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Abstract

Single-cell RNA sequencing (scRNAseq) has revolutionized our ability to explore
biological systems by enabling the study of gene expression at the individual
cell level. However, handling and analyzing this data often require specialized
expertise. In this contribution, we present scX, an R package built on top of the
Shiny framework, designed to simplify the analysis, exploration, and visualization
of single-cell experiments. scX offers straightforward access to essential scRNAseq
analyses, encompassing marker identification, gene expression profiling, and
differential gene expression analysis. Implemented as a local web application
with an intuitive graphical interface, scX allows users to create customized,
publication-ready plots. Additionally, it seamlessly integrates with popular
single-cell Seurat and SingleCellExperiment R objects, facilitating the rapid
processing and visualization of diverse datasets. In summary, scX serves as a
valuable tool for effortless exploration and sharing of single-cell data, alleviating
some of the complexities associated with scRNAseq analysis.

1 Introduction

After nearly fifteen years of continuous development, single-cell transcriptomics
continues to have a profound impact on the biomedical research field [1–5].
Over the years, various data-processing pipelines have been proposed [6–10], as
well as visualization tools that aimed to ease the analysis of this type of high-
throughput assays [11]. SCope [12], iSEE [13], Loom Viewer, and ShinyCell [14]
are noteworthy tools that primarily concentrate on data visualization, offering
a diverse range of plots and graphical data representations. There are also
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Figure 1. Schematic representation of scX workflow.

alternative tools, such as ASAP [15], SPRING [16], and scViewer [17], that
incorporate single-cell data analysis features. Although they may prove to be
useful for certain analyses, they are somewhat limited in terms of interactivity
and graphical diversity, thereby restricting users’ ability to visually represent
their analyses.

Here we present scX, an R package that deploys a Shiny-based application
developed for researchers to explore single-cell datasets using a variety of tools
that are not typically consolidated into a single software solution. This includes
interactive 3D visualizations of low-dimensional embeddings, the identification
of markers for specific cell groups (including ones defined on-the-fly), analysis
of differentially expressed genes under various conditions, and exploratory data
analysis capabilities through the use of a wide array of publication-ready plot types
(including heatmaps, violin plots, box plots, spike plots, and dot plots). These
tools allow for comprehensive data analysis that may be enriched with continuous
and/or categorical metadata to foster a biologically meaningful characterization
of the data under study.

2 Methods

The scX app can be simply launched after executing two R functions. Starting
from a provided count matrix, SingleCellExperiment object, or a Seurat object,
the function ”createSCEobject” creates the object which is subsequently utilized
within the application. This function automatically executes, in case the corre-
sponding information is absent in the input dataset, a series of preprocessing
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steps, including the calculation of quality control metrics, normalization of the
gene-expression matrix, identification of the most variable genes, estimation of
2-dim and 3-dim dimensionality reductions embeddings (PCA, t-SNE, UMAP),
and community detection. Additionally, differential expression analysis and
marker gene identification tasks are performed for one or more user-specified par-
titions. To carry out all these steps, we rely on the scran and scater Bioconductor
packages [18,19]. The function ”launch scX”, on the other hand, launches the
scX Shiny app. In the following sections, we will describe the design principles
and main functional modules implemented in the application (see Fig. 1).

2.1 Summary module

A summary of the primary descriptive details of the working dataset, such as
the number of cells and genes, the mean number of genes detected per cell,
the number of different user-specified partitions included as metadata, and the
average library size, is presented in the Summary module. Furthermore, the
number of counts and detected features can be visually displayed in relation to
various metadata covariates, allowing the evaluation of potential batch-related
issues.

2.2 Markers module

The ’Cluster markers’ section facilitates the analysis of marker genes, identified
through the use of the findMarkers function from the scran package at the
pre-processing step. These markers are analyzed for any user-specified partition,
typically representing cell types or cell states. When a cell displayed in the
embedding is selected, a table of marker genes specific to the partition to
which that cell belongs is generated. This table includes metrics for each gene
marker. The table can be saved in various formats, including .csv, .xlsx, .pdf, or
copied to the clipboard. By clicking on a gene in the table the corresponding
expression profile can be visualized in the embedding window. Additional
graphical characterizations are provided as violin and spike plots presented at
the bottom of the page. In the ’Find new markers’ section, you can investigate
markers for on-the-fly defined sets of cells, which can be directly selected from
the embedding window using the box or lasso tools. scX calculates marker genes
for the cells of interest, and the marker table, along with the corresponding cell
list, can be downloaded. Similarly to the previous section, clicking on a marker
row generates a visualization of the marker’s expression pattern in the embedding
dataset. Additional graphical characterizations in the form of violin and spike
plots are also produced.

2.3 Gene Expression module

The ’Gene Expression’ module facilitates the exploration of expression patterns
for one or more genes of interest. Expression changes in response to different
categorical and/or numerical covariates can be assessed, and coexpression patterns
between pairs of genes can be analyzed. In the ’Categories’ section, one or more

3/7



genes of interest can be selected (or uploaded from a file). The module displays
the average expression of these genes across the embedded dataset in the ’Scatter’
window. Visualization options, including heatmaps, dot plots, and stacked violin
plots, are also available for analyzing the expression of these genes concerning
different categorical covariates found in the metadata. The ’Field’ section allows
for the analysis of gene expression in conjunction with numerical covariates that
may be present in the metadata within the SCE object. This can include variables
like the number of counts or pseudotime values. Below the embedding, a line plot
illustrates the average expression of the selected genes as a function of the chosen
variables, and a spike plot. Additionally, heatmaps with columns sorted according
to the selected numerical variable, which can be further categorized based on a
chosen categorical variable, and multiline plots comparing the expression profile
of the genes of interest along the analyzed numerical covariate are available.
Finally, the ’Co-expression’ section allows for the examination of coexpression
patterns between selected gene pairs in the embedding space window. The
percentage of co-detection events within categorized groups of cells can also be
assessed and visualized.

2.4 Differential Expression module

In this section, differential expression analysis between two clusters can be
conducted. Differentially expressed genes were identified using the findMarkers
function from the scran package, at the preprocessing step. Interactive selection
of threshold values for both logFC (logarithm of fold change) and the FDR
(False Discovery Rate) significance level is available. The list of differentially
expressed genes is downloadable in various formats, including csv, pdf, and xlsx.
This section also generates a Volcano plot graphical representation, along with
visualizations like violin plots, spike plots, heatmaps, and dot plots, facilitating
a more comprehensive understanding of expression patterns for up- and down-
regulated genes.

2.5 Exploratory Data Analysis module

This module allows for the exploration of relationships between the covariates
included in the metadata of the SCE object. In the ’Categories’ section, you can
use bar plots to analyze one- or two-dimensional distribution functions involving
categorical covariates. The ’Matrix’ tab also allows the generation of bi-variate
count tables.The ’Field’ section of this module enables the exploration of how the
value of one or more continuous covariates changes concerning another variable,
which can be either numerical or categorical. Different types of plots, including
box plots, heatmaps, dot plots, or stacked violin plots, can be generated to assist
in this analysis.

2.6 Visual tools module

This module provides many tools to produce publication-ready pdf plots with
more complex or specific layouts involving gene expression patterns and covariate
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variables.

3 Conclusions

We developed scX, a Shiny-based application that enhances collaboration between
bioinformaticians and experimental biologists in joint projects. The platform is
user-friendly and highly interactive, fostering a collaborative environment that
could significantly advance the development of joint projects.

4 Code availablity

Source code can be downloaded from https://github.com/chernolabs/scX. User
manual available at https://chernolabs.github.io/scX/
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Berthold Göttgens, Nir Hacohen, Muzlifah Haniffa, Martin Hemberg,
Seung Kim, Paul Klenerman, Arnold Kriegstein, Ed Lein, Sten Linnarsson,
Emma Lundberg, Joakim Lundeberg, Partha Majumder, John C Marioni,
Miriam Merad, Musa Mhlanga, Martijn Nawijn, Mihai Netea, Garry
Nolan, Dana Pe’er, Anthony Phillipakis, Chris P Ponting, Stephen Quake,
Wolf Reik, Orit Rozenblatt-Rosen, Joshua Sanes, Rahul Satija, Ton N
Schumacher, Alex Shalek, Ehud Shapiro, Padmanee Sharma, Jay W Shin,
Oliver Stegle, Michael Stratton, Michael J T Stubbington, Fabian J Theis,
Matthias Uhlen, Alexander van Oudenaarden, Allon Wagner, Fiona Watt,
Jonathan Weissman, Barbara Wold, Ramnik Xavier, Nir Yosef, and Human
Cell Atlas Meeting Participants. The human cell atlas. Elife, 6, December
2017.

2. Seitaro Nomura. Single-cell genomics to understand disease pathogenesis.
J. Hum. Genet., 66(1):75–84, January 2021.

5/7
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