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Abstract

Microbial communities are early responders to wetland degradation, and instrumental play-

ers in the reversal of this degradation. However, our understanding of soil microbial commu-

nity structure and function throughout wetland development remains incomplete. We

conducted a survey across cranberry farms, young retired farms, old retired farms, flooded

former farms, ecologically restored former farms, and natural reference wetlands with no

history of cranberry farming. We investigated the relationship between the microbial com-

munity and soil characteristics that restoration intends to maximize, such as soil organic

matter, cation exchange capacity and denitrification potential. Among the five treatments

considered, flooded and restored sites had the highest prokaryote and microeukaryote com-

munity similarity to natural wetlands. In contrast, young retired sites had similar communities

to farms, and old retired sites failed to develop wetland microbial communities or functions.

Canonical analysis of principal coordinates revealed that soil variables, in particular potas-

sium base saturation, sodium, and denitrification potential, explained 45% of the variation in

prokaryote communities and 44% of the variation in microeukaryote communities, segregat-

ing soil samples into two clouds in ordination space: farm, old retired and young retired sites

on one side and restored, flooded, and natural sites on the other. Heat trees revealed possi-

ble prokaryotic (Gemmatimonadetes) and microeukaryotic (Rhizaria) indicators of wetland

development, along with a drop in the dominance of Nucletmycea in restored sites, a class

that includes suspected mycorrhizal symbionts of the cranberry crop. Flooded sites showed

the strongest evidence of wetland development, with triple the soil organic matter accumula-

tion, double the cation exchange capacity, and seventy times the denitrification potential

compared to farms. However, given that flooding does not promote any of the watershed or

habitat benefits as ecological restoration, we suggest that flooding can be used to stimulate

beneficial microbial communities and soil functions during the restoration waiting period, or

when restoration is not an option.
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Introduction

A paradigm shift has occurred in society’s perspective on wetlands. The “drain the swamp”

mentality of the early 1900’s contrasts with today’s rallying calls to preserve, restore, and rewild.

In recognition of the role of wetlands for critical ecosystem services, such as carbon storage and

nitrogen removal, the United Nations declared 2021–2030 the decade on ecological restoration.

While progress is evident, science is still unclear on how to best restore wetlands because the

return of plant and animal communities does not guarantee the return of desirable ecosystem

functions [1, 2]. Soil microbial community surveys can be used to gauge whether treated sites

are on track to meet restoration goals, particularly those that accrue slowly and are difficult to

measure, such as soil organic matter accumulation and nitrogen removal.

The physical soil environment influences microbial community composition, which in turn

influences the physical soil environment. Despite this established feedback loop, it is still

unclear whether discrete community types align closely with soil biogeochemistry (indicator

species; [3–5]), or whether community members are redundant to one another, their identity

uncoupled from their biogeochemistry [6, 7]. Evidence to support these theories remains

incomplete, with much of this research effort focusing on prokaryotes (bacteria and archaea).

Microeukaryotes—the microscopic fungi, soil animals, and protists that occur in high num-

bers in soil and water, have received less attention. Characterizing prokaryotes and microeu-

karyotes together should yield a more complete picture of the relationships between land

management, soil physicochemical gradients, and microbial community structure. Within this

field of inquiry, restored peat wetlands are a particularly underexplored ecosystem, and evalu-

ating how microbial communities align with soil biogeochemistry should also provide insights

for managing these unique ecosystems.

Cranberries (Vaccinium macrocarpon) are native to New England and occur naturally in

kettle hole bogs and marshes. Indigenous groups including the Wampanoag have been culti-

vating and harvesting cranberries for over 12,000 years before commercial cranberry farming

spread rapidly across the region in the 1800’s. At least half of Massachusetts cranberry farms

are built on existing peat wetlands [8], exploiting natural springs for irrigation and harvesting

purposes. On modern cranberry farms, water is supplied through a system of dams, ditches,

and culverts. Pesticides are applied regularly, and thin layers of sand, often accumulating up to

a meter in depth, are applied to promote drainage and prevent root dieback [9]. Until the

1990’s, Massachusetts was the worldwide leader in total harvestable acres, but due to climate

and economic factors, at least 40% of existing farmland will be retired in the next decade [8].

The cranberry retirement wave presents a widespread opportunity, both for wetland resto-

ration and for research on ecosystem trajectories. Active ecological restoration on former cran-

berry farms facilitates ecosystem recovery through earth moving, ditch filling, surface grading,

and channel or floodplain reconstruction. When no action is taken, retired farms are typically

drained of existing water. Over time, it appears that retired sites will often transition to an

upland maple or pine forest, never regaining their historical wetland status [10].

Prior to restoration, cranberry farms are typically placed into conservation easements, and

it is not uncommon for farms to be retired for 15 years or longer before they can be restored.

Rather than allowing retired farms to develop into upland forests, the USDA National

Resources Conservation Service (NRCS) experimented with leaving retired farms permanently

flooded, in the harvest condition. While flooding clearly maintains ponded water and wet

soils, the soil characteristics and microbial communities of flooded sites have not yet been

characterized. If flooded sites have comparable soil-based benefits as restored sites, then flood-

ing could be used as a mitigation strategy for sites awaiting restoration, or as an alternative

when restoration is not an option.
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We conducted a survey of soil microbial communities and ecosystem functions related to

soil development and nutrient cycling across 23 sites and five treatments (farm, young retired,

old retired, flooded, and restored) in southeastern Massachusetts. Our research questions

were: 1) Which of the five treatments had the most similar microbial communities to natural

sites? 2) How much variation in community composition can be explained by soil variables,

and which of these variables align most closely to microbial community composition? 3)

Which taxa are indicators of wetland development? Given the results of our previous work

[11], we hypothesized that restored sites would harbor similar microbial communities to natu-

ral sites. While we had not examined flooded sites before, we hypothesized that flooded sites

would also have similar characteristics to natural wetlands, but to a lesser extent than restored

sites, due to their permanently flooded (unnatural) hydrologic regime. We expected that deni-

trification potential and soil organic matter would be important for explaining variation in

microbial communities across the six treatment categories, and that these variables would be

highest at the wet sites (natural, restored, and flooded) and lowest at the drier sites (farm,

young retired, and old retired).

Methods

Field sampling and site histories

We sampled twenty-three field sites across southeastern Massachusetts during July 2017, span-

ning a perimeter of 100 km and total area of 500 km2. Treatments included: cranberry farm (3

sites), young retired (5 sites), old retired (3 sites), flooded (3 sites), restored (6 sites), and natu-

ral sites (3 sites) (Fig 1). Natural sites have no history of cranberry farming. Restored sites,

flooded sites and young retired sites were roughly comparable in age; restored sites had been

restored either 1 year (Tidmarsh) or 6 years (Eel River) prior to sampling, flooded sites were

flooded 4 years prior to sampling, and young retired sites were retired 1–4 years prior to sam-

pling. Old retired sites were retired 17–20 years prior to sampling, and farms had been contin-

uously farmed for at least 50 years. In our study, “treatments” include multiple sites with

varying site ages, and conclusions are drawn with this in mind.

The flooded sites known as “Grassi”, “Goldawitz” and “Pembroke” are NRCS conservation

easement sites. Early in the Wetlands Reserve Program, the agency made use of existing water

control structures (flumes and wooden boards) to flood the farms and create artificial wetlands

(S1 Fig in S1 File). Ecologically restored sites were manipulated according to a methodology

developed by the Massachusetts Department of Environmental Restoration (DER). Procedures

include removal of dams and water control structures, plugging irrigation ditches with sand,

surface roughening and microtopography grading, and, when needed, channel and floodplain

reconstruction. No seeding was performed at either the restored or the flooded sites, and previ-

ous work has shown that native plants recolonize these sites through activation of the below-

ground seedbank [12, 13].

Some sampling sites were clustered together whereas others were more spread out (Fig 1).

This sampling scheme was deployed to capture variation within particularly large restoration

projects (Tidmarsh West and Eel River), or when sites co-occurred with other outside long-

term monitoring objectives (Tidmarsh East). To validate that clustered sampling still captured

more variation across these areas, we conducted a sensitivity test by systematically dropping all

possible combinations of two sites from Tidmarsh West, Eel River and Tidmarsh East, thereby

equalizing site replication across treatment categories (S2 Fig in S1 File). For the majority of

cases (8 cases out of 12), dropping two sites at a time from Tidmarsh East (1, 2, and 3), Tid-

marsh West (1, 2, and 3) and Eel River (North, Northeast, and South) decreased variation rather

than increased variation. Therefore, we retained all 23 sites throughout subsequent analyses.
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Eight soil samples (dysic, mesic Typic Haplosaprists of the Freetown series), were randomly

selected at each site, spaced 30 m apart. Plants and mosses were removed from the soil surface,

and soils were collected using a 1.5-cm diameter soil corer to a depth of 10 cm, and flame ster-

ilized between each sample. Soil samples were homogenized in their own bags and subsampled

in the field: half of each sample was flash frozen in liquid nitrogen and stored at -80˚C until

DNA extraction, and the other half was stored at 5˚C for the remaining 35 soil analyses.

Fig 1. Map of study area. 23 sites were surveyed in southeast Massachusetts, spanning five treatments. Map tiles by

Stamen Design, under CC BY 3.0. Data by OpenStreetMap (WGS-84), under ODbL.

https://doi.org/10.1371/journal.pone.0260933.g001
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DNA sequencing and bioinformatics

DNA was extracted using a DNeasy Powersoil Kit (QIAGEN Inc, Hilden DE) using 0.2 g of

soil. For prokaryotic amplicons, libraries were prepared by amplifying the V4-V5 hypervari-

able region of the 16S rRNA gene using primers 515F (5- GTGYCAGCMGCCGCGGTAA-3),

and 926R (5-CCGYCAATTYMTTTRAGTTT-3) [14] and sequenced at the Joint Genome Insti-

tute (Walnut Creek, CA, USA) on an Illumina MiSeq 96 cycle cartridge, across four runs. For

eukaryotic amplicons, libraries were prepared by amplifying the V9 hypervariable region of

the 18S rRNA gene using primers 1391F (5-GTACACACCGCCCGTC-3) and reverse primer

EukBR (5-TGATCCTTCTGCAGGTTCACCTAC-3) [15, 16] and sequenced at Argonne

National Lab on an Illumina MiSeq 300 cycle V2 cartridge, on a single run.

Raw sequences were processed using Quantitative Insights into Microbial Ecology 2

(QIIME2) [17]. Amplicon sequence variants (ASVs) were identified using the Divisive Ampli-

con Denoising Algorithm (DADA2), which merges sequences, removes chimeric sequences,

removes reads with ambiguous bases, and corrects sequence errors so that amplicon sequence

variants can be resolved to the level of single-nucleotide differences [18].

For 16S amplicons, reverse reads were low quality (this is common for this gene region), so

only forward reads were used. Sequences were truncated to 277 base pairs, and denoising was

performed separately on each run, resulting in 22,176,127 total sequences (an average of

129,857 sequences per sample), and 13,978 unique ASVs across 183 samples (an average of

1,579 ASV’s per sample). One sample, TE3.2, was removed at the denoising step due to low

sequence count. Feature tables and representative sequence files from each of the four runs

were merged, and a denovo phylogenetic tree was made using the align-to-tree-mafft-fastree

pipeline. Reads from the V4-V5 hypervariable region were extracted from the SILVA ver. 132

database [19], and a feature classifier was trained on that gene region. Taxonomy was assigned

at 99% similarity using the SILVA ver. 132 QIIME2 release. Following taxonomy assignment,

sequences and feature tables were filtered to remove mitochondrial and chloroplast sequences,

as well as sequences that were unassigned at the domain level.

For 18S amplicons, forward and reverse reads were trimmed to 144 bp and denoised, result-

ing in 11,430,013 total sequences (average of 36,859 sequences per sample) amounting to

70,836 unique ASVs across 183 samples (average of 407 ASVs per sample). One sample (noted

as M.3 in the S1 Data) was removed during denoising due to low sequence count. Phyloge-

netic trees and feature classification were performed in a similar manner as the 16S analyses,

this time using a feature classifier trained on the V9 hypervariable region of the 18S gene. Tax-

onomy was assigned at 99% similarity, and sequences and feature tables were filtered to

remove plants and unassigned sequences at the domain level.

Soil variables

We measured 35 soil variables to characterize the soil physicochemical environment (S1 File).

Soil analyses were performed by the University of Massachusetts Plant and Nutrient Testing

Laboratory, using standard protocols. Macro and micronutrient concentrations were deter-

mined using the Modified Morgan extraction procedure [20]. Cation exchange capacity was

determined using hydrochloric acid cation displacement method [21], and base saturation of

calcium, magnesium, and potassium was determined using atomic absorption spectrometry.

Soil organic matter was determined through loss on ignition at 360˚ C.

Denitrification potential was measured at the Cary Institute of Ecosystem Studies using the

denitrification enzyme assay method [22]. This method adds an abundance of carbon and

nitrate to each sample in an oxygen free container, and uses an acetylene inhibitor to prevent

reduction of N2O to N2. The amount of N2O produced is proportional to the amount of
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denitrification enzyme present. Potential methane emissions were measured following ten-day

soil incubations, and were quantified using a Shimadzu GC-8 gas chromatograph with a flame

ionization detector. Detailed methods for all soil variables are available in S1 File.

Statistical analyses

QIIME2 feature tables, representative sequences, taxonomy tables, and phylogenetic trees were

imported into R (v. 1.2.1335, R Core Team 2020) using the qiime2R package [23]. Following

conversion to phyloseq objects, we removed samples with less than 1000 sequences, which

dropped 14 additional samples from the prokaryote dataset and no additional samples from

the microeukaryote dataset.

Spatial dependency is a familiar challenge in microbial studies, and occurs in two ways: 1)

environmental gradients are spatially structured, causing spatial structuring of taxa, or 2) bio-

logical processes such as speciation, extinction, dispersal or species interactions are distance-

related. To test for the first type of spatial dependency, we compared the Euclidean distance

matrix of GPS coordinates against the Euclidean distance of soil variables (Wisconsin double-

transformed to control for different measurement scales). To test for the second type of spatial

dependency, we compared the Euclidean distance matrix of GPS coordinates against the

weighted UniFrac microbial community distance matrix. We performed both analyses across

the whole dataset, and within each treatment category. There was no relationship between

geography and soil variables in either case. In comparing geography and community composi-

tion, there was no autocorrelation for prokaryotes, but there was significant autocorrelation

for microeukaryotes. We controlled for spatial autocorrelation when possible in further analy-

ses, but acknowledge that spatial relationships cannot be fully decoupled from the treatments,

which were also spatially structured (Fig 1).

To assess microbial community similarity to natural sites, we used a phylogenetically mean-

ingful distance measure, weighted UniFrac, because microbial phylogeny is highly correlated

with functional traits [24]. Weighted UniFrac incorporates the proportion of shared branch

lengths amongst the total branch length, as well as the relative abundance of each taxon [25].

Prior to distance calculations, we resolved multichotomies to dichotomies [26] and used a pro-

portional transformation to turn ASV counts into relative abundance, in lieu of rarefaction

[27]. We compared unweighted and weighted UniFrac measures for the 16S and 18S datasets,

and chose weighted UniFrac for the final presentation because it produced the best model fit

(R2) for prokaryotes and microeukaryotes in the canonical analyses of principal coordinates

(CAP; methods to follow).

We conducted a similar analysis for the 35 soil variables. For this analysis, we used a Can-

berra (weighted Manhattan) distance matrix, calculated from Wisconsin double transformed

data to account for different measurement scales for each soil variable. We chose Canberra dis-

tance rather than the more commonly used Euclidean distance because our dataset had several

zeros (values that were below instrument detection limits) and Canberra distance is less sensi-

tive to shared zeros than Euclidean distance. In this particular case, all distance values hap-

pened to fall between 0 and 1, so we converted these numbers to similarity (1-dissimilarity) to

ease interpretation. We caution that this can only be done when similarity scores fall between

0 and 1, and similarity scores from this study and should not be compared to similarity scores

from other studies. For each of the three analyses described above (Fig 2A–2C), we also con-

ducted linear mixed effects models on similarity scores using the lme4 package [28], with treat-

ment coded as fixed effect and site included as random effect to control for non-independence

of technical replicates taken from the same site (a square-root transformation was applied

when necessary to achieve homogeneity of residuals). When omnibus tests were significant (α
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= 0.05), pairwise comparisons between treatments were estimated using the glht function in

the multcomp package [29].

To visualize community differences and to identify the soil variables that relate most

strongly to microbial community composition, we used a constrained ordination approach

using all 183 technical replicates (canonical analysis of principal coordinates; capscale function

in phyloseq) [30, 31]. Like canonical correlation analysis (CCA), CAP can be used with any

distance measure and can also remove variance from nuisance variables (we removed latitude

and longitude). Unlike CCA, which assumes a unimodal distribution of species along gradi-

ents, CAP assumes a linear distribution of species along gradients, which is well suited to envi-

ronmental gradients at the regional scale (i.e. southeastern Massachusetts). Using weighted

UniFrac distance measures, we used a model selection approach to maximize model fit (R2).

Redundant covariates were removed, as were covariates that contributed a variance inflation

factor of greater than 10. Forward selection was run on soil variables using the ordiR2step

function with 200 permutations [32]. Through this process, we achieved a final model with the

highest explanatory power and the least number of variables for each of the 16S and 18S data-

sets. To visualize how environmental gradients align with communities, the top six continuous

predictors were plotted as directional vectors.

To visualize differences in within-sample dominance of prokaryotic and microeukaryotic

taxa, we constructed differential heat trees using the metacoder package [33]. This method

expands on the heat map concept by incorporating both the differential abundance and the

hierarchical organization of each taxon. We used the log2 median ratio to compare the differ-

ential abundance of each taxon, using natural wetlands as the universal reference group to

compare against the other treatments. For instance, the median abundance for a given bacte-

rial class across all the natural wetland samples was divided by the median abundance of that

same bacterial class across all the farm samples, and a log2 transformation was applied to nor-

malize the data. Finally, a Wilcoxon Rank-Sum test was used, such that significant differences

were shown in color, and non-significant comparisons were shown in grey.

Results

Question 1: Which treatments had the most similar microbial communities

to natural wetlands?

For prokaryote communities, flooded sites and restored sites had the highest median phyloge-

netic similarity to natural sites, followed by old retired sites, young retired sites, and farms,

which had the lowest similarity (Fig 2A). The same pattern held for microeukaryote commu-

nities; restored sites and flooded sites had the highest median phylogenetic similarity to natural

wetlands, followed by young retired sites, old retired sites, and farm sites (Fig 2B). In a similar

fashion, the multivariate analysis of all 35 soil variables revealed that flooded sites were the

most similar to natural sites, followed by restored sites (Fig 2C). Young retired sites, old retired

sites and farms had equally lower similarity to natural sites (Fig 2C).

Question 2: How much variation in community composition can be

explained by soil variables, and which of these variables have the strongest

association with microbial community structure?

Canonical analysis of principal coordinates revealed microbial community differences and the

soil variables that explained the greatest variation. The six strongest soil predictors of prokary-

ote community composition were: potassium base saturation, sodium, zinc, cation exchange

capacity, denitrification potential, and iron. Potassium base saturation and sodium structured
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communities along CAP axis 1 (Fig 3A), in which farm sites, young retired sites and old

retired sites had a higher percent potassium base saturation, and restored and flooded sites

had higher sodium. Cation exchange capacity was also a large predictor, structuring communi-

ties along CAP axis 1 and CAP axis 2. Together, soil variables explained 45% of the variation of

the weighted UniFrac distance, whereas 52% of the variation was unconstrained. Conditional

variables (latitude and longitude) explained the remaining 3% of the variation in this dataset.

For microeukaryotes, the six largest predictors of community composition were: potassium

base saturation, sodium, pH, denitrification potential, copper and phosphorus. Similar to the

prokaryotes, microeukaryote communities in farmed, young retired, and old retired sites were

correlated with potassium base saturation and sodium along CAP axis 1 (Fig 3B), whereas the

higher pH at restored and passively restored sites was correlated with communities at restored

sites. Together, soil variables explained 44% of the variation in the weighted UniFrac distance,

whereas 49% of the variation was unconstrained. Conditional variables (latitude and longi-

tude) explained the remaining 7% of the variation in this dataset.

The twelve soil variables that were identified as important in the CAP analysis also varied

significantly across treatments (Table 1). Three variables important to wetland development—

denitrification potential, cation exchange capacity, and soil organic matter—were highest in

flooded sites compared to farm sites, young retired sites, and restored sites. However, we note

that that the difference in denitrification potential between flooded sites and restored sites was

not statistically significant, and all treatments had less than 12% of the soil organic matter

found in natural sites.

Question 3: Which taxa are indicators of wetland development?

We used heat trees to visualize how the within-sample dominance of taxa differed between

treatments and natural wetlands. For prokaryotes, Parcubacteria and Methanobacteria were

more dominant in natural wetlands, shown in teal (Fig 4), whereas Actinobacteria and Bacter-
oidia were typically less dominant in natural wetlands, shown in orange. We identified a possi-

ble indicator of wetland development in the phylum Gemmatimonadetes, which was more

dominant in natural sites when compared to the farm and retired sites (shown in teal), but

equally dominant when compared to flooded sites and restored sites (shown in grey). Another

possible indicator was a decline in FCPU426, which was more dominant in farm sites and

retired sites when compared to natural sites (shown in orange), but equally dominant when

compared to flooded sites and restored sites (shown in grey). Generally speaking, heat trees for

farm sites and retired sites were similar (top row), and heat trees for flooded sites and restored

sites were similar (bottom row), corroborating our earlier findings from the CAP analysis.

For microeukaryotes, natural sites consistently lacked Nucletmycea, a superclass that

includes the classes Fungi and Cristidicoidea (Fig 5). While Nucletmycea was a clear indicator

of cranberry farming and its legacy, Rigifilida and Metamonada were consistently more domi-

nant in natural wetlands compared to all other treatments. Rhizaria was a possible indicator of

wetland development; it was more abundant in natural sites, but differences in abundance

were much smaller when compared to flooded sites and restored sites (indicated by muted teal

and orange shading). Generally speaking, heat trees for farm sites and retired sites were similar

Fig 2. Similarity between treatments and natural wetland sites. Plots depict similarity scores for (A) prokaryote

communities; (B) microeukaryote communities; and (C) Soil variables. Points indicate the mean similarity of each site

to all samples drawn from natural sites, and vertical error bars are standard deviations of similarity scores (eight

technical replicates are represented). Grey box plots indicate the median and interquartile range of all soil samples for

each treatment category.

https://doi.org/10.1371/journal.pone.0260933.g002
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(top row), and heat trees for flooded sites and restored sites were similar (bottom row), corrob-

orating our earlier findings from the CAP analysis.

We further examined which taxa contributed to the class level patterns detected above.

While no prokaryotic genera showed any particular trends during data exploration, a strong

pattern appeared within the eukaryote dataset: the fungal genera Archaeorhizomyces and Cair-
neyella were the two most abundant eukaryotic genera across the dataset; together, these gen-

era occupied an average of 36% of the total microeukaryote gene abundance per sample, and

up to 78% of the total microeukaryote community in one sample. These genera were dominant

in cranberry farms, and decreased markedly in retired, restored and natural wetlands (Fig 6).

Discussion

Restoration success is often defined by the convergence of biological and functional variables

towards natural reference conditions. Ecological restoration aims to achieve this by filling in

drainage ditches of retired cranberry farms and breaking up the sand layer through surface

roughening, thereby retaining water, slowing decomposition, and facilitating soil organic mat-

ter accumulation on top of the sandy agricultural substrate. We compared ecological restora-

tion to the retired condition and the permanently flooded condition, which is achieved by

retaining the agricultural dams that were formerly used for the cranberry harvest. We found

that flooding was remarkably effective at jumpstarting wetland biological and functional

Fig 3. Canonical analysis of principal coordinates. (A) Prokaryotic communities were distinct (capscale, p< 0.01),

and the six largest predictors of community composition were: potassium base saturation, sodium, zinc, cation

exchange capacity, denitrification potential, and iron. Together, soil variables explained 45% of the variation of the

weighted UniFrac distance, whereas 52% of the variation was unconstrained. Conditional variables (latitude and

longitude) explained the remaining 3% of the variation in this dataset. (B) Microeukaryote communities were distinct

(capscale, p<0.01), and the six largest predictors of community composition were: potassium base saturation, sodium,

pH, denitrification potential, copper and phosphorus. Together, soil variables explained 44% of the variation in the

weighted UniFrac distance, whereas 49% of the variation was unconstrained. Conditional variables (latitude and

longitude) explained the remaining 7% of the variation in this dataset.

https://doi.org/10.1371/journal.pone.0260933.g003

Table 1. Top twelve soil variables that were identified as important predictors of communities of either prokaryotes or microeukaryotes, as determined by canoni-

cal analysis of principal coordinates, along with soil moisture.

Variable Farm New Retired Old Retired Flooded Restored Natural p-value2

Cation exchange capacity (meq 100 g-1 soil) 6.44 (1.75)b 10.57 (3.09)b 8.75 (2.53)b 12.48 (1.65)b 9.02 (3.46)b 24.84 (12.60)a <0.001

Copper content (ppm) 0.11 (0.02) 0.77 (1.16) 0.70 (0.95) 0.78 (0.44) 0.19 (0.15) 1.00 (0.63) ns

Denitrification potential (ng N g dry soil-1 hour-1) 6.2 (12.3) 51.1 (131.3) 124.9 (253.6) 456.5 (727.3) 256.4 (423.8) 883.2 (1,519.8) ns

Iron content (ppm) 42.75 (22.75) 67.45 (41.87) 68.43 (56.34) 138.01 (49.20) 107.5 (68.32) 561.55 (855.79) ns

Magnesium base saturation (%) 3.61 (0.65) 3.36 (1.29) 2.32 (1.02) 3.63 (1.14) 4.34 (1.76) 9.61 (8.18) ns

Methane (ug CH4 g dry soil-1 hour-1) 0.01 (0.00)b 0.02 (0.01)b 0.01 (0.00)b 0.06 (0.14)ab 0.03 (0.04)b 0.29 (0.84)a <0.001

pH 4.57 (0.19)b 4.32 (0.25)b 4.53 (0.38)b 4.67 (0.52)ab 4.95 (0.27)a 4.17 (0.48)bc <0.001

Phosphorus content (ppm) 3.84 (1.62) 5.59 (2.03) 3.68 (1.55) 4.56 (2.10) 3.43 (2.72) 4.03 (2.00) ns

Potassium base saturation (%) 1.94 (0.39)a 1.47 (0.59)a 0.86 (0.31)b 0.85 (0.33)b 0.76 (0.32)b 1.16 (0.46)ab <0.001

Sodium content (ppm) 10.80 (3.78)b 11.58 (5.19)b 8.35 (5.89)b 51.33 (62.77)b 19.69 (11.27)b 90.47 (41.16)a <0.001

Soil moisture (%) 19.1 (6.6)b 24.4 (9.7)b 14.0 (10.2)b 34.7 (16.9)b 36.6 (12.7)b 74.4 (21.4)a <0.001

Soil organic matter (%) 2.22 (0.89)b 3.87 (2.20)b 2.71 (1.42)b 6.02 (2.80)b 3.96 (2.81)b 50.76 (33.45)a <0.001

Zinc content (ppm) 0.87 (0.38)b 2.01 (1.23)b 0.90 (0.68)b 5.24 (3.02)b 2.18 (1.86)b 9.64 (5.26)a <0.001

Variables are listed in alphabetical order, values are means and standard deviations, and N is the total number of technical replicates within each treatment category. P-

values are derived from linear mixed effects models conducted on each response variable, which were approximated using Type II Wald chisquare tests as implemented

in the lme4 and car packages [28]. When omnibus tests were significant, pairwise comparisons were estimated using Tukey contrasts in the multcomp package [29].

https://doi.org/10.1371/journal.pone.0260933.t001
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characteristics, even exceeding restoration in terms of soil organic matter accumulation and

cation exchange capacity, after only four years. In contrast, retired sites failed to achieve natu-

ral wetland conditions, even after several decades following retirement. These results suggest

that farms that are slated for retirement should be left in the flooded condition rather than the

drained condition.

Spatial autocorrelation is often in inherent in observational studies, and should be consid-

ered in the interpretation of results. The Tidmarsh East (restored sites) were close in proximity

to the natural sites so there is some uncertainty as to whether the patterns observed here are

geographical artifacts or representative of restoration activities as a whole. Yet, while we found

spatial autocorrelation (for the microeukaryote dataset only), it was unlikely to have affected

our major conclusions: there was no relationship between geography and soil variables, but

treatments clearly had a consistent effect on soil variables, suggesting that treatment effects

overwhelmed intrinsic environmental gradients (Fig 1, Table 1). Likewise, the flooded sites

were the furthest geographically from the natural sites, yet they often had the highest similarity

to the natural sites, also indicating that the effect of treatments were much stronger than

microbial dispersal limitation.

While some soil-based functions, such as respiration and soil organic matter formation are

widespread among microbial taxa, other functions such methanogenesis and denitrification

Fig 4. Differences in prokaryotic taxa between treatments and natural wetlands. Heat trees were constructed using the metacoder package [33], at

the class taxonomic level. The size of the node in each cladogram is proportional to the number of unique classes within each phylum. Color intensity

is proportional to the difference in abundance between natural sites and the other treatments, as calculated from the log2 ratio of median abundance.

Young retired and old retired samples were pooled together for simplicity, since they had similar communities. Taxa that have a higher within-

sample dominance in natural sites are shown in teal whereas taxa that have a higher within-sample dominance in farm, retired, flooded, and restored

wetlands are shown in orange. Nonsignificant comparisons are shown in grey. Colored labels showcase example taxa that were consistently more

(teal) or less (orange) abundant in natural sites or displayed variation across the four heat trees.

https://doi.org/10.1371/journal.pone.0260933.g004
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may be narrowly distributed. In our study we found a strong correlation between microbial

communities and soil functions; half of the variation in prokaryotes and microeukaryote com-

munities could be explained by soil variables, including cation exchange capacity and denitrifi-

cation. It has been previously found that soils with high denitrification potential also have a

discrete microbial community [11, 34, 35]. In our study, denitrification was among the top six

predictors for both prokaryotes and microeukaryotes, suggesting that the microeukaryotes

surveyed here are contributing to denitrification themselves [36], or that microeukaryote com-

munities sort with specific denitrifying bacterial communities. Furthermore, high methane

fluxes in natural sites were associated with the dominance of Methanobacteria, a class of

archaea containing several methanogens. These results lend further support to the idea that

microbial taxa (or taxonomic groups) play deterministic roles in soil functions that are impor-

tant to restoration practitioners, rather than being redundant to one another.

Microbial communities sorted with denitrification and cation exchange capacity, variables

that restoration seeks to maximize, as well as underlying chemical gradients; prokaryote com-

munities aligned with potassium base saturation, sodium, zinc and iron, and microeukaryote

communities aligned with potassium base saturation, sodium, pH and copper. The high potas-

sium base saturation in farm sites and retired sites may reflect a legacy of fertilizer application,

Fig 5. Differences in eukaryotic taxa between management histories and natural wetlands. Heat trees were constructed using the metacoder package, at

the class level. The size of the nodes in each cladogram is proportional to the number of unique classes within each phylum, and color intensity is

proportionate to the difference in abundance between natural sites and each of the other management categories, calculated from the log2 ratio of median

abundance. Young retired and old retired samples were pooled together for simplicity, since they had similar communities. Taxa that have a higher within-

sample dominance in natural sites are shown in teal whereas taxa that have a higher within-sample dominance in farm, retired, flooded, and restored

wetlands are shown in orange. Nonsignificant comparisons are shown in grey. Colored labels showcase example taxa that were consistently more (teal) or

less (orange) abundant in natural sites or displayed variation across the four heat trees.

https://doi.org/10.1371/journal.pone.0260933.g005
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whereas higher amounts of iron and zinc in flooded, restored and natural sites may be a direct

result of the greater amount of soil organic matter found in these soils [37]. Natural sites were

also saltier and more acidic than the other treatments, both of which are known environmental

filters of microbial communities [38, 39]. Taken together, these results suggest that the effects

of restoration treatments on microbial communities can be mediated by indirect effects on soil

chemistry.

Differences in taxa dominance across treatments provided context for interpreting differ-

ences in biogeochemical variables. For instance, the high within-sample dominance of the

methanogen Methanobacteria in natural and flooded sites makes sense, given that these sites

both had saturated soils and some standing water. It has been previously noted that Euryarch-
aeota, a phylum containing methanogens, dominates wet ecosystems whereas Thaumarch-
aeota, a phylum containing ammonia oxidizers, dominates in drier systems [40]. Our finding

that Gemmatimonadetes is a possible indicator of wetland development was supported by [41],

which found Gemmatimonadetes in vegetated, but not bare wetlands. Actinobacteria and Bac-
teroidia, which were consistently less dominant in natural sites compared with the other treat-

ments, may be indicators of disturbance or early succession, as noted by [42]. There are fewer

ecological data sets on wetland microeukaryotes to compare our results to, but we note that

Rhizaria, a large group that includes predators of both bacteria and autotrophic protists [43],

was also identified as possible indicator of wetland development in our study. Longitudinal

Fig 6. Relative dominance of two most common eukaryotic genera. The two most common eukaryotic genera were Archaeorhizomyces and Cairneyella, suspected

mycorrhizal symbionts of the cranberry crop. Both genera had lower median within-sample dominance in young retired farms, old retired farms, flooded, restored, and

natural sites than in cranberry farms. Points indicate mean abundance for each site and vertical lines are standard errors calculated from eight technical replicates. Grey

box plots indicate the median and interquartile range of all soil samples within each treatment category.

https://doi.org/10.1371/journal.pone.0260933.g006
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studies over time could reveal early, mid, and late successional indicator communities, and

complementary isotope labeling studies could provide insights into trophic interactions [44].

Cranberries are a unique agricultural crop because they are a native wetland perennial,

grown in monocultures. We detected a belowground legacy of cranberry cultivation on the

soil microbiome, findings which are echoed in investigations of Vaccinium patches in natural

bogs [45, 46]. The two most abundant genera across the microeukaryote dataset, Archaeorhizo-
myces spp. and Cairneyella spp., are suspected ectomycorrhizal and ericoid mycorrhizal symbi-

onts of the cranberry crop [47, 48]. The decline of these genera in restored sites in particular

was likely due to soil disturbance, uprooting of cranberry vines, and loss of host plants. Previ-

ous vegetation surveys in ecologically restored, former farms indicate that native vegetation

establishes quickly following restoration, replacing most cranberry plants [10, 12, 49]. While it

appears that these fungal symbionts track with aboveground cranberry abundance, future

work evaluating rhizosphere community assembly around controlled plantings of cranberry

and native wetland plants could reveal whether soil microbes control aboveground plant suc-

cession, or vice versa.

In previous studies, we have described the desirable impacts that active ecological restora-

tion of retired cranberry farms has on both biogeochemical characteristics [50, 51] and micro-

bial community structure [11]. Here, we found that flooding also promotes beneficial wetland

functions, even exceeding wetland restoration for soil organic matter formation and cation

exchange capacity. While flooding clearly promotes wetland biogeochemistry, flooding does

not meet other restoration goals, such as repairing stream connectivity for fish and other

aquatic life. Flooding is achieved by leaving artificial dams and water control structures in

place, which necessarily impedes the flow of any streams or rivers on site. Many coastal cran-

berry farms are located on historically important migration and spawning grounds for anadro-

mous fish such as alewife, blueback herring, rainbow smelt, American shad, and white perch.

Restoration of these migratory habitats is one of the explicit primary goals of ecological resto-

ration, and these goals are definitively not met when impoundments are left in place.

In conclusion, flooded and restored sites approached soil attributes of natural wetland sites,

including prokaryote communities, microeukaryote communities, and 35 key soil variables.

Effects were surprisingly strong for flooded sites, likely due to wetter conditions that support

soil organic matter accumulation. While these results underscore the foundational role that

water retention plays on soil development, we do not suggest that flooding should be a substi-

tute for active ecological restoration. Rather, retired farms should be flooded during the resto-

ration waiting period, or when ecological restoration is not an option.
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