVA with the setup (head model and number of chan-
nels), inverse solution, and SNR as dependent factors.

The coupling strength that was simulated was correlated 
with the magnitude of WND. Correlation coefficients were 
tested for difference between setups using Meng’s test for 
correlated correlations (Meng et al. 1992).

Results

Numerical Simulations

In simulations, we observed that the localization accuracy 
was significantly better when using MVBF than sLORETA 
at all SNRs (F1,911 = 351, p < 0.0001), in accordance with 
previous findings from high-density settings (Guggisberg 
et al. 2011). Furthermore, localization error was significantly 
influenced by the montage and head model (F2,911 = 85, 
p < 0.0001) with a rapid drop in localization accuracy 
when using a template head model and low density mon-
tages in MVBF. When using sLORETA, the accuracy was 
low already with MRI head models and 128 channels, but 
remained stable when using 19 electrodes and a template 
head model (Fig. 2A). The SNR of simulations did not sig-
nificantly influence localization accuracy (p = 0.36).

All setups were able to capture the simulated variation 
in coupling strength, as indicated by a significant correla-
tion between the simulated coupling and the computed FC 
(Fig. 2B). There was significant variation of the correlation 

coefficient between setups (χ2 = 64, p < 0.0001), but the cor-
relation coefficient obtained with sLORETA and 19 elec-
trodes did not significantly differ from the one obtained with 
MVBF and 19 electrodes (z = − 1.4, p = 0.92).

Real Data

When using MVBF to compute source FC, the usage of tem-
plate head models led to only minor changes in the recon-
structed FC across 82 cortical ROIs as indicated by high 
correlations to FC values obtained with individual MRI-
based head models in individual subjects (r = 0.85 ± 0.03), 
see Fig. 3A. Conversely, MVBF was vulnerable to the usage 
of low density montages as indicated by lower correlations 
to the gold standard (r = 0.30 ± 0.38). Source FC obtained 
with sLORETA differed to those obtained with MVBF, 
even when using 128 electrodes and individual headmodels. 
Pearson correlations of ROI WND values in each subject 
revealed relatively low correlation coefficients on average 
(r = 0.35 ± 0.33). On the other hand, sLORETA was robust to 
reduction of the number of electrodes. Source FC obtained 
with sLORETA and 19 channels was similar to source FC 
obtained with an individual MRI-based headmodel and 
sLORETA (r = 0.73 ± 0.09), while the correlation with the 
MVBF gold standard (r = 0.30 ± 0.31) was similar as when 
obtained with 128 electrodes.

When focusing on the right Precentral ROI which 
was of primary interest here in the search for FC corre-
lates of motor performance, we also observed a drop of 

Fig. 2   Results from simulations of 3 coherent point sources. A 
MVBF enabled better localization accuracy than sLORETA (sLOR), 
but was vulnerable to the usage of template head models and low-
density montages. When using sLORETA, the accuracy remained 
stable when using only 19 electrodes. Horizontal bars indicate sig-
nificant differences between setups (p < 0.05, Tukey Kramer HSD). 

B The magnitude of functional connectivity (FC) computed with all 
setups correlated with the simulated variations in coupling strength, 
thus confirming their ability to capture these variations. FC computed 
after source localization with sLORETA covaried better with the sim-
ulated coupling strength than FC obtained from MVBF, but showed 
vulnerability to usage of low-density montages
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FC reconstruction fidelity when using MVBF with low-
density montages, while sLORETA had a generally poor 
performance (Fig. 2B).

Sensor WND values correlated poorly with the source 
WND values at the 19 ROIs that were closest to the posi-
tions of the electrodes. Using source reconstruction with 
MVBF or sLORETA based on the same 19 electrodes yields 
significantly better fidelity of FC (Fig. 3C).

Next, we investigated the ability of low-density EEG to 
capture FC correlates of behavioral performance by com-
puting the correlation between the reconstructed WND and 
motor performance in healthy subjects of dataset 2. Source 
WND reconstructed from 128 channel data with individual 
MRI-based head models and MVBF showed high correla-
tions with motor performance at the precentral gyrus, as 
expected (Figs. 4 and 5). Using a subset of only 19 elec-
trodes and a template head model did not reduce the ability 
to capture FC correlates of motor performance when per-
forming source localization with MVBF. Conversely, this 
correlation was lost when doing source reconstruction with 
sLORETA. Similarly, sensor FC obtained without unmixing 
or FC computed between ICA were unable to reveal signifi-
cant correlates of motor performance. 

Finally, we intended to reproduce the findings of dataset 2 
in independent dataset 3, this time using a low-density EEG 
system with dry-gel electrodes which are more convenient in 
setup than regular gel electrodes. Data from 5 subjects had 
to be excluded due to abundant artifacts and only data from 
the remaining 15 subjects were further analyzed. Figure 5 
demonstrates that the correlations obtained in dataset 2 were 
not present in dataset 3, no matter the inverse solution used.

Discussion

Our findings show that it is challenging to reconstruct reli-
able estimates of FC with low-density EEG. The low den-
sity setup leads to a considerable localization error in the 
reconstructed FC when source localization is performed. 
Furthermore, analyzing sensor FC without unmixing is 

Fig. 3   Fidelity of reproduction of source FC in real data. FC recon-
structions obtained with 128 electrodes, individual MRI head mod-
els, and MVBF were used as gold standard and correlated to source 
FC obtained with other setups. A Box plot of correlation coefficients 
obtained in each subject across at all 82 cortical ROIs of the atlas. 
A drop in the average correlation coefficient occurred when using 
19 electrodes or sLORETA (sLOR). B The same drop in reconstruc-
tion fidelity could be observed when focusing on the right Precentral 

gyrus. Bars indicate the correlation coefficient across subjects. C 
Using inverse solutions with 19 electrodes allowed better reliability 
of reconstructing FC than using sensor FC without source localiza-
tion, no matter the reference. Box plots indicate the correlation coef-
ficents obtained in each subject across electrodes for sensor FC (grey 
bars) or across the 19 cortical ROIs closest to each electrode for 
source FC (green bars)

Fig. 4   Correlation between FC and motor performance as quantified 
by the number of completed sequences per minute in a finger-tapping 
task (FTT) by 20 healthy subjects. Source FC derived after source 
localization with MVBF revealed significant FC correlates of motor 
behavior, even when using only 19 electrodes. This was not the case 
for source FC obtained from sLORETA (sLOR), sensor FC, or FC 
obtained after ICA
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unable to track FC correlates of motor performance. Yet, 
when high quality recordings are available and source FC 
is computed with MVBF, correlations with motor perfor-
mance remained present even when using template head 
models and 19 electrodes, such suggesting that low-den-
sity montages may suffice in some cases for tracking FC 
as a neural correlate of behavior performance.

In accordance with the literature (Sekihara et al. 2005; 
Hadjipapas et al. 2005; Guggisberg et al. 2011), we observed 
superior localization accuracy of MVBF compared to sLO-
RETA in both simulations (Fig. 2A) and real data (Fig. 3A, 
B). This can be explained with the fact that it adapts to the 
data and with its superior handling of noise, leading to more 
precise and focal reconstructions (Sekihara et al. 2005; Had-
jipapas et al. 2005). In the case of FC calculations, a lack of 
focality leads to a greater susceptibility of inducing “ghost 

interactions”, i.e., spurious interactions reconstructed in the 
vicinity of true interactions due to signal mixing which is 
incompletely removed by the inverse solutions (Palva et al. 
2018). Together, this leads to issues when reconstructing 
FC with non-adaptive inverse solutions such as sLORETA.

It is, however, important to note that the reconstructions 
obtained with low-density sLORETA remain more similar 
to high-resolution MVBF than when using sensor-space FC 
without source localization (Fig. 3C).

The advantage of MVBF over other approaches was 
reduced when using low-density montages (Figs. 2 and 3). 
This is because the noise handling of MVBF depends on 
a sufficiently large number of sensors. Thus, the localiza-
tion error of MVBF is proportional to the sensor coverage 
(Steinsträter et al. 2010). Furthermore MVBF depends 
on head model accuracy. If the head model is not precise 

Fig. 5   FC correlates of motor 
performance. Source FC 
reconstructed with MVBF from 
data recorded with active gel 
electrodes correlated with FTT 
performance, even when using 
template head models and 19 
electrodes. Conversely, source 
FC computed with sLORETA 
or from 19 dry-gel electrodes 
was unable to capture correlates 
of motor performance



717Brain Topography (2021) 34:709–719	

1 3

enough, the real source is simply considered as noise and 
ignored (Van Veen et al. 1997; Steinsträter et al. 2010). 
Conversely, sLORETA is a non-adaptive filter where the 
weights do not depend on the data. Hence, sLORETA’s 
location accuracy is less electrode-density-dependent. Yet, 
reducing the number of sensors reduces the number of 
available data points for reconstructing the source activity, 
leading to a redundancy of the estimated FC among the 
source regions even when using sLORETA.

Our simulations showed that MVBF led to lower cor-
relations between the simulated coupling strength and 
the reconstructed FC magnitude than sLORETA, at least 
in case of high density montages (Fig. 2B). MVBF has 
known difficulties in reconstructing the time course of the 
source signal (Huang et al. 2014). Beamformers presume 
that the reconstructed sources are uncorrelated in time. 
Source activities are seen as orthogonal to one another in 
the time domain making source interdependencies non-
existent (Van Veen et al. 1997; Sekihara et al. 2002; Had-
jipapas et al. 2005). Previous studies have demonstrated 
that beamformers only show acceptable accuracy in recon-
structing correlated sources when the correlation was tran-
sient, lasting less than 30–40% of the analysis duration. 
When exceeding 40%, temporal bias and signal cancel-
lation appears (Hadjipapas et al. 2005). As the signals in 
our simulations did show some correlation, this may have 
introduced distortions of the reconstructed time series, and 
thus led to a reduced ability to quantify coupling strength. 
This is probably also the case in real recordings where 
some areas may show longer lasting temporal correlations.

Despite the disadvantages of MVBF, we observe that 
even when using template head models and low density 
montages, source FC reconstructed with MVBF gave best 
overall ability to capture FC correlates of motor perfor-
mance (Fig. 4). In particular, FC reconstructions obtained 
in source space with MVBF were clearly superior in find-
ing correlates of motor performance than sensor FC or FC 
obtained after ICA. Unlike sensor FC or ICA, MVBF uses 
information about head geometry to unmix the underly-
ing neural signals, which gives it a precious advantage for 
applications on diagnosis and treatment of FC changes.

Yet, we have to bear in mind that we were unable to find 
such correlates of motor performance in a second, inde-
pendent dataset which was recorded with a low-density 
EEG system using more convenient dry-gel electrodes 
(Fig. 5). This is most likely due to more noisy recordings 
obtained with this system, which is evident already by 
the fact that 5 out of 20 subjects had to be excluded for 
this reason. The impedance between skin and electrodes 
is larger when using dry or dry-gel electrodes, which dete-
riorates signal quality and further complicates the already 
difficult task of reconstructing FC from low-density EEG. 
This also generally raises a caveat with regards to the 

robustness of FC reconstructions when using low-density 
montages.

Nevertheless, our results suggest that low-density EEG 
may in some instances be sufficient for applications for 
motor training to improve the participant’s performance. 
Both patients and healthy subjects in sport and music could 
benefit from neuromodulation of alpha-band FC, using neu-
rofeedback. A low-density EEG then enables more comfort 
and ease-of-use for the end-user.

It is important to stress that our study was performed 
with the aim of potential clinical applications with a par-
ticular neural target. The assessment of other frequency 
bands, which often have lower SNR than the alpha band, 
and the usage of other indices of FC, may lead to different 
results. Furthermore, our study focused on FC correlates 
of motor performance. As FC correlates with performance 
also in other domains, it would be intersting to extend this 
to other functions. In these cases, the ability of low-density 
EEG to capture these correlates would need to be evaluated 
separately. Our analyses across all cortical ROIs suggests 
that many of the observations made for the motor cortex 
and many of the observed difficulties apply also to other 
brain aras.

Conclusion

Our study illustrates the difficulties in reconstructing FC 
from low-density EEG. It is common practice to compute 
sensor FC among electrodes, and to attribute the resulting 
findings to certain brain areas. This study shows that the 
mixed signals recorded by each electrode precludes an esti-
mation of FC at a given brain area. Furthermore, FC cor-
relates of behavior which are robustly observed at the source 
level are lost when analyzing sensor FC. FC reconstruction 
from low-density EEG is more feasible when obtaining 
source localization with adaptive inverse solutions such as 
MVBF, although these reconstructions are less robust than 
the ones obtain from high-density EEG. These insights may 
enable new possibilities for training and learning in clinical 
practice and public usage.
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