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Generalized concurrence in boson 
sampling
Seungbeom Chin & Joonsuk Huh   

A fundamental question in linear optical quantum computing is to understand the origin of the quantum 
supremacy in the physical system. It is found that the multimode linear optical transition amplitudes are 
calculated through the permanents of transition operator matrices, which is a hard problem for classical 
simulations (boson sampling problem). We can understand this problem by considering a quantum 
measure that directly determines the runtime for computing the transition amplitudes. In this paper, 
we suggest a quantum measure named “Fock state concurrence sum” CS, which is the summation over 
all the members of “the generalized Fock state concurrence” (a measure analogous to the generalized 
concurrences of entanglement and coherence). By introducing generalized algorithms for computing 
the transition amplitudes of the Fock state boson sampling with an arbitrary number of photons per 
mode, we show that the minimal classical runtime for all the known algorithms directly depends on 
CS. Therefore, we can state that the Fock state concurrence sum CSbehaves as a collective measure that 
controls the computational complexity of Fock state BS. We expect that our observation on the role 
of the Fock state concurrence in the generalized algorithm for permanents would provide a unified 
viewpoint to interpret the quantum computing power of linear optics.

The extended Church-Turing thesis (ECT) states that every problem that can be efficiently computable with real 
physical devices are efficiently simulated with a Turing machine. It is expected that quantum computers would 
refute ECT by exploiting its inherent quantum supremacy. However, since scalable universal quantum computers 
that can perform actual quantum algorithms are not likely to be built in the foreseeable future, they are not “real 
physical devices” yet.

Boson sampling (BS)1 was introduced to defeat ECT with more feasible quantum devices, i.e., the linear opti-
cal network (LON) implementation. BS is considered a non-universal quantum computer with multi-photons in 
the multimode optical network. Aaronson and Arkhipov1 claimed that the transition amplitudes with no more 
than one photon per mode becomes hard to simulate with classical computers as the system scale increases.

The computational hardness of BS is from the hardness of matrix permanents. The transition amplitude from a 
pre-selected input state to a post-selected output state is determined by the permanent of a submatrix of a unitary 
matrix U in the LON. When no more than one photon is in both all input and output modes of the system, the 
amplitude can be classically simulated with Ryser’s formula2 (the best known algorithm for computing perma-
nents). We recall the definition of the permanent of an M-dimensional square matrix A (Per[A]):
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where Aij are the entries of A and the set S includes all the permutations of (1, 2, …, M), σ→{ } ( σ σ σ→ = …( , )M1  is 
an N-dimensional vector). The brute force computation of a matrix permanent in Eq. (1) requires N! terms in 
summation and each term is composed of the products of N elements of the matrix. Even though Ryser’s algo-
rithm2 can perform the calculation in O(2N−1N2) arithmetic operations (it can be optimized further by Gray code 
as O(2N−1N) operations), the number of operations still increases exponentially with N (it was shown in Valiant3 
and Aaronson4 that the computation of permanent is a #P-hard problem). Glynn5,6 derived a different algorithm 
that has the same order of computational cost with that of Ryser’s. Even though Jerrum et al.7 suggested a 
polynomial-time approximation algorithm for the permanents of matrices with non-negative elements, there 
exists no algorithms for arbitrary matrices that are more efficient than Ryser’s and Glynn’s yet. On the other hand, 
there have been some efforts in developing randomized algorithms for the permanents. Gurvits used Glynn’s 
formula to design a randomized algorithm8, and Aaronson and Hance9 generalized Gurvits’s sampling algorithm 
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for matrices with either of repeated columns or repeated rows. A more generalized algorithm for matrices with 
repeated rows and columns, which can estimate the complexity of Fock state BS with multiple photons in both 
input and output modes, is introduced by Yung et al.10. When these algorithms are randomized, they estimate the 
matrix permanent with additive errors in polynomial runtimes. In this paper, we propose another generalized 
algorithm for matrices with repeated rows and columns. It is achieved by exploiting a series expansion of a prod-
uct of variables regarding the linear combinations of variables11.

The classical minimal runtimes ( min ) of the algorithms mentioned above have interesting mathematical fea-
tures, which render the algorithm to be related to a more general viewpoint of quantum complexity. The first 
observation is that the algorithm we derived here has the same min  as that of the formula in Yung et al.10, such as 
Ryser’s and Glynn’s have the same min. Considering the two algorithms arise from very different mathematical 
structures, we can regard that the obtained runtime is a rigorous criterion for the computational complexity of 
Fock state BS. The second obseration is that the functional form of min contains a summation of elementary sym-
metric polynomials. They have an intimate functional relation with the recently introduced coherence monotones, 
the coherence rank and generalized coherence concurrence12–14. This motivates us to define the generalized Fock 
state concurrence for a given state |→〉n , which consists of the Fock state k-concurrence denoted by →C n( )k  with 
0 ≤ k ≤ N, and the Fock state concurrence sum (the summation of →C n( )k  from k = 0 to k = N and denoted by 

→C n( )S ). The Fock state concurrence sum →C n( )S  is directly related to the amount of min. We can state that the 
increase of →C n( )S  results in larger computational complexity, or →C n( )S  is a quantum resource for the complexity 
of the given system.

The concept of Fock state concurrence can also be compared with the Boltzmann entropy of the elementary 
quantum complexity SB

q introduced in Chin et al.15, which naturally emerges from the additive error bound for the 
approximated permanent estimator. By encompassing entropy and concurrence, our suggestion in this paper 
would provide the foundation for the quantum resource theory of linear optical quantum computing. In other 
words, by understanding the role of these quantum measures, we could find the origin of the quantum supremacy 
in quantum linear optics.

Results
First, the generalized Fock state concurrence and the concurrence sum are defined, and their physical relation 
with the generalized coherence concurrence14 is explained. Then an algorithm for computing the transition 
amplitudes of Fock state BS with multiple photons in input/output modes is proposed. By analyzing the minimal 
runtime of three algorithms (including ours) for computing the transition amplitudes of Fock state BS, we show 
that the Fock state concurrence sum is a quantum resource that determines the complexity of a given Fock state 
BS system.

The generalized Fock state concurrence family and the concurrence sum.  Many theoreti-
cal analyses support the belief that quantum computers can perform some tasks faster than classical comput-
ers. Accordingly, it has been of particular interest to find the resources required for the quantum speedup. It is 
believed that entanglement is a critical resource for universal quantum computers16–18; however, the efficiency 
does not simply depend on the amount of entanglement19. It is also recently shown that the original Grover 
algorithm monotonically consumes coherence during the searching process13,20. There have been attempts to 
approach the problem in the reverse direction as well, i.e., to find conditions for a quantum system not to have 
any speedup. It is rigorously shown that nonnegative probability quasi-distributions (PQD) result in no quantum 
speedup21–23.

In the case of BS, the photon indistinguisability is considered the origin of the computational complexity 
in the Fock state BS1,24, and the degree of complexity is closely related to the majorization of the input-output 
photon distributions15. Whereas Rahimi-Keshari et al.25 approached this problem from the perspective of 
quasi-probability distributions (QPD), showing that the negativity of probability quasi-distribution (PQD) of 
linear optical networks is the necessary resource for the complexity.

In this section, we define a quantum measure from the multi-photon distribution patterns in multimode opti-
cal systems, the generalized Fock state concurrence and the Fock state concurrence sum. The generalized Fock state 
concurrence is a quantity analogous to the generalized entanglement concurrence26 and generalized coherence 
concurrence14. It will be shown in the later section that the Fock state concurrence sum becomes a resource that 
determines the complexity of Fock state BS.

Definitions.  In the linear optical network of M optical modes into which N photons are injected, the Fock state 
vector is written as

∑|→〉 = | … 〉 =n n n n n N, , , ,
(2)M

i

M

i1 2

where ni represents the photon number for the ith mode (it is worth emphasizing that ni can be greater than 1 for 
our later discussion on the generalized Fock state BS). Then the coherence rank and k-concurrence of a Fock state 
|→〉n  is defined as follows:
Definition 1.  The Fock state coherence rank for a given Fock state →n  is defined as the integer α→n , the number of 
nonzero elements for the particle distribution vector →n .
Definition 2.  The Fock state k-concurrence for a given Fock state →n  is defined with the elementary symmetric poly-
nomial as
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(we define → =X n( ) 10 , and → =X n N( )1  for any →n ).
This is normalized so that →C n( )k  becomes 1 when →n  is maximally coherent, i.e., → =

→ →
−n ( 1 , 0 )N M N . The Fock 

state k-concurrences →C n( )k  from 0 ≤ k ≤ N constitute the generalized Fock state concurrence family.
Definition 3.  The Fock state concurrence sum for a given Fock state →n  is defined as
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→
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The factor 1/2N is multiplied for the normalization, i.e., C n( ) 1S
→ =  when →n  is maximally coherent. Since Xk 

are all Schur concave functions, which decrease as the Fock state vector →n  is more majorized27, the k-concurrences 
are also Schur concave functions. Hence the concurrence sum →C n( )S  is also a Schur concave function.

To calculate the Fock state k-concurrence (and concurrence sum) of those states which are not expressed with 
a single photon distribution vector, we need to consider more comprehensive definitions than Definition 2. It can 
be achieved in a similar manner to the generalized concurrences of entanglement and coherence14,26, the situation 
is slightly different for our case though. The well-known convex-roof extention (see, e.g., Eltschka et al.28) is not 
exactly suitable here, for Definition 2 does not embrace the pure states that are superpositions of photon distribu-
tion vectors, i.e., when ψ ψ| 〉 = ∑ |→〉→ → nn n  ( ψ∑ | | =→ → 1n n

2 ). Hence, we need two steps of extension for the gener-
alized Fock state concurrence family:
Definition 4.  The Fock state k-concurrence of a pure state ψ ψ| 〉 = ∑ |→〉→ → nn n  is defined as

∑ψ ψ| 〉 ≡ | | |→〉
→

→C C n( ) ( ),
(6)k
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n k

2

and the Fock state concurrence sum of |ψ〉 as

∑ψ ψ| 〉 ≡ | | |→〉 .
→

→C C n( ) ( )
(7)S

n
n S

2

The Fock state k-concurrence of a mixed state ρ, which can be pure-state-decomposed as ρ ρ ψ ψ= ∑ | 〉〈 |a a a a , is 
defined with the convex roof extension as

ρ ρ ψ≡ | 〉
ρ ψ| 〉

C C( ) min ( ),
(8)k a k a

{ , }a a

and the Fock state concurrencce sum of ρ as

ρ ρ ψ≡ | 〉 .
ρ ψ| 〉

C C( ) min ( )
(9)S a S a

{ , }a a

Comparison of the Fock state concurrence with the single particle coherence concurrence.  We can explain the intu-
itive relation between the Fock state coherence and the single photon coherence, which will clarify our concept 
of the Fock state concurrence.

The coherence as one of the fundamental non-classicalities is originated from the framework of superposi-
tion12,29, i.e., the partition of probability among several states for one quantum system. Since coherence is 
basis-dependent, we first need to fix a computational basis set. The quantification of coherence is possible under 
a given normalized basis set | 〉 =i{ }i

d
1, and we can state that a pure state is coherent in the basis set if and only if

∑ψ ψ| 〉 = | 〉.
=

>
i

(10)i

k

i
1

1

When k = 1, |ψ〉 is incoherent (the mixed state extension of coherence is straightforward. See Baumtratz et al.30).  
The degree of coherence is determined by the probability amplitude of the state, i.e.,
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The concept of majorization plays a crucial role here (for two nonincreasing real vectors →x  and →y  of dimen-
sion d, we state that →x  is majorized by →y  (or → →

x y ) if and only if ∑ ≤ ∑= =x yi
k

i i
k

i1 1  for all k < d and 
∑ = ∑= =x yi

d
i i

d
i1 1
27). Indeed, for two pure states |ψ〉 and |φ〉, the following relation holds31:

ψ φ
ψ φ
ψ φ

| 〉 | 〉

⇔ | 〉 | 〉 . .
| 〉 | 〉 .

P P( ) is majorized by ( )
is more coherent than , i e ,
can be transformed to with incoherent operations (IO) (12)

Two extremal cases are when P(|ψ〉) = perm[(1, 0, …, 0)] (perm[→v ] denotes any permutation vector of →v ) 
and ψ| 〉 = …P( ) (1, 1, , 1)

d
1 . The state is incoherent for the former and maximally coherent for the latter. There 

are several coherence measures that satisfy (12) (see, e.g., Streltsov et al.32 for some examples).
One specific example is the d-slit experiment of a photon (Fig. 1(a)). When each slit is well-separated from 

the others, the photon state that passes through the slit is represented in the computational basis set {|ψ1〉, |ψ2〉, 
…, |ψd〉} (〈ψi|ψj〉 = δij), where |ψi〉 corresponds to the case when the photon passes the i-th slit. Then the photon 
state is given by
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Therefore, we can state that the coherence of |ψ〉 is determined by

|Ψ〉 = | | | | … | | .P c c c( ) ( , , , ) (14)d1
2

2
2 2

When |ci|2 = 1 for some i, the state is incoherent and passes through the i-th slit deterministically. This state 
represents the particle-like property of the photon. On the other hand, when | | =c d1/i

2  for all i, the state is 
maximally coherent and represents the wave-like property. The analysis can be generalized to the mixed state case 
by attaching a detector at the slit14,33. The coherence k-concurrence Cc

k( ) for a pure state |Ψ〉 is given by14


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where Xk[P(|Ψ〉)] is the k-th elementary symmetric polynomial of P(|Ψ〉).
In the multi-photon case as to the Fock state BS, the probablity for each photon to be in a specific mode is 1. 

On the other hand, the probability distribution of the initial N-photon in M-modes are given by

|→〉 =


 …



P n n

N
n
N

n
N

( ) , , ,
(16)

M1 2

for the photon distribution vector |→〉 = …n n n n( , , , )M1 2  (Fig. 1(b)). Therefore, Definition 2 of Fock state coher-
ence k-concurrence is analogous to Eq. (15) with the replacement of (d, |Ψ〉) with (N, |→〉n ).

The Fock state concurrence sum CS and the complexity of Fock state BS.  In this section, we show 
that the Fock state concurrence sum CS defined in the former section plays a crucial role in the complexity of Fock 
state BS. To see the relation, we first derive a generalized algorithm for computing the transition amplitudes of Fock 
state BS with multiple photons in input/output modes. An intriguing fact about our algorithm is that the minimal 
runtime min  for the algorithm is equal to that of another generalized algorithm presented in Yung et al.10. 
Furthermore, the functional form of min explicitly contains the Fock state concurrence sum CS. This implies that CS 
is a quantum measure that determines the computational complexity of a generalized Fock state BS system.

Figure 1.  (a) A single photon that passes through a well-separated multi-slit. (b) Multi-photons injected to a 
multi-mode linear optical network system U.



www.nature.com/scientificreports/

5Scientific REPOrTS |  (2018) 8:6101  | DOI:10.1038/s41598-018-24302-5

The derivation of a generalized algorithm for matrix permanents.  In the linear optical network of M optical 
modes characterized by a unitary transformation Û, the photon creation and annihilation operators ˆ †ai  and âi in 
the i-th mode (i = 1, …, M) rotate under the acton of Û as

∑ ∑= = .
= =

∗† † † †
^^ ^ ^ ^^ ^ ^Ua U U a Ua U U a,

(17)
i

j

M

ij j i
j

M

ij j
1 1

Scheel34 showed that the transition amplitude between the two Fock states |→〉n  (= | … 〉n n n, , , M1 2 , ∑ =n Ni
M

i ) 
and |→〉m  (= | … 〉m m m, , , M1 2 , ∑ =m Ni

M
i ) is proportional to the matrix permanent:
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where → →U[ ]n m,  is an N × N submatrix of U, which has ni of the i-th rows of U and mj of j-th row of U. 
= ∑ = ∑N n mi

M
i i

M
i is the total number of photons.

The relation (18) holds for the arbitrary square complex matrix A35, i.e.,
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where Â can be expressed as = 
∑




ˆ ˆ ˆ†A a A aexp (ln )i j i
T

ij j, . This implies that a matrix permanent is obtained by cal-
culating the corresponding transition amplitude between the given input-output Fock states. We will exploit this 
relation to obtain a generalized algorithm for matrix permanents.

The following lemma11 is useful for deriving our algorithm.
Lemma 1.  For a vector → = …x x x x( , , , )M1 2 , the following identity holds:
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A detailed proof is given in Kan11. The isomorphism between quantum states and multivariate polynomials 

from Theorem 3.6 of Aaronson and Arkhipov1 (see also Yung et al.10) connects the above lemma with the linear 
optical quantum system, which results in the following identity:
Theorem 1.  There exists a generalized formula for the matrix permanent with repeated rows and columns that is 
expressed as
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Proof.From Theorem 3.6 of Aaronson and Arkhipov1, the Fock state |→〉 = ⊗ | 〉= ˆ †n a n( ) / ! 0k
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By substituting Eq. (22) into Eq. (19), we have
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Therefore, by substituting Eq. (25) into Eq. (23), we obtain Eq. (21) with the identity〈 |  
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With A = U (unitary operator), the above formula is for the computation of transition amplitudes with multi-
ple photons in both input and output modes.
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By exploiting the symmetry in Eq. (20) 11, the number of terms can be reduced to about a half of that in Eq. 
(21). First, when at least one of {nk} is an odd number, n1 can be chosen to be an odd number without loss of gen-
erality. Then Eq. 21 is simplified as

∑ ∑ ∏ ∑= −






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







−








→ →
−

=

−

= =
 A n

v
n
v

n v APer ([ ] ) 1
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( 1) ( 2 )
(26)
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M j
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i
i i ij

m

, 1
0

( 1)/2

0

1

1 1M

M
v

j

1

1

Second, when all {nk} are even numbers, one still can reduce the number of terms in the summation by divid-
ing the first summation of v1 into a summation from 0 to n1 − 1 and v1 = n1. Since n1 − 1 is an odd number, the 
same symmetry that is used for Eq. (26) reduces the number of terms. ∏ +n( 1)/2k k  terms are required for the 
first case and ∏ + −n( ( 1) 1)/2k k  terms for the second case.

Now, we show that our formula is reduced to that of Glynn’s5,6 when → = → = …n m (1, , 1) and N = M. In this 
case (ni − 2vi) is either +1 or −1 for all i, and all the binomial coefficients become 1. Then Eq. (26) can be 
expressed as

∑ ∏ ∏ ∑=









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









− →∈ − = = =
A x A xPer ( ) 1

2 (27)
N

x i

N

i
j

N

k

N

jk k1
{ 1,1} 1 1 1N

which is the Glynn’s formula (see Method).
As pointed out by Gurvits8,9, Glynn’s form can be interpreted as an ensemble average over the random vector 

whose entries are ±1. Likewise, one can interpret Eq. (21) as a randomized algorithm in which vk is randomly 
generated among (0, 1, …, nk) with probability = ( )p v( ) /2k

n
v

nk

k

k. Accordingly, Eq. 21 is rewritten as

∑= → →→ →
→=

→

→

A p v G vPer ([ ] ) ( ) ( ),
(28)

n n
v

n

,
0

where → ≡ p v p v p v( ) ( ) ( )M1  and ∑ → =→=
→

→ p v( ) 1
v
n

0
, and → ≡ − ∏ 

∑ − 
=G v n v A( ) ( 1) ( 2 )N

j
M

i i i ij
m

1
v j. →G v( ) is eval-

uated for each random instance of →v  with the probability →p v( ), and then the matrix permanent is approximated 
as an average,

∑ →→ →

=
A

N
G vPer ([ ] ) 1 ( ),

(29)
n m

i

N
i

,
Sample 1

( )Sample

where NSample is the number of samples.

Minimal classical runtime.  The runtime for the classical simulation of Eq. (21) is obtained by identifying all the 
summations included in the algorithm as

∏ α α→ → =





+



=

→ →n m n( , ) ( 1) ,
(30)i

M

i n m
1

T O

where α→n  and α→m  are the number of nonzero elements of →n  and →m  respectively. ∏ += n( 1)i
M

i1  comes from 
∑ ∑= =v

n
v
n

0 0M
M

1
1 , and α α→ →n m  comes from ∏ 

∑ − 
= n v A( 2 )j

M
i i i ij

m
1

j in Eq. (21).
On the other hand, we can expand |→〉m  instead of |→〉n  with Kan’s series expansion as in Eq. (22). From this 

input-output symmetry, we obtain another runtime

T On m m( , ) ( 1)
(31)i

M

i n m
1

∏ α α→ → =





+



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.′

=

→ →

We can choose the shorter one between   and  ′ for the optimal classical simulation. Therefore, the minimal 
running time for the algorithm, denoted by  → →n m( , )min , is given by

T O ∏ ∏ α α→ → =




+ +


.

= =

→ →( )n m n m( , ) min ( 1), ( 1)
(32)

min
i

M

i
j

M

j n m
1 1

A special case is when both ni and mi are not bigger than 1 for all i. Then α α= =→ → Nn m  and 
→ → =n m N( , ) 2N 2 , which is the same runtime as that of Ryser’s formula.
The minimal runtime for our algorithm can be compared to that of another generalized algorithm suggested 

in Yung et al.10. Interestingly enough, the minimal runtime for the algorithm is exactly equal to that of ours (the 
same thing happens when we compare the runtime for Ryser’s and Glynn’s formula). A brief explanation is pre-
sented in Methods. This phenomena is intriguing since these two algorithms appear from very different mathe-
matical backgrounds. While our algorithm is constructed from a series expansion of collective variables, the 
algorithm in Yung et al. is a direct generalization of Aaronson and Hance’s algorithm9. Two algorithms created 
from two totally different paths have the same classical runtime, from which we can surmise that the minimal 
runtime min  is a credible criterion for the computational complexity of the generalized Fock state BS.
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The minimal runtime and the Fock state concurrence sum.  Now we are ready to see the functional relation of min  
with the Fock state concurrence sum CS. Actually, this relation is easily observed by reexpressing  → →n m( , )min  by 
expanding ∏ += n( 1)i

M
i1  along the order of ni as

∏ ∑ ∑

∑

+ = + + +

+ .
= <

< < <
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From the definition of the elementary symmetric polynomial (see Eq. (4)), we have

∏ ∑+ = → .
α
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M

i
k
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1 0

n

Note that the summation is until α= →k n  because → =X n( ) 0k  for α> →k n . As a result, → →n m( , )min  is rewritten 
as

T O ∑ ∑ α α→ → =
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α α
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By using Definition 3, the minimal runtime is finally rewritten as

T On m C n C m( , ) (2 (min ( ( ), ( ))) ), (36)min
N

S S n mα α→ → = → → → →

which is a composition of the Fock state concurrence sum and Fock state coherence rank. This expression shows 
that in linear optics the Fock state concurrence sum is a critical resource that determines the computational 
complexity. We should emphasize that –in so far as we know– this is the first evidence that the summation of 
all the family members of concurrence can operate as an independent resource. Most works on the generalized 
concurrence in entanglement and coherence have focused on the role of some specific member as the resource for 
practical quantum processes (see, e.g., Sents et al.36, Girard et al.37, Chin13 and Chin14). On the other hand, as we 
have just seen, the generalized coherence concurrence of Fock state acts as a whole in the multimode linear opti-
cal system. In other words, not an individual member Ck but the summation of the whole members CS becomes 
the deterministic resource for the process we are interested in.

As an example, when → = …n N( ,0, , 0), we have → =C n( ) 0k  for k ≥ 2 and → = +C n( )S
N1

2N
 (the minimal con-

currence sum), which results in T O Oα→ → = + ≤ +→n m N N N( , ) [(1 ) ] [(1 ) ]mmin . For this case the runtime 
becomes polymonial. As another example, when → = → = … …n m (1, , 1, 0, , 0), we have → = → =C n C m( ) ( ) 1S S  
(the maximal concurrence sum) and → → =n m N( , ) [2 ]N

min
2T O .

Eq. (36) also reveals an intriguing property of min, which contrasts with that of the additive error bound   for 
an approximated permanent estimator. In Chin et al.15, the Boltzmann and Shannon entropy of elementary quan-
tum complexity is introduced to evaluate the quantum complexity of the given quantum particle distributions. 
And   is explicitly expressed as the difference between the Boltzmann entropy and Shannon entropy of elemen-
tary quantum complexity. On the other hand, the relation between the entropies and min  is implicit and only can 
be intuitively explained. Eq. (36) indicates that the generalized Fock state concurrence is another criterion for the 
computational complexity of linear optical systems. We can state that both entropy and concurrence are crucial 
measures (or resources) that directly determines the quantum complexity of linear optical computers.

Before closing this section, it is worth mentioning the role of the extended definitions for general states 
(Definition 4). With such definitions, we can calculate the concurrence sum for arbitary states, including coherent 
states and thermal states, etc. As a simple example, when ρ is a thermal state, i.e.,

¯
¯

⟩⟨n
n

n n
( 1)

,
(37)

th

N n N i
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i
n

i
n

0 1
1

i i

i

i
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
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∞
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∞

=
+

where ni represents the average photon number for each i, we have

∑ ∑ ∏ρ =


 +



 |→ .
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∞
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N n N i
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Since |→〉 <C n( ) 1k  except when |→〉n  is maximally coherent, it is easy to see that ρ < |→〉=C C n( ) (S
th

S  
|
→ →

〉 =−1 , 0 1N M N . We can surmise that the reason why the thermal state BS is simpler to simulate classically than 
the original BS38 is that the former has less quantum resource, i.e., concurrence sum, than the latter. This view-
point would be compared more rigorously to that of Rahime-Keshari et al.38 in the future. We expect that it would 
reveal the role of concurrence sum in the complexity of various BS systems, such as Gaussian BS38–40 and Vibronic 
BS41,42.

Discussion
We expect our research to develop into two aspects, which are closely relevant to each other. First, the relation of 
the generalized concurrence →C n( )k  with the exact classical simulation of matrix permanents has many similarities 
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with that of the Boltzmann entropy →S n( )B
q  with the randomized algorithm for approximated permanent compu-

tation in Chin et al.15. By delving into the role of →C n( )k  and →S n( )B
q  further, we could formulate the quantum 

resource theory of Fock state that is a useful tool for understanding the quantum computing power of linear 
optical computing. Second, our approach to the complexity problem of BS can be compared to that of 
Rahimi-Keshari et al.38, which investigated the role of single-mode nonclassicality in computational complexity. 
This viewpoint is different from Chin et al.15 that focused on the multimode quantum correlation. We expect that 
there exists a unified theory that embraces the partial interpretations of former works, and the Fock state resource 
theory including concurrence and entropy is a strong candidate for such a theory.

Methods
Glynn’s formula and its generalization.  Here we briefly introduce Glynn’s formula for N × N matrix per-
manent computation and its generalization for the permanents of matrices that have repeated rows and columns.

Glynn’s formula with the random variable expectation for N × N matrix A is given by

A x A xPer ( ) 1
2 (39)
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The summation of →x  is over → ∈ −x { 1, 1}N , or X R R→ ∈ ≡ × ×x [2] [2], where i[ ]  is a set that consists 
of the ith root of unity.

When A has repeated rows or columns, and the ith column (or row) is repeated ni-times, Eq. (39) is general-
ized to9
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i i
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1
i . The runtime for this algorithm is 

α α∏ + = ∑ →α
= →

=
→→( )n N X n N( ( 1) ) ( )k

N
k n k k n1 1

n .
When A has repeated rows and columns, and the ith column is repeated ni-times and the jth column is 

repeated mj-times, the above equations are expressed more generally10 as
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Here,   is the same as that in Eq. (40). From the summation form of Eq. (41) and the symmetry between rows and 
columns, it is straightforward to see that the minimal runtime  → →n m( , )min  for Eq. (41) is equal to Eq. (32).
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