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Abstract

Carbapenems are the last resort antimicrobials for the treatment of extended spectrum β-

lactamases (ESBLs) producing Enterobacteriaceae. Emergence of carbapenems resistant

group B2 uropathogenic E. coli (UPEC) is a major concern because of their high virulence.

Prevalence of these enzymes and multidrug resistance (MDR) among B2 UPEC isolates

from Iraqi outpatients with acute urinary tract infection (UTI) was evaluated in this research.

Urine cultures were performed and the isolates were identified biochemically. Escherichia

coli isolates were tested for phylogroup reference by quadraplex PCR, then B2 isolates

were detected for antimicrobial resistance by disc diffusion test and carbapenemase genes

by PCR. Escherichia coli was the most prevalent among Gram-negative isolates (66.6%)

and B2 was the most detected phylogroup among E. coli isolates (33.9%). Most of B2 iso-

lates showed high resistance rates to tested antimicrobials, especially β-lactams with MDR

revealed in 100% of them. Whereas, low resistance rates were noted against carbapenems,

aminoglycosides and nitrofurantoin. Carbapenemase genes were detected in 76.3% of B2

isolates. Of which, blaOXA-48 was the most frequent (57.8%), followed by blaPER (47.3%),

blaKPC (15.7%), blaVEB and blaVIM (10.5%, for each). Whereas, blaGES and blaIMP genes

were not found. Coproduction of these genes occurred among 17 isolates. The combination

of blaOXA-48 and blaPER was the most frequent (41.1%). All carbapenemase producing iso-

lates were MDR. These results revealed high prevalence of carbapenemase genes and

MDR among B2 UPEC recovered in this study. In the study area. it is strongly advised to

use aminoglycosides and nitrofurantoin for empirical treatment of UPEC.

Introduction

Escherichia coli (E. coli) is the most versatile known microorganism [1]. It is a common com-

mensal of gastrointestinal tract of human and animal. Also, it comprises pathogenic strains
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divided into intestinal or diarrhoeagenic E. coli (DEC) and extraintestinal pathogenic E. coli
(ExPEC). The main infections caused by ExPEC are urinary tract infections (UTIs), sepsis,

meningitis, and wound infections [2–4]. A large proportion of humans are affected by UTIs,

with annual prevalence of about 150 million cases. Yearly, $5 billion are spent for treatment of

UTIs in the USA with estimated cases of 11 million per year [5]. Uropathogenic E. coli is the

most prevalent ExPEC and it is the primary cause of UTIs all over the world [3]. Uropatho-

genic E. coli strains have a wide variety of virulence factors which include: immune suppres-

sors, adhesins (fimbrial and afimbrial adhesins), siderophore systems, the serum resistance,

the capsular polysaccharide K antigen, and toxins [3, 5].

Carbapenems emerged as bactericidal β-lactam antimicrobials with confirmed activity in

severe infections caused by extended spectrum β-lactamases (ESBLs) producers [6]. These

antimicrobials have broad spectrum antibacterial activity and have a unique structure that is

composed of a carbapenem linked to a β-lactam ring which provides protection against most β
lactamases such as metallo-β-lactamases (MBLs) and ESBLs [7]. Therefore; carbapenems are

considered one of the most reliable drugs for treating bacterial infections and the occurrence

and distribution of resistance to them constitute a major public health problem [8]. There are

three possible mechanisms for carbapenems’ resistance in the family Enterobacteriaceae.

These are: efflux pump overactivity, porin loss or mutation, and carbapenemase production,

which is the main mechanism of resistance to these antimicrobials [9–11]. Carbapenemases

are enzymes (β-lactamases) that are encoded by both chromosomal and plasmid-mediated

genes and structurally belonging to different Ambler classes (A, B, and D). These enzymes can

hydrolyze a broad range of β-lactams, including carbapenems, cephalosporins, penicillin, and

aztreonam. Also, bacterial strains possessing carbapenemases are often resistant to multiple

drugs (MDR) [11]. Most of these enzymes have been mainly found in Enterobacteriaceae,

Pseudomonas aeruginosa, and Acinetobacter baumannii. For the Enterobacteriaceae family,

class A carbapenemases (KPC enzymes) appeared in North Carolina (USA) in 1996 and then

spread to Europe; class B discovered as VIM-1 in E. coli in Greece, but rapidly spread in Klebsi-
ella pneumoniae (K. pneumoniae), becoming endemic in that country as well as in other Euro-

pean countries; and OXA-48 (class D) which was first reported in Turkey in K. pneumoniae,
and later occurred in other Mediterranean countries [8, 11]. Nowadays, carbapenemases in

Enterobacteriaceae are mainly found in K. pneumoniae, and to a much lesser extent in Escheri-
chia coli (E. coli) and other enterobacterial species, with a higher prevalence in southern

Europe and Asia than in other parts of the world. It has recently been concluded that global

spread of carbapenems-resistant enterobacterial isolates (CRE) in the future will be dominated

in the hospital environment by K. pneumoniae producing all types of carbapenemases, mainly

KPC, VIM, NDM, and OXA-48, and in the community by E. coli having NDM or OXA-type

(OXA-48 and OXA- 181) enzymes [11].

Multidrug resistance has been increased all over the world that is considered a public health

threat. Several recent investigations reported the emergence of multidrug-resistant bacterial

pathogens from different origins including humans, birds, cattle, and fish that increase the

need for routine application of the antimicrobial susceptibility testing to detect the antibiotic

of choice as well as the screening of the emerging MDR strains [12–15]. Worldwide, there is a

major concern regarding the high prevalence of antimicrobial resistance and MDR among

UPEC. By 2050, it has been estimated that more than 3 million people may lose their lives each

year as a result of increase in MDR. A major concern in this respect is the spread of carbape-

nem-resistant strains all over the world [3].

Strains of E. coli are divided into eight phylogroups (A, B1, B2, C, D, E, F and clade I) of

which group B2 strains are the most virulent and the most common causative agents of UTI

[16, 17]. Emergence of carbapenem resistant group B2 UPEC is a major concern because of
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their high virulence. Strains with high antimicrobial resistance accompanied by high virulence

may emerge and this may lead to treatment failure and loss of effective treatment [10]. So that,

awareness should be taken to prevent such strains from reaching our patients especially those

who are immunocompromised. One of the effective measurements to achieve this aim is to do

periodic surveillance of antimicrobial resistance of UPEC by both phenotypic and genotypic

procedures. Selection of appropriate prevention and containment options requires good

knowledge of the prevalence and incidence of carbapenemases. Strains-producing these

enzymes are not limited to hospital environment, but also occur among hospitals, long-term

care facilities, community, animals, and the environment [11]. As it is difficult to develop

novel antimicrobial agents, efforts should be concentrated on the prevention of the spread of

carbapenemase producers by early detection and reinforced hygiene measures [18] and careful

monitoring of use of antimicrobials for UTI treatment is necessary [19]. In addition, predomi-

nance of carbapenemases among B2 E. coli isolates was reported from different parts of the

world [20–23]. Hence, this research was designed to evaluate the prevalence of carbapenemase

genes and MDR among B2 UPEC isolates from Iraqi outpatients in Wasit Province with acute

UTI by multiplex PCR protocols.

Materials and methods

Specimen collection and processing

Midstream urine samples were collected from outpatients attending AlKarama hospital and

Al-Kut hospital for Gynecology and Obstetrics and Pediatrics in Al-Kut/Wasit Province/Iraq,

during the period from July, 2018 to January, 2019. The urine samples were collected into ster-

ile screw capped test tubes and streaked immediately on MacConkey agar (HIMEDIA, India)

and Blood agar (HIMEDIA, India) plates for bacterial isolation [24].

Isolation, identification and phylogenetic grouping of E. coli
Collected urine samples were cultured immediately after collection on MacConkey agar and

Blood agar plates and incubated aerobically at 37˚C for 24 h. Positive urine cultures were

defined by a growth of single morphotype of colony with counts >105CFU/ml [24]. From

each plate single colony (with the appropriate color and morphology, that is, characteristics of

E. coli) was selected and subcultured onto MacConkey agar plate again, incubated, a single col-

ony was selected and subcultured onto tryptic soy agar (TSA) (HIMEDIA, India) plate, and

then kept in refrigerator for further work.

The isolates were identified biochemically by API20E rapid test system depending on the

manufacturer’s instructions (BioMerieux, France).

Thereafter, E. coli isolates were classified into eight phylogenetic groups (A, B1, B2, C, D, E,

F, and clade I) according to the presence of chuA, yjaA, and arpA genes and TspE4.C2 DNA

fragment, depending on methods provided by Clermont et al. [17] At first the DNA was

extracted from the isolates by boiling method described by Yamamoto et al. [25] with modifi-

cation which included suspending 24 hr. old bacterial culture (3 loopfuls) on TSA in 1 ml of

sterile 1X TE buffer (pH 8.0) (Bio Basic, Canada) instead of sterile D.W. The cell suspension

was boiled in water bath at 95˚C for 10 minutes. The suspension was centrifuged at 10,000

rpm for 5 minutes. The supernatant which contains purified DNA was dispensed in 100 μl ali-

quots and stored at -20˚C till use. The phylogroups were determined by quadraplex PCR

(Tables 1 and 2).

This work was approved by the Scientific Committee of the College of Science/ Wasit Uni-

versity/ Wasit Province/ Iraq (Scientific project discussing committee) and also it was per-

formed after obtaining permission from Health Administration of Wasit, Wasit Province/Iraq.
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Oral consent was obtained from each patient for collecting specimens and publication of this

report. The reason for just obtaining oral consent without the need for written consent is that

collection of urine specimens is part of routine clinical laboratory work for diagnosis of these

infections. All patients’ data were anonymous.

Antimicrobial susceptibility of the isolates

Antimicrobial susceptibility of the isolates was performed by the disk diffusion method

according to the instructions of CLSI [30] using Mueller-Hinton agar (HIMEDIA, India). The

used antimicrobials were obtained from Bioanalyse/ Turkey and included: ampicillin (AMP:

10 μg); amoxicillin-clavulanic acid (AMC: 20/10 μg); cefoxitin (FOX: 30 μg); cefotaxime (CTX:

30 μg); ceftazidime (CAZ: 30 μg); ceftriaxone (CRO: 30 μg); cefepime (FEP: 30 μg); aztreonam

(ATM: 30 μg); imipenem (IPM: 10 μg); meropenem (MEM: 10 μg); gentamicin (CN: 10 μg);

amikacin (AK: 30 μg); tetracycline (TE: 30 μg); nalidixic acid (NA: 30 μg); ciprofloxacin (CIP:

5 μg); trimethoprim-sulfamethoxazole (SXT: 1.25/23.75 μg); and nitrofurantoin (F: 300 μg).

Table 1. Primer’s sequence for detection of E. coli phylogroups.

Gene Primer name Primer sequence (50- 30) Product size (bp) Source of primer

chuA chuA. 1b ATGGTACCGGACGAACCAAC 288 Clermont et al. [17]; Clermont et al. [26]

chuA. 2b TGCCGCCAGTACCAAAGACA

yjaA yjaA. 1b CAAACGTGAAGTGTCAGGAG 211 Clermont et al. [17]

yjaA. 2b AATGCGTTCCTCAACCTGTG

TspE4.C2 TspE4.C2.1b CACTATTCGTAAGGTCATCC 152 Clermont et al. [17]

TspE4C2. 2b AGTTTATCGCTGCGGGTCGC

arpA AceK.f AACGCTATTCGCCAGCTTGC 400 Clermont et al. [17]; Clermont et al. [27]

ArpA1.r TCTCCCCATACCGTACGCTA

arpA ArpAgpE.f GATTCCATCTTGTCAAAATATGCC 301 Lescat et al. [28]

ArpAgpE.r GAAAAGAAAAAGAATTCCCAAGAG

trpA trpAgpC.1 AGTTTTATGCCCAGTGCGAG 219 Lescat et al. [28]

trpAgpC.2 TCTGCGCCGGTCACGCCC

trpA trpBA.f CGGCGATAAAGACATCTTCAC 489 Clermont et al. [29]

trpBA.r GCAACGCGGCCTGGCGGAAG

https://doi.org/10.1371/journal.pone.0262984.t001

Table 2. Components of 50μl PCR master mix and amplification conditions for detection of UPEC phylogroups [17].

PCR reaction SterileD.W. Primers DNA Amplification conditions

Quadruplex 38 μl 8 μl: 1 μl each of: 5 μl 1. Initial denaturation at 94˚C for 4 min.

2. 30 cycles of:

• Denaturation at 94˚C for 5 s.

• Annealing at 57˚C (group E) or 59˚C (quadruplex and group C) for 20 s.

• Extension at 72˚C for 1 min.

• chuA-1b, chuA-2b

• yiaA.1b, yiaA.2b

• TspE4C2.1b,

TspE4C2.2b

• Acek.f, ArpA.r

Group E 41 μl 4 μl: 1 μl each of: 5 μl 3. Final extension at 72˚C for 5 min.

• ArpAgpE.f, ArpAgpE.r

• trpBA.f, trpBA.r

Group C 41 μl 4 μl: 1 μl each of: 5 μl

• trpAgpC.1, trpAgpC.2

• trpBA.f, trpBA.r

https://doi.org/10.1371/journal.pone.0262984.t002
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Molecular detection of carbapenemase genes

Protocols for multiplex PCR that were developed by Dallenne et al. [31] were followed for

amplification of carbapenemase genes. For each primer (Table 3), 100 μl of working solution

was prepared by diluting the stock solution (100 pmol/μl) by 1X TE buffer ((Bio Basic, Can-

ada)) (pH 8.0) depending on the general dilution equation: C1V1 = C2V2. So that 1μl of for-

ward primer and 1μl of reverse primer of each gene should contain the appropriate

concentration to be added to the PCR master mix (final volume 50 μl). Primer’s concentrations

ranged from 10 pmole/μl to 25 pmole/μl (Table 4).

Table 3. Primers’ sequence of carbapenemase genes [31].

Multiplex PCR pool Primer name Sequence (5’-3’) Amplicon size (bp)

Multiplex-I: blaVEB, blaPER and blaGES MultiGES-F AGTCGGCTAGACCGGAAAG 399

MultiGES-R TTTGTCCGTGCTCAGGAT

MultiPER-F GCTCCGATAATGAAAGCGT 520

MultiPER-R TTCGGCTTGACTCGGCTGA

MultiVEB-F CATTTCCCGATGCAAAGCGT 648

MultiVEB-R CGAAGTTTCTTTGGACTCTG

Multiplex-II: blaGES and blaOXA-48-like MultiGES-F AGTCGGCTAGACCGGAAAG 399

MultiGES-R TTTGTCCGTGCTCAGGAT

MultiOXA-48-F GCTTGATCGCCCTCGATT 281

MultiOXA-48-R GATTTGCTCCGTGGCCGAAA

Multiplex III: blaIMP, blaVIM, and blaKPC MultiIMP-F TTGACACTCCATTTACDGb 139

MultiIMP-R GATYGAGAATTAAGCCACYCTb

MultiVIM-F GATGGTGTTTGGTCGCATA 390

MultiVIM- R CGAATGCGCAGCACCAG

MultiKPC-F CATTCAAGGGCTTTCTTGCTGC 538

MultiKPC-R ACGACGGCATAGTCATTTGC

bY = T or C; R = A or G; S = G or C; D = A or G or T.

https://doi.org/10.1371/journal.pone.0262984.t003

Table 4. Components of multiplex PCR master mix for the detection of carbapenemase genes (final volume 50 μl) and amplification conditions [31].

Multiplex PCR pool Primer name Required primer’s

concentration (pmol/

50μl)

Added quantities of PCR

master mix components (μl)

Amplification conditions

Primer DNA Sterile

D.W.

1. Initial denaturation at 94˚C for 10 min.

2. 30 cycles of:

• denaturation at 94˚C for 40s.

• annealing at 55˚C for amplification of blaVIM, blaIMP,

blaKPC genes, and 57˚C for amplification of blaGES, and

blaOXA-48 genes.

• extension at 72˚C for 1min;

3. Final elongation step at 72˚C for 7 min.

PCR pool-I: blaVEB,

blaPER and blaGES

MultiGES-F &

R

15 for each F and R primer 1 for each F

and R primer

5 39

MultiPER-F &

R

MultiVEB-F &

R

PCR pool-II: blaGES

and blaOXA-48-like

MultiGES-F &

R

20 for each F and R primer 41

MultiOXA-

48-F & R

PCR pool-III: blaIMP,

blaVIM, and blaKPC

MultiIMP-F &

R

25 for each F and R primer 39

MultiVIM-F &

R

MultiKPC-F 25

MultiKPC-R 10

https://doi.org/10.1371/journal.pone.0262984.t004
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Statistical analysis

Differences in the distributions of the studied determinants were tested by Chi square (SPSS

software, version 2.1, IBM, NC, USA). A P value of� 0.05 was considered to indicate statistical

significance.

Results and discussion

Prevalence of E. coli among uropathogens

Of 1003 urine samples (one sample per patient) only 359 (35.7%) were positive for bacterial

culture, where 168 (46.7%) of them were positive for Gram-negative bacteria. All of these

Gram-negative isolates were identified biochemically by API20E rapid test according to index

provided by the manufacturer (BioMerieux, France).

Among all positive bacterial cultures, E. coli was one of the commonly isolated bacteria

(112/359: 31.9%). Escherichia coli also was the most commonly isolated species among

Gram-negative bacteria (112/168: 66.6%), followed by K. pneumoniae (28: 16.6%), Proteus
mirabilis (P. mirabilis) and Pseudomonas spp. (11: 6.5%, for each) and Enterobacter spp.

(6: 3.5%). These results were similar to those obtained by other Iraqi researchers such as

that which was carried out in Kirkuk city by Alsamarai and Ali [32] where they showed

41.6% of urine samples were culture positive and E. coli was the predominantly isolated

bacteria (57.7%), followed by K. pneumoniae (14.5%), and Proteus spp. (10.3%). In Bagh-

dad, Ghaima et al. [33] reported that 57.9% specimens were positive for bacterial culture

and E. coli was the most common bacteria (34.0%) followed by Klebsiella spp. (14.6%);

Proteus spp. (4.5%); Pseudomonas spp. (3.7%)and Enterobacter sp. (1.4%). Also, similar

results were reported from other countries as those achieved by Rafalskiy et al. [34] in the

Russian Federation where they found that 64.2% of the isolated uropathogens were Gram-

negative and E. coli was the most prevalent (49.1%), followed by K. pneumoniae (9.5%), P.

mirabilis (2.9%), P. aeruginosa (1.7%) and Enterobacter spp. (1.0%). In Grenada, Sharma

et al. [35] showed that 65.4% of the isolates were Gram-negative bacteria with E. coli being

the frequently isolated species (51.5%), followed by K. pneumoniae (20.0%) and P. mirabi-
lis (10.0%). The high predominance of E. coli in patients with UTI is expected and it is well

known by physicians and researchers all over the world as this bacterium represents a nor-

mal component of the intestinal microbiota of humans and animals and has strains with

the potential of causing UTI and other extraintestinal infections. These UPEC strains have

virulence traits that allow their successful colonization. So that, these virulence traits are

considered the most important features differentiating the ExPEC from commensal and

enteric E. coli [36]. Uropathogenic E. coli exhibit various virulence-associated factors

(VFs) that assist them in attaching to, invading, and injuring the host. Among these viru-

lence factors are adhesins (e.g. fmbriae), siderophores, iron-acquisition systems, capsules,

toxins (e.g. haemolysin), invasins, and serum resistance associated proteins [36, 37].

Phylogroups of E. coli isolates

In the present study, a quadraplex PCR assay developed by Clermont et al. [17] was applied to

detect phylogroups’ reference of E. coli isolates (n = 112). The highest frequency of this study’s

isolates was in group B2 (33.9%), followed by group A (24.1%), group D (17.8%), group B1

(8.0%), group C (4.4%) and group F (3.5%), whereas group E was not detected in any isolate.

In addition, 9 isolates (8.0%) were non-typeable (Table 5). This predominance of phylogroup

B2 among UPEC isolates is consistent with other studies conducted by Iraqi researchers

including Merza and Jubrael [38] in Duhok city and Ahmed et al. [39] in Baghdad, who
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demonstrated that group B2 was the most frequently recovered phylogroup (56.7% and 36.0%,

respectively). Furthermore, in ThiQar city, Hussain and Saleh [40] showed that 74% of UPEC

belonged to phylogenetic group B2. Also, studies from different countries indicated that this

group was the most prevalent among UPEC isolates. Among these studies, Iranpour et al. [41]

in Iran, Massot et al. [42] in the Paris area, Miranda-Estrada et al. [43] in Mexico, Katongole

et al. [44] in Uganda and Zhong et al. [45] in China, reported that group B2 had the highest

frequency (39.3%, 34.0%, 42%, 40% and 16.7%, respectively) among UPEC isolates. This pre-

dominance of group B2 among UPEC isolates may be attributed to the fact that most virulence

factors and antibiotic resistance genes existed jointly within this group and this could enhance

survival fitness in urinary tract as recognized by many researchers such as Johnson et al. [46];

Lee et al. [47]; Najafi et al. [48]; Lara et al. [49] and Ali et al. [50].

Resistance of the B2 E. coli isolates to antimicrobials

Susceptibility to 17 antimicrobials was performed for all of the B2 UPEC isolates (n = 38).

Resistance to β-lactams was the most common except carbapenems (imipenem and merope-

nem) to which all of the isolates were sensitive. High resistance rates were also found against

tetracycline, trimethoprim-sulfamethoxazole, and nalidixic acid. Whereas, the isolates showed

high sensitivity to ciprofloxacin, gentamicin, nitrofurantoin and amikacin. (Table 6). Recently,

similar resistance patterns were published by Iraqi researchers [23].

Antimicrobial resistance in UPEC is a major concern in both humans and animals at a

worldwide scale due to its increased resistance to several antibiotics [51], and expanding resis-

tance to different classes of antimicrobial agents generally [52]. Indiscriminate and widespread

use of antibiotics in addition to the practice of prescribing antibiotics to treat UTI without bac-

terial characterization led to increased resistance among uropathogens and to decreased effec-

tiveness of oral therapies [5, 53], which gave an alarming level of antimicrobial resistance

developing in UTI pathogens. Thus, rapid initiation of appropriate empirical treatment

requires a good knowledge of epidemiological data concerning the sensitivity of uropathogens

to antibacterial agents [54]. Furthermore, plasmids harboring resistance determinants can be

transferred between bacteria, even between species, leading to the acquisition of resistance to

new antibiotics via the emergence of mutant strains [55]. Also, some bacteria produce multiple

β-lactamases, which may reduce the efficiency of β-lactam/β-lactamases inhibitor combination

[5]. The rapid development of resistance to β-lactam antibiotics attributed to the emergence of

ESBLs in the enteric bacteria [56]. This may be due to the excessive use of expanded spectrum

cephalosporins (ESC) during clinical practice, where several studies have found a relationship

between third-generation cephalosporins use and acquisition of ESBL-producing strains [57].

Table 5. Distribution of E. coli phylogroups among 112 UPEC isolates from outpatients with acute UTI.

Phylogroup E. coli isolates (n = 112)

No. %

B2 38 33.9

B1 9 8.0

A 27 24.1

D 20 17.8

F 4 3.5

C 5 4.4

E 0 0

Nontypable (NT) 9 8.0

https://doi.org/10.1371/journal.pone.0262984.t005
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Therefore, the limited use of these antibiotics might be helpful to inhibit/avoid the emerging

or spreading of multidrug-resistant Gram-negative bacteria [58]. One hundred percent sensi-

tivity to imipenem and meropenem was observed among all B2 UPEC isolates investigated in

this work. For bacterial infections, these antibacterials are the most reliable last-resort treat-

ment [59]. Furthermore, the low resistance rates against aminoglycosides (gentamicin: 18.4%

and amikacin: 2.6%) reported in the present study may be attributed to the rare use of these

antibiotics in AL-Kut hospitals which may be due to their high costs in comparison with β-lac-

tams [57]. Nitrofurantoin resistance was also noted in 7.8% of E. coli clinical isolates, and this

may be due to the lower frequency use of this drug.

In addition, 100% of this study included isolates were MDR, while none of them were XDR

or PDR. This may be due to the fact that E. coli pathogens have developed resistance to every

class of antibiotics introduced to treat human and animal infections [60], and these infections

are particularly challenging to treat [50]. This high prevalence of MDR among the isolates of

the present study is alarming and necessitate the need for the clinicians to ensure the use of

appropriate antibiotics for recommended periods in adequate doses in order to prevent emer-

gence of multidrug resistant organisms. Many factors may have contributed to such high rates

of resistance including misuse of antibiotics by health care professionals or non-skilled practi-

tioners, misuse of antibiotics by the general public and inadequate surveillance due to lack of

information arising from routine antimicrobial susceptibility testing, like reports from other

developing countries. Careless usage of antibiotics is the most important factor that facilitates

the development of MDR, which triggers the selection and distribution of antibiotic-resistant

pathogens in clinical practice [56, 61]. Iraq is one of the developing countries where antibiotics

are sold over the counter, an attitude that encourages self-medication. On the other hand, it is

remarked that during period, a group of antibiotics become more used than others without

susceptibility tests, which may lead to variability in their resistance [62]. Other factors known

to influence the evolution and transfer of MDR among microorganisms are incomplete doses,

Table 6. Antimicrobial resistance of group B2 E. coli isolates from outpatients with UTI.

Antimicrobial category Antimicrobial agent No. (%) of isolates� (n = 38)

Penicillins Ampicillin (AMP) 38 (100)

Penicillins + β-lactamase inhibitors Amoxicillin-clavulanic acid (AMC) 34 (89.4)

3rd and 4th generation cephalosporins Cefepime (FEP) 32 (84.2)

Ceftazidime (CAZ) 30 (78.9)

Cefotaxime (CTX) 28 (73.6)

Ceftriaxone (CRO) 25 (65.7)

Monobactams Aztreonam (ATM) 25 (65.7)

Cephamycins Cefoxitin (FOX) 15 (39.4)

Carbapenems Imipenem (IPM) 0

Meropenem (MEM) 0

Tetracyclines Tetracycline (TE) 28 (73.6)

Trimethoprim trimethoprim-sulfamethoxazole (SXT) 21 (55.2)

Quinolones Nalidixic acid (NA) 17 (44.7)

Ciprofloxacin (CIP) 10 (26.3)

Aminoglycosides Gentamicin (CN) 7 (18.4)

Amikacin (AK) 1 (2.6)

Nitrofurans Nitrofurantoin (F) 3 (7.8)

�Resistant and intermediate.

https://doi.org/10.1371/journal.pone.0262984.t006
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ease of access, over prescribing antibiotics without laboratory results and indiscriminate use of

antimicrobials in agriculture and livestock sectors [61]. Antibiotics resistance arises quickly

and spreads rapidly, especially when resistance genes are horizontally transferred via plasmids

and integrons among individuals, among species, and even among bacterial kingdom [63].

Much of the problem of antimicrobial resistance has been shown to be due to the presence of

transferable plasmids encoding MDR and their dissemination among different enterobacterial

species and it is common for a single plasmid to simultaneously mediate resistance to multiple

antimicrobials and to be shared among different bacterial genera [64].

These MDR isolates showed resistance to most antimicrobials tested in this study except

carbapenems (all isolates were sensitive), amikacin (2.6%) and nitrofurantoin (7.8%). These

results ensure that continuous and inappropriate use of antimicrobials is a major risk factor

for development of resistance. It was realized that the inappropriate use of antimicrobials has

been shown to play a pivotal role in the emergence of MDR organisms [65, 66]. Also, MDR is

largely associated with ESBLs’ production as mentioned by several researchers [64, 65, 67–69].

Distribution of carbapenemase genes among the isolates

All of this study included B2 E. coli isolates were ESBLs producers with predominance of

CTX-M-1 (unpublished data). In this work, investigated carbapenemase genes included:

blaOXA-48, blaPER, blaKPC, blaVEB, blaVIM, blaGES and blaIMP (Figs 1 and 2). Out of 38 B2 UPEC

isolates, 29 (76.3%) were carbapenemase producers. Of these carbapenemases, blaOXA-48 gene

was the most frequent (57.8%), followed by blaPER (47.3%), blaKPC (15.7%), blaVEB and blaVIM

(10.5%, for each). Whereas, no PCR-amplification products were noticed with blaGES and

blaIMP genes (Table 7).

Also, coproduction of these enzymes occurred among 17 isolates. The combination of

blaOXA-48 and blaPER was the most frequent (41.1%) (Table 8). Antimicrobial susceptibility of

these carbapenemase producers was depicted in Table 9.

From these results, it seems likely that the situation is more complicated than it is expected

as the isolates: (1) belonged to the highly virulent phylogroup B2 and (2) carried not only one

Fig 1. Gel electrophoresis of PCR amplified products for detection of carbapenemases genes: Multiplex I & II. Multiplex I & II: blaGES (399 bp),

blaPER (520 bp), blaVEB (648 bp) and blaOXA-48 (281 bp). Lane m: DNA Ladder (100 pb); Lanes 1, 3, 4 and 6: positive results for blaOXA-48; Lanes 2 and 7:

positive results for blaVEB and blaPER; Lanes 5 and 10: positive results for blaPER; Lanes 8 and 9: positive results for blaVEB; Lane 11: negative results for

all genes.

https://doi.org/10.1371/journal.pone.0262984.g001
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gene but combination of genes in addition to ESBLs’ production. This study results revealed

that all carbapenemase producers (100%) were MDR. Patterns of antimicrobial resistance and

carbapenemase genes of these isolates were presented in Table 10. Multidrug resistance is not

attributed to a certain set of genes but in fact it is a result of possession of a combination of dif-

ferent genes especially ESBLs. Nikaido [70] concluded that MDR is due to accumulation of

genes, each coding for resistance to a single antimicrobial agent, on R plasmids. This accumu-

lation of these genes is carried out by transposons, integrons, and insertion sequences (ISCR).

In UPEC, the mechanisms of antimicrobial resistance are diverse and comprise: production of

inactivating enzymes either hydrolytic enzymes such as β-lactamases or no hydrolytic enzymes

such as aminoglycoside acetyl transferase enzymes. Other mechanisms include: active efflux

pumps, alteration of target site, horizontal gene transfer by insertion sequences, gene cassettes,

integrons, and transposons [3, 71]. Eshetie et al. [72] reported that carbapenemase producing

Enterobacteriaceae had significant drug resistance rates compared to other MDR Enterobac-

teriaceae and that production of these enzymes is one of the main mechanisms in the occur-

rence of drug resistance in this family. So that, Jain et al. [73] concluded that antimicrobial

resistance due to β-lactamases is emerging as a major problem in UTI; routine surveillance of

these β -lactamases will help in control of treatment failures. In fact, one of the critical

Fig 2. Gel electrophoresis of PCR amplified products for detection of carbapenemases genes: Multiplex III. Multiplex III: blaIMP (139 bp), blaVIM

(390 bp) and blaKPC (538 bp). Lane m: DNA Ladder (100 pb); Lanes 1, 6 and 8: negative results for blaIMP, blaVIM and blaKPC; Lanes 2, 3, 9 and 10:

positive results for blaVIM; Lanes 4, 5, 7, 11, and 12: positive results for blaKPC.

https://doi.org/10.1371/journal.pone.0262984.g002

Table 7. Distribution of carbapenemase genes among B2 E. coli isolates from outpatients with acute UTI.

Carbapenemase gene No. (%) of isolates (n = 38)

blaOXA-48 22 (57.8)

blaPER 18 (47.3)

blaKPC 6 (15.7)

blaVEB 4 (10.5)

blaVIM 4 (10.5)

blaGES 0

blaIMP 0

https://doi.org/10.1371/journal.pone.0262984.t007
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priorities of the World Health Organization is carbapenem-resistant ESBL-producing bacterial

pathogens for which new antibiotics should be designed [4].

In a recent study [23] that was carried out in Iraq, it was found that out of 300 isolates, 11

(3.66%) of them were phenotypically resistant to carbapenems, whereas only 3 (1%) isolates

were genotypically positive for carbapenemases of which blaOXA-48 and blaIMP genes were co-

existed in these 3 isolates, while blaKPC, blaNDM and blaVIM were not found. Furthermore, nine

of these 11 isolates belonged to B2 phylogroup and two were from B1 group. Most other stud-

ies [20–22, 74] showed the predominance of OXA-48 among E. coli isolates, especially B2 iso-

lates. Other studies in Iraq [75] and around the world [44, 76–82] also revealed the occurrence

of different carbapenemase genes among E. coli isolates.

Although, all of the isolates in this study were phenotypically susceptible to imipenem and

meropenem by disc diffusion method, genotypically, carbapenemase production was obvious

among them ranging from 10.5% for both VEB and VIM to 57.8% for OXA-48. This discrep-

ancy was noticed by other researchers [20, 74]. It was explained that detection of

Table 8. Coproduction of carbapenemase genes by B2 E. coli isolates from outpatients with acute UTI.

Combination of Carbapenemase genes No. (%) of isolates (n = 17)

blaOXA-48 + blaPER 7 (41.1)

blaOXA-48 +blaVIM 1 (5.8)

blaOXA-48 +blaKPC 1 (5.8)

blaVEB +blaPER 1 (5.8)

blaOXA-48 + blaPER + blaKPC 3 (17.6)

blaOXA-48 + blaVIM + blaKPC 1 (5.8)

blaOXA-48 + blaPER + blaVEB 1 (5.8)

blaOXA-48 + blaPER + blaKPC + blaVEB 1 (5.8)

blaOXA-48 + blaPER +blaVIM +blaVEB 1 (5.8)

https://doi.org/10.1371/journal.pone.0262984.t008

Table 9. Antimicrobial resistance of carbapenemase producing B2 UPEC isolates.

Antimicrobial category Antimicrobial agent No. (%) of isolates� (n = 29)

Penicillins Ampicillin (AMP) 29 (100)

Penicillins + β-lactamase inhibitors Amoxicillin-clavulanic acid (AMC) 27 (93.1)

3rd and 4th generation cephalosporins Cefepime (FEP) 24 (82.7)

Ceftazidime (CAZ) 24 (82.7)

Cefotaxime (CTX) 23 (79.3)

Ceftriaxone (CRO) 21 (72.4)

Monobactams Aztreonam (ATM) 21 (72.4)

Cephamycins Cefoxitin (FOX) 10 (34.4)

Carbapenems Imipenem (IPM) 0

Meropenem (MEM) 0

Tetracyclines Tetracycline (TE) 21 (72.4)

Trimethoprim trimethoprim-sulfamethoxazole (SXT) 19 (65.5)

Quinolones Nalidixic acid (NA) 16 (55.1)

Ciprofloxacin (CIP) 9 (31)

Aminoglycosides Gentamicin (CN) 7 (24.1)

Amikacin (AK) 1 (3.4)

Nitrofurans Nitrofurantoin (F) 3 (10.3)

�Resistant and intermediate.

https://doi.org/10.1371/journal.pone.0262984.t009
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carbapenemase-producing E. coli (CP- E. coli) isolates is often difficult due to low carbapenem

MICs that may remain within the susceptibility range [83]. Also, OXA-48 enzymes are known

to exhibit only low hydrolytic activity toward carbapenems [84]. Moreover, it seems better to

use ertapenem disc diffusion for phenotypic detection of those especially producing OXA-48

rather than imipenem or meropenem [20]. The same researchers concluded that laboratory

detection of CP-E. coli may be more difficult in comparison with CP-K. pneumoniae, particu-

larly in the case of OXA-48, because: (i) the isolates may appear susceptible to imipenem and

meropenem; and (ii) there is a high frequency of OXA-48-producing isolates without ESBL

co-production.

The results of the present investigation showed high occurrence of carbapenemase genes

among B2 UPEC isolates. This may be due to increased use of carbapenems by physicians for

treatment of serious and even non-serious cases in the study area (personal communication).

Table 10. Phenotypic and genotypic resistance patterns of 29 MDR carbapenemase producing B2 UPEC isolates.

No. (%) of

isolates

Phenotypic resistance� carbapenemase genes

6 (20.6) CTX, CRO, CAZ, FEP, ATM, AMP, AMC, SXT, TE, CIP,

NA

blaOXA-48, blaVIM, blaKPC, blaPER,

blaVEB

3(10.3) CTX, CRO, CAZ, FEP, ATM, AMP, AMC, TE blaPER, blaOXA-48, blaKPC

2 (6.8) CTX, CRO, CAZ, FEP, ATM, AMP, AMC, CN, SXT, TE,

F, CIP, NA

blaPER, blaOXA-48, blaKPC

2 (6.8) CAZ, FEP, FOX, AMP, AMC, TE blaVIM, blaPER, blaOXA-48, blaKPC

1 (3.4) CTX, CRO, CAZ, FEP, FOX, ATM, AMP, AMC, CN, SXT,

NA

blaPER, blaOXA-48

1(3.4) CTX, CRO, CAZ, FEP, ATM, AMP, AMC, CN, SXT, TE,

CIP, NA

blaPER, blaOXA-48

1(3.4) CTX, CRO, CAZ, FEP, FOX, ATM, AMP, AMC, SXT, TE,

CIP, NA

blaPER, blaVEB, blaOXA-48

1 (3.4) CTX, CRO, CAZ, FEP, FOX, ATM, AMP, AMC, CN, CIP,

NA

blaPER

1 (3.4) CTX, CAZ, FEP, FOX, AMP, AMC, AK, SXT, TE blaPER

1 (3.4) CTX, CRO, CAZ, FEP, FOX, ATM, AMP, AMC, SXT, TE blaPER, blaOXA-48

1 (3.4) CTX, CRO, CAZ, FEP, FOX, AMP, AMC, SXT, F, CIP,

NA

blaOXA-48

1 (3.4) CTX, CRO, CAZ, FEP, ATM, AMP, AMC, CN, SXT, TE blaPER, blaOXA-48, blaKPC

1(3.4) CTX, CRO, CAZ, FEP, FOX, ATM, AMP, AMC, TE blaPER, blaVEB

Continued

1 (3.4) CTX, CRO, CAZ, FEP, ATM, AMP, AMC, SXT, TE blaPER, blaVEB, blaOXA-48, blaVIM

1 (3.4) AMP, AMC, SXT, TE, NA blaOXA-48

1 (3.4) AMP, AMC, CN, SXT, NA blaPER, blaOXA-48

1 (3.4) CAZ, AMP, AMC, SXT, TE blaPER

1 (3.4) (CTX, CRO, CAZ, FEP, ATM, AMP, AMC blaPER

1 (3.4) CTX, ATM, AMP, NA blaOXA-48

1 (3.4) FEP, FOX, AMP blaPER

� Cephalosporins (CTX: cefotaxime, CRO: ceftriaxone, CAZ: ceftazidime, FEP: cefepime); Monobactams (ATM:

aztreonam); Penicillins (AMP: ampicillin); Penicillins + β-lactamase inhibitors (AMC: amoxicillin-clavulanic acid);

Trimethoprim (SXT: trimethoprim-sulfamethoxazole); Tetracyclines (TE: tetracycline), Quinolones (CIP:

ciprofloxacin, NA: nalidixic acid). Aminoglycosides (CN: gentamicin, AK; amikacin; Nitrofurans (F: nitrofurantoin),

Cephamycins (FOX: cefoxitin).

https://doi.org/10.1371/journal.pone.0262984.t010
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Also, in this work only B2 isolates were investigated for carbapememases among which these

genes are concentrated. In spain [20], it was revealed that the CP-E. coli occurred after a con-

tinuous increase in resistance to third-generation cephalosporins and fluoroquinolones.

The production of all kinds of carbapenemases by E. coli isolates represent a major issue

with further problem in UTI treatment [60]. From a therapeutic perspective, CRE represent a

threat as only a few antibiotics retain activity against them. This is due to the ability of carbape-

nemases to hydrolyze most other β-lactam antibiotics, and to frequent coexistence in CRE iso-

lates of additional mechanisms of resistance against other antibiotics such as fluoroquinolones

and aminoglycosides [85]. Furthermore, the indiscriminate use of carbapenems can select

resistance to these main drugs and sow seeds for significant therapeutic problems that may

occur in the future. Efficient infection-control methods for outbreak management are also

needed; and prevention approaches, e.g., antibiotic rotation, are needed to reduce the selection

and spread of these highly resistant pathogens [86]. Today, the extensive international move-

ment and exchange has helped OXA-48 producing Enterobacteriaceae to spread from many

Middle-Eastern countries into other parts of the world [11].

Conclusions

This study revealed high occurrence of carbapenemase genes and MDR among phylogroup B2

UPEC isolates from outpatients with acute UTI in Wasit Province, Iraq. These findings may

indicate the concentration of these genes among E. coli phylogroup B2 members. Also, this

study included isolates showed high resistance rates to most antimicrobials used in this work

except aminoglycosides and nitrofurantoin, so that, it is strongly recommended to use amino-

glycosides and nitrofurantoin for empirical treatment of UTIs in the study area.
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