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Facile synthesis of Pd@graphene 
nanocomposites with enhanced 
catalytic activity towards Suzuki 
coupling reaction
Mujeeb Khan1*, Mohammed Rafi Shaik1, Syed Farooq Adil1, Mufsir Kuniyil1,2, 
Muhammad Ashraf3, Hajo Frerichs4, Massih Ahmad Sarif4, Mohammed Rafiq H. Siddiqui1, 
Abdulrahman Al–Warthan1, Joselito P. Labis5, Mohammad Shahidul Islam1, 
Wolfgang Tremel4 & Muhammad Nawaz Tahir3*

A facile and chemical specific method to synthesize highly reduced graphene oxide (HRG) and Pd 
(HRG@Pd) nanocomposite is presented. The HRG surfaces are tailored with amine groups using 
1-aminopyrene (1-AP) as functionalizing molecules. The aromatic rings of 1-AP sit on the basal 
planes of HRG through π–π interactions, leaving amino groups outwards (similar like self-assembled 
monolayer on 2D substrates). The amino groups provide the chemically specific binding sites to the 
Pd nucleation which subsequently grow into nanoparticles. HRG@Pd nanocomposite demonstrated 
both uniform distribution of Pd nanoparticles on HRG surface as well as excellent physical stability and 
dispersibility. The surface functionalization was confirmed using, ultraviolet–visible (UV–Vis), Fourier 
transform infra-red and Raman spectroscopy. The size and distribution of Pd nanoparticles on the HRG 
and crystallinity were confirmed using high-resolution transmission electron microscopy and powder 
X-ray diffraction and X-ray photoelectron spectroscopy. The catalytic efficiency of highly reduced 
graphene oxide-pyrene-palladium nanocomposite (HRG-Py-Pd) is tested towards the Suzuki coupling 
reactions of various aryl halides. The kinetics of the catalytic reaction (Suzuki coupling) using HRG-
Py-Pd nanocomposite was monitored using gas chromatography (GC).

The highly reduced graphene oxide (HRG) with its exceptional physicochemical properties is among extensively 
studied materials in the world1,2. It is the strongest, thinnest and stiffest material with several remarkable proper-
ties, including high thermal and electric conductivities and large theoretical specific surface area3,4. These unique 
properties have attracted the vigil eye of researchers in both scientific (academics) and engineering communities 
(industrial applications) 5. Currently, several methods have been applied to obtain bulk quantities of defect free 
graphene, which are mainly classified into the bottom-up and top-down approaches6,7. The most popular meth-
ods under the bottom-up approaches include chemical vapor deposition (CVD), chemical conversion, and arc 
discharge8,9. Whereas, the top-down approach involve, the sequential oxidation and reduction of graphite. These 
chemical methods (top-down approaches), offer excellent opportunities for the production of large quantities of 
graphene like materials, which is best known as highly reduced graphene oxide (HRG)10,11.

The recent advancement in the synthesis of homogeneously dispersed graphene using different reduction 
and functionalization techniques, have led to the development of various graphene based hybrid materials, such 
as graphene-inorganic nanoparticles (NPs) based nanocomposites12,13. The hybridization of inorganic NPs with 
graphene further enhance the properties and broaden the applications ranging from the medical to the energy 
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sector, including catalysis14,15. The catalytic activities of HRGs can be further enhanced either by doping with 
various heteroatoms or blending them with other nanomaterials to form functional nanocomposites16–18. There-
fore, the HRGs not only possess the potential to be promising catalysts but also are attractive support materials 
for developing various hybrid catalysts19.

Among inorganic nanomaterials, metallic nanoparticles based nanocomposites takes the central position 
with range of catalytic applications. Particularly, graphene-palladium (HRG/Pd) nanocomposites have been 
extensively applied as chemical catalysts for several organic transformations20,21. The cooperative effects and 
intrinsic properties of both HRG and Pd, such as, large surface area of HRG, ample presence of active sites and 
inherent catalytic properties of Pd collectively contribute to the improvement of the catalytic properties of hybrid 
nanocatalyst22. The HRG/Pd based nanocatalysts were largely explored for various coupling reactions, such as, 
Heck coupling and Suzuki coupling. For instance, Scheuermann et al. have demonstrated the preparation and 
application of chemically derived functionalized graphene-palladium nanocomposites for the Suzuki–Miyaura 
coupling. The composite has exhibited superior catalytic activities with excellent conversions, high turnover 
frequencies and low palladium leaching when compare to the conventional Pd/C catalyst23.

The preparation of metallic NPs and graphene NPs based nanocomposites are commonly achieved either 
via post or in situ immobilization of metallic nanoparticles onto HRG24. The former involves the mixing of 
separate solutions of graphene and pre-synthesized NPs, whereas, the later required the simultaneous reduction 
of graphite oxide (GO) or graphene oxide (GRO) and the respective metal salts25,26. Graphene-inorganic NPs 
based nanocomposites obtained from either method; usually suffer from aggregation due to the strong Van der 
Waals interactions, such as, π–π interactions, low density and non-uniform coverage of inorganic nanoparticles, 
which adversely effects their potential applications in different fields, including catalysis27–29. The development 
of benign, scalable and reproducible protocols for the synthesis of HRG-metallic nanoparticles is inevitable. 
Surface functionalization of the NPs and/or graphene is usually carried out30 to overcome the aforementioned 
challenges for the preparation of graphene based nanocomposites.

Among surface functionalization methodologies, a number of stabilizing agents (surfactants, polymers, poly-
cyclic aromatics “π–π stacking” molecules) have been applied for the purpose of non-covalent functionalization 
to prevent restacking of graphene nanosheets31,32. Among various stabilizing agents, polycyclic aromatic hydro-
carbons (PAHs), such as, anthracene, tetracene, pyrene, coronene, exhibited excellent potential as stabilizers, 
due to their strong π–π interactions with the conjugated basal planes of grapheme33,34. Among these polycyclic 
aromatics, pyrene and various pyrene derivatives containing –NH2, –COOH, –OH, –SH functional groups have 
gained prominent attention as stabilizers35–37.

Based on our previous experience to synthesize layered transition metal chalcogenides and inorganic nano-
materials based nanocomposites employing Hard Soft Acid Base (HSAB) concept, we demonstrate a novel 
methodology to synthesize highly reduced graphene oxide-pyrene-palladium nanocomposite (HRG-Py-Pd) 
nanocomposites using 1-aminopyrene (1-AP) to tailor the HRG surfaces. 1-aminopyrene (1-AP) as stabilizer 
for this purpose, plays a dual role; (i) the basal plane of 1-AP tailor the surface of HRG through strong π–π 
interactions, and (ii) the amino groups, to provide a homogeneous matrices for the nucleation and growth of Pd 
nanoparticles. The as-prepared nanocatalysts were tested for their catalytic activities towards Suzuki–Miyaura 
coupling reactions in aqueous solution. The catalytic activities of HRG-Py-Pd nanocomposites were compared 
with graphene-palladium (HRG-Pd) nanocomposites without pyrene. All the nanocomposites prepared and the 
organic products obtained from the catalytic reactions were characterized using various analytical and micro-
scopic techniques, such as, XRD, UV–Vis, FT-IR, Raman, XPS, and HRTEM.

Results and discussion
Generally, the catalytic properties of graphene based nanocomposites are adversely affected by the irreversible 
agglomeration of graphene nanosheets due to their strong van der Waals interactions. To minimize the influence, 
we demonstrate an approach to noncovalently functionalize the surface of graphene with polycyclic aromatic 
hydrocarbons (PAHs) with dual function. The overall methodology to prepare HRG-Py-Pd nanocomposites and 
its catalytic application is depicted in Scheme 1. Briefly, the graphene oxide (GO) was prepared using a modified 
Hummer method, which was then reduced by hydrazine hydrate to obtain highly reduced graphene oxide (HRG). 
Subsequently, the HRG and 1-AP were sonicated together in methanol to obtain graphene-pyrene composite 
(HRG-Py). The 1-AP have excellent ability to strongly anchor the planar surface of graphene nanosheets whereas 
the head group (-NH2) helps binding the nucleates of Pd, leading to homogeneous growth of nanoparticles. The 
as-prepared HRG-Py-Pd nanocomposite was used as a catalyst for the Suzuki coupling reactions. Furthermore, its 
catalytic activity was also compared with graphene-palladium (HRG-Pd) nanocomposite prepared without 1-AP.

UV–Vis and FT‑IR analysis.  The stabilizing quality of 1-AP was tested by investigating and comparing the 
dispersibilities of HRG-Py, HRG-Py-Pd with that of HRG and HRG-Pd in aqueous solution. For this purpose, 
the dispersions were prepared by sonicating 5 mg of each sample in 10 ml of water. The result indicates that both 
HRG-Py and HRG-Py-Pd have demonstrated superior dispersions in aqueous solution when compared with 
HRG and HRG-Pd as shown in Fig. 1. This clearly indicates that 1-AP has greatly enhanced the dispersibility of 
both graphene and graphene-Pd nanocomposite.

The adsorption of 1-AP on the surface of HRG was initially confirmed using UV–Vis spectroscopy by com-
paring the UV–Vis spectra of 1-AP, HRG, HRG-Py and HRG-Py-Pd as shown in Fig. 2. The characteristic 
absorption bands of 1-AP appear at ~ 242, ~ 285 and 360 nm (blue line Fig. 2, whereas, the HRG has a typical 
absorption band at ~ 270 nm (black line, Fig. 2). Notably, the existence of bands at ~ 245, ~ 282 and ~ 355 nm in 
the spectra of both HRG-Py and HRG-Py-Pd (red and green lines, Fig. 2) clearly suggest the presence of 1-AP 
on the surface of HRG. Furthermore, this is also confirmed by the absence of these peaks in the UV spectrum of 
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HRG-Pd (Data not shown), which exhibited a typical featureless spectrum. Evidently, the absorption bands in 
both HRG-Py and HRG-Py-Pd become broader due to the strong π-π interactions between the pyrenyl group of 
1-AP and the basal plane of HRG. This noncovalent functionalization of HRG by 1-AP was further confirmed 
by FT-IR analysis as shown in Fig. 3. Although, some of the peaks are unresolved in the FT-IR spectrum of both 
HRG-Py and HRG-Py-Pd, the similarities between these two spectra and their differences with that of the IR 
spectrum of HRG-Pd, strongly suggests the presence of 1-AP on the surface of HRG nanosheets in these samples. 
For instance, the absorption peaks in the range of 800 to 1,700 cm−1 belonging to the aromatics of 1-AP is also 
present in both HRG-Py and HRG-Py-Pd, however, no peaks were observed in the similar range in the FT-IR 
spectrum of HRG-Pd, which clearly suggested the absence of 1-AP in this sample.

Raman spectroscopy was applied to monitor the reduction of GRO. Raman spectra of HRG, HRG-Py and 
HRG-Py-Pd are displayed in Fig. 4. The HRG spectrum (red line), shows the G and D bands centered at 1589 cm−1 
and 1,345 cm−1, respectively. The G band after functionalization with 1-AP becomes narrower which confirm the 
more ordered and SP2 character of carbon support. However, upon Formation of HRG-Py-Pd nanocomposites, 
the G and D bands centered at 1585 and 1,332 cm−1, respectively. The G band again become little broader as 

Scheme 1.   Schematic representation of the preparation of HRG-Py-Pd nanocomposites.

Figure 1.   Digital images of the dispersions of HRG, HRG-Pd, HRG-Py and HRG-Py-Pd.
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compared to HRG-Py which shows little defects. The emergence of some visible changes in the Raman spectra 
of HRG after growth of Pd reflects the formation of HRG-Py-Pd nanocomposites.

XRD analysis.  The crystallinity and phase purity of the HRG-Py-Pd and HRG-Pd was confirmed by XRD 
analysis. The XRD diffractogram of HRG, HRG-Py, HRG-Py-Pd are given in Fig. 5 and the XRD diffractogram 
of HRG-Pd given in supplementary file (Fig. S1). A broad reflection at 2θ = 22.4°, which is the characteristic 
reflection of HRG is present in all these diffractogram. In addition to this reflection, both HRG-Py-Pd and 
HRG-Pd also exhibit several other reflections at 40.02° (111), 46.49° (200), 68.05° (220), 81.74° (311) and 86.24° 
(222), which correspond to the Pd NPs38. These reflections, apart from the characteristic reflections of HRG in 
the XRD diffractograms of both HRG-Py-Pd and HRG-Pd can be indexed to face centered cubic (fcc) structure 
of Pd (JCPDS: 87–0,641, space group: Fm3m (225)). On the basis of the half width of the most intense peak at 
40.02° (111) reflection, the average crystallite size (∼5 nm) of the Pd NPs was determined using the Scherrer 
equation 39.

XPS analysis.  The XPS survey scan reveals the presence of C and O and N. The O1s peak could be due to 
the oxygen containing functional groups present on the surface of HRG. The C 1s and Pd 3d peaks are due to 
graphene and palladium. However, in the case of HRG-Py-Pd, an additional signal corresponding to that of N 

Figure 2.   UV–Vis absorption spectra of 1-Aminopyrene (1-AP, blue line), highly reduced graphene oxide 
(HRG, black line), graphene-pyrene composite (HRG-Py, red line), and graphene-pyrene-Pd (HRG-Py-Pd, 
green line).

Figure 3.   FT-IR spectra of 1-Aminopyrene (1-AP, blue line), graphene-pyrene composite (HRG-Py, red 
line), highly reduced graphene-palladium nanocomposite (HRG-Pd, green line) and graphene-pyrene-Pd 
nanocomposite (HRG-Py-Pd, purple line).
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1s was obtained which could be attributed to the ‘N’ from 1-AP. Comparisons between the high resolution scan 
of the O 1s, Pd 3d, and C 1s was also carried out and is presented in the Fig. 6 (b), (c) and (d) respectively. The 
high resolution spectrum of O 1s gives a signal with binding energy maximum at 535 eV for the HRG-Pd while 
the HRG-Py-Pd yields a signal at 533 eV, moreover the peak area relevant to O 1s in the HRG-Pd signal was 
found to be two times broader than the HRG-Py-Pd which indicates that incorporation of 1-AP on the surface 
of HRG-Pd, decreases the surface oxygen functionalities. Similarly differences were found in the case of the high 
resolution scan of Pd 3d and C 1 s. The high resolution scan of Pd 3d for the HRG-Pd yielded signals at 338.5 eV 
and 344.5 eV with shoulders at 343.8 and 346.1 eV, indicating the presence of some Pd2+. This could be due to 
the interaction of Pd precursor with surface oxygen moieties present on the graphene or due to surface oxidation 
of Pd. However, the HRG-Py-Pd gave sharp peaks for Pd centered at 337.9 eV, 343.2 eV respectively, indicating 
the presence of only Pd0. The difference of binding energy being 5.3 eV is indicative of existence of Pd 3d5/2 and 
Pd 3d3/2 of Pd(0) in the HRG-Pd and HRG-Py-Pd composite40. Upon examination of the reused catalyst using 
XPS, it was found that there is no change in the intensity and oxidation state of the Pd nanoparticles deposited 
on the HRG-Py-Pd. (Fig. S2) Furthermore, the high resolution scan of C 1s spectrum for the HRG-Pd composite 
revealed signals at 287 eV and 289.5 eV, while the HRG-Py-Pd composite yielded signals at 284.6 eV, 285 eV and 
288 eV. The peaks at 287 eV and 289.5 eV can be attributed to –C = O and –C–OH. The most intense peak at 
284.6 eV and 285 eV corresponds to carbon in the –C–C, –C–H or –C = C bonds, while the peak at 288 eV, can 
be attributed to –C–NH2 which arises due to the incorporation of 1-AP on the surface of HRG-Pd41–44.

TEM and EDX analysis.  Morphology and the size of Pd NPs on the surface of HRG both in HRG-Py-
Pd and HRG-Pd was analyzed using high resolution transmission electron microscopy (HRTEM). The Fig. 7 

Figure 4.   Raman analysis of HRG (red line), HRG-Py (green line) and HRG-Py-Pd (blue line).

Figure 5.   XRD diffractograms of highly reduced graphene (HRG, red line), graphene-pyrene composite 
(HRG-Py, green line), and graphene-pyrene-Pd nanocomposite (HRG-Py-Pd, blue line).
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presents the HRTEM data for HRG-Py-Pd nanocomposites where the TEM images of HRG-Pd are shown in 
supplementary materials (Fig. S3). Notably, HRG-Py-Pd, due to the presence of 1-AP exhibit dense and homo-
geneous dispersion of ultrafine smaller size Pd NPs on the surface of HRG (Fig. 7), whereas, the HRG-Pd shows 
larger size excessively aggregated Pd NPs (Fig. S3a). The EDX spectrum of the HRG-py-Pd nanocomposite syn-
thesized through functionalization (Fig. 7d) shows relatively higher amount of Pd on comparing the Pd : C ratio 
with that of Pd : C obtained from the HRG-Pd nanocomposite (Fig. S3b), synthesized without functionalization. 
The histogram showing the size of resulting nanoparticles for both HRG-Py-Pd and HRG-Pd are given in the 
supplementary materials Fig. S4. Since, 1-AP provided suitable surface chemistry and effective active sites for the 
nucleation and growth of homogeneous size Pd NPs. Additionally, it was also observed that, due to the superior 
stabilization of HRG through π–π interactions between pyrenyl ring of 1-AP and the basal plane of HRG, the 
aggregation of HRG nanosheets is largely prevented. This resulted in the enhancement of the surface area, which 
provides more active sites for the higher loading of Pd NPs and a significantly enhanced catalytic activity.

Catalytic application.  Among various catalytic transformations, the Suzuki–Miyaura coupling is one of 
the most extensively studied organic reactions, which has vast industrial applications23. Pd nanoparticles and 
other Pd based catalysts are the most common choice for the Suzuki–Miyaura couplings, due to their superior 
stability and excellent catalytic activities45,46. Such types of coupling reactions are usually carried out at higher 
temperatures in various organic solvents, such as THF47. However, the organic wastes and toxic gases generate 
during these reactions causes adverse effects on the environment and higher temperatures require more energy, 
which increases the cost48. Apart from Pd based heterogeneous catalysts, the Suzuki couplings are also carried 
out using Pd complexes based homogeneous catalysts49. But, these systems need activation by phosphine ligands, 
which are air sensitive and require inert conditions. Moreover, homogeneous catalysts are not easy to separate 
and usually suffer from reusability problems, which inhibit their large scale industrial applications50.

Therefore, developing Pd based heterogeneous catalysts which do not require activation by phosphine ligands 
and can be use under aqueous conditions is highly desirable. Significant efforts have been carried out to develop 
several Pd NPs based heterogeneous catalysts for the Suzuki coupling reactions under water51. Notably, various 
organo boronic acids, which are commonly applied during the Suzuki coupling reactions in aqueous conditions, 
effectively tolerate the presence of water and a variety of functional groups52. Pd based heterogeneous catalysts 
for the Suzuki coupling reactions under aerobic conditions have attracted tremendous attention51. However, a 
lot of work needs to be done to overcome several challenges in this regard53. For instance, the efficiency and 

Figure 6.   XPS analysis of HRG-Pd and HRG-Py-Pd (a) Comparative survey scan of HRD-Pd and HRG-
Py-Pd (b) Comparative high resolution XPS analysis of O 1s spectrum for palladium nanoparticles (c) High 
resolution XPS analysis of Pd 3d spectrum for palladium nanoparticles (d) High resolution XPS analysis of C 1s 
spectrum for HRG-Py-Pd composites.
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reusability of Pd catalysts is severely hampered due to the aggregation of NPs54. It is reported in the literature 
that the aggregation of Pd NPs can be effectively controlled by the proper dispersion of NPs on the surface of 
efficient support materials, such as, metal oxides, inorganic porous and carbon materials55.

The HRG-Py-Pd catalyst described above was applied to the Suzuki–Miyaura coupling reactions, which nei-
ther require any pre-activation nor working under inert conditions. The catalytic activity of the 1-AP function-
alized HRG-Py-Pd is compared with non-functionalized HRG-Pd catalyst. These catalysts were applied for the 
catalytic coupling of substituted aryl halides containing different types electron donating groups (EDG) i.e. + I or 
electron withdrawing groups (EWG) i.e. −I, such as, chloro, bromo and iodobenzene, 4-chlorobenzophenone and 
4-Bromoanisol etc., with a variety of phenylboronic acids to produce biphenyls (cf. Scheme 2). The reactions were 
performed in water containing sodium lauryl sulfate and K3PO4 under aerobic conditions. Due to the effective 
stabilization of HRG-Py-Pd catalyst by 1-AP, it can be easily dispersed in the solvent (water) with simple stirring 
and can be separated from the reaction mixture using centrifugation. Whereas, the non-functionalized HRG-
Pd catalyst exhibited poor dispersibility in water, due to which its catalytic activity was considerably affected.

As stated earlier, the functionalization approach not only provides the functional groups for the binding of Pd 
nanoparticles but also avoids agglomeration that in turn increases the surface area. This was further confirmed 
by measuring the specific surface area of the as-prepared HRG-Py-Pd and HRG-Pd samples. The samples were 
measured using BET nitrogen adsorption after degassing at 120 °C for 16 h. It was revealed that the HRG-Py-
Pd exhibited higher surface of 553.44 m2 g−1 when compared to the surface area of HRG-Pd (472.71 m2/g). 
Additionally, turnover frequency (TOF) values for the both nanocatalysts (HRG-Py-Pd and HRG@Pd) were 

Figure 7.   TEM images of HRG-Py-Pd; (a, b) overview images showing the homogeneity and monodispersity 
of Pd nanoparticles, (c) HRTEM image confirming the monocrystalline nature of Pd nanoparticles and (d) EDX 
spectrum indicating the presence of C and Pd.
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Scheme 2.   HRG‐Py-Pd and HRG‐Pd nanocatlyst catalyzed Suzuki coupling reaction with different aryl halides 
having neutral, + I and –I effects in nature.
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calculated, the data is presented in the supporting information (Fig. S5). The TOF value for the HRG-Py-Pd 
is 5 folds greater than that of HRG@Pd. This enhancement in catalytic activity can be attributed to the better 
catalyst as result of functionalization with 1-aminopyrene. This led to the better control on size and dispersion 
of Pd nanoparticles on the surface of the HRG leading to enhanced catalytic activity i.e. 100% coupled product 
within 5 min of (Iodobenzene precursor) reaction time. The product (HRG-Pd) obtained with functionalizing 
the HRG, took 20 min to perform the same coupling reaction. It was found that the TON values of HRG-Py-Pd 
are almost similar to HRG-Pd and the previously reported nitrogen doped graphene@palladium (NDG@Pd) 
composite (reference is provided in the Supp Info). However, regarding the TOF values, HRG-Py-Pd was found 
to be 5 folds better than HRG-Pd, indicating the important role of 1-AP, in enhancing the catalytic performance. 
Notably, the enhanced surface area of HRG-Py-Pd is attributed to the superior stabilization of the HRG and 
homogeneous distribution of Pd NPs on the surface of HRG.

The detailed catalytic evaluation of the as-prepared catalysts (HRG-Py-Pd and/or HRG-Pd) for the Suzuki 
coupling reactions of some of the aryl halides is compiled in Fig. 8. The results were compared with the catalyst 
obtained without pyrene functionalization (HRG-Pd). The (HRG-Py-Pd) nanocatalyst was evaluated for the 
Suzuki–Miyaura coupling of chloro, bromo and iodo-benzene and different types of substituted aryl halides 
containing both EDG and EWG with a variety of phenylboronic acids in water. Initially, to test the importance 
of Pd based catalysts in the coupling reactions, a blank reaction is performed using iodo benzene and phenyl 
boronic acid as substrates under same conditions. No product is formed in the absence of catalyst. Therefore, the 
reactions were repeated using both HRG-Py-Pd and HRG-Pd catalysts. It was found that the coupling product 

Figure 8.   Time dependent conversion efficiency of the Suzuki reaction employing HRG‐Py-Pd and HRG‐Pd 
for various substrates using GC analysis: (a) chlorobenzene, (b) iodobenzene and (c) bromobenzene, (d) 
4-chlorobenzophenone, (e) 4′-bromoacetophenone (f) comparison of the conversion (100%) of product using 
HRG-Py-Pd and HRG-Pd with respect to time.
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formation using the iodo substituted benzene requires the least reaction time and yields a complete conversion 
product within ~ 5 min of reaction when the catalyst (HRG-Py-Pd) is employed, while the same conversion 
product took 20 min using HRG-Pd as catalyst. Similar pattern of catalytic performance was observed when 
the bromo, chloro—substituted benzene were subjected to coupling reaction. Apart from these compounds, 
the catalytic efficiency of HRG-Py-Pd has also been tested for various substituted aryl halides including 4-chlo-
robenzophenone, 4′-bromoacetophenone, and 4-Bromoanisol. The substituted aryl halides have demonstrated 
slightly less conversion when compared with non-substituted aryl halides, due to the steric hindrance caused by 
the substituents. Moreover, among various substituted aryl halides, compounds containing EDG have yielded 
higher conversion when compared with the aryl halides containing EWG. For instance, 4-chlorobenzophe-
none containing EWG as substituent has demonstrated lower conversion (78.9%) when compared with the 
4-Bromoanisol (100%) which consists of EDG methoxy group. Furthermore, also in the case of substituted aryl 
halides, the HRG-Py-Pd has exhibited superior catalytic activities than the non-functionalized HRG-Pd. The 
conversions obtained are compiled in Table 1 and graphical representation of the results of some of the aryl 
halides is presented in the Fig. 8. 

Once the superior catalytic activity of HRG-Py-Pd is established, the effect of amount of Pd on the catalytic 
activity of the nanocatalyst is studied by preparing two different samples of HRG-Py-Pd by varying the Pd 
contents. For this purpose, two samples were prepared using 0.05 wt.% Pd precursor (*HRG-Py-Pd) and 0.5 
wt% Pd precursor (**HRG-Py-Pd) while using the same amount of HRG. The catalytic activity of HRG-Py-Pd 
is linearly decreased with the amount of Pd. For example, only 42 and 62% of conversion was obtained in case 
of iodobenzene when *HRG-Py-Pd and **HRG-Py-Pd were used respectively under similar set of reaction 
conditions when compared with HRG-Py-Pd (50 wt.%). More details and the results of other coupling reac-
tions using catalysts with low Pd contents are described in Table 2. We have also performed the catalytic activity 
of the HRG-Py-Pd catalyst using substituted boronic acid as substrates as described in Scheme 3. The effect 
of substituents in case of substituted boronic acid was negligible on the catalytic activity of HRG-Py-Pd, and 
the catalyst remained active in the presence of all the boronic acid used in this study. Among different boronic 
acids, in this case phenyl boronic acid proved as the most efficient substrate for Suzuki coupling reactions using 
HRG-Py-Pd as catalyst (cf. Table 3).

The higher catalytic activity of HRG-Py-Pd catalyst for the coupling reactions was attributed to its high surface 
area (553.44 m2 g−1) in comparison with HRG-Pd catalyst (472.71 m2/g). The surface area of the former catalyst 

Table 1.   Time dependent conversion efficiency of the Suzuki reaction employing HRG‐Py-Pd and 
HRG‐Pd for different aryl halides including iodobenzene, bromobenzene, chlorobenzene, 4-bromoanisol, 
4-bromoacetophenone etc. Reaction Condition: Aryl halide (1 mmol), boronic acid (1.2 mmol), SDS 
(0.5 mmol), K3PO4 (2 mmol), Water (20 mL); Note: EWG = Electron withdrawing groups; EDG = Electron 
donating groups.

 + / − Groups Aryl halides Product ID

HRG-Py-Pd HRG-Pd

Time (mins) Conversion (%) Time (mins) Conversion (%)

Neutral

Chlorobenzene (1a) 3a 60 100 80 100

Bromobenzene (1b) 3a 60 100 80 100

Iodobenzene (1c) 3a 5 100 20 100

EWG

4-Chlorobenzophenone (1d) 3b 120 78.9 120 57.7

4-Bromoacetophenone (1e) 3c 120 82.3 120 42.9

4-Chlorobenzoic acid (1f) 3d 120 15 120 12

4-Bromobenze-sulfonylchloride 
(1g) 3e 60 97 20 93

EDG

4-Bromoanisol (1h) 3f 60 100 20 100

2-Bromoaniline (1i) 3g 60 97 20 90

2-Iodoaniline (1j) 3g 60 100 60 95

4-Iodotoluene (1k) 3h 20 100 20 100

Table 2.   Time dependent conversion efficiency of the Suzuki coupling reaction employing HRG‐Py-Pd with 
lower contents of Pd where * = HRG-Py-Pd 0.05 wt% and ** = HRG-Py-Pd 0.5 wt.%. All the reactions were 
performed using phenyl boronic acid.

S. no Aryl halides Product Time (min.) GC conversion (%)

1 Chlorobenzene (1a)* 3a 6 h 10

2 Chlorobenzene (1a)** 3a 6 h 12

3 Bromobenzene (1b) * 3a 6 h 43

4 Bromobenzene (1a) ** 3a 6 h 49

5 Iodobenzene (1c) * 3a 6 h 46

6 Iodobenzene (1c) ** 3a 6 h 62
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is enhanced due to the higher loading and homogeneous distribution of the Pd NPs. Although, same amount 
of Pd precursor (Sodium tetrachloropalladate) was used during the preparation of both HRG-Py-Pd and HRG-
Pd, however, the HRG-Py-Pd has demonstrated enhanced loading and homogeneous distribution of Pd NPs 
on the surface of HRG, due to the presence of pyrene. Pyrene has not only stabilized the surface of HRG but it 
also helped in the firm anchoring of Pd NP. Whereas, in the case of HRG-Pd, the Pd NPs not only aggregated 
but also failed to stick to the surface of HRG leading to the lower content of active Pd in the resultant catalyst. 
This has resulted in the lower catalytic activity of the HRG-Pd. Similarly, the lower catalytic activities of the non-
functionalized HRG-Pd when compared to the functionalized catalyst have also been reported in earlier studies. 
For instance, graphene-Pd catalyst reported by Li et al., has exhibited lower conversions of less than 100% in the 
time range of 10–120 min for the conventional aryl halides including chloro, bromo and iodo benzene56. From 
the results obtained it can be concluded that functionalization of HRG with pyrene has positive impact both to 
avoid agglomeration of graphene sheets as well as nucleation and growth of monodisperse and monocrystalline 
Pd nanoparticles. These factors lead to the improved catalytic performance towards Suzuki–Miyaura coupling 
reaction.

The catalyst reusability is an essential parameter which defines the commercial significance of the material. To 
evaluate the reusability and the stability of HRG-Py-Pd, the couplings of iodo benzene and chlorobenzene were 
selected as model reactions. Initially, after performing the coupling reaction with freshly prepared HRG-Py-Pd, 
the catalyst was recovered from the reaction mixture by centrifugation. The collected material was washed several 
times with DI water (which is also used as solvent in repeated reactions) and dried at 100 °C for several hours to 
avoid contamination with reactant or product of the previous reactions. The recovered catalyst was reused for 
up to 5 times in a similar manner to test the stability and quality of the catalyst and final product of the coupling 
reaction. The freshly prepared HRG-Py-Pd has yielded 100% conversion in the case of both chlorobenzene and 
iodo benzene, and has also demonstrated almost similar catalytic activity and selectivity when reused for several 
times with slightly reduced conversion (up to 5 to 6% in case of both chloro and iodo benzene) as shown in 
Fig. S6 in the supplementary information. The structural stability of the reused catalyst was confirmed by further 
characterization using XRD and TEM (the data is provided in the Fig. S7 and Fig. S8 of supporting materials). 
The amount of Pd has also remained intact on the surface of HRG, which is confirmed by XPS analysis.

Scheme 3.   HRG‐Py-Pd catalyzed Suzuki coupling reaction of with aryl halides and boronic acids bearing 
different subtituents.

Table 3.   Suzuki coupling reaction of different aryl halides with aryl boronic acid bearing different substituents 
in the presence of HRG‐Py-Pd nanocatalyst. Reaction Condition: Aryl halide (1 mmol), boronic acid 
(1.2 mmol), SDS (0.5 mmol), K3PO4 (2 mmol), Water (20 mL). Note: Isolated yields: after purification through 
a small pad of silica and Celite.

S. no Aryl halides Boronic acids (R2) Product Time (min.) GC conversion (%) Isolated yield (%)

1. Iodobenzene (1c) 4-COCH3 (2b) 3c 60 93 90

2. Iodobenzene (1c) 4-COOH (2c) 3d 60 97 95

3. Iodobenzene (1c) 4-OCH3 (2d) 3f 30 100 98

4. Iodobenzene (1c) 4-CF3 (2e) 3i 30 100 97

5. 2-methoxy- bromobenzene (1l) 4-F (2f) 3j 80 93 91

6. 2-methoxy- bromobenzene (1l) 4-COCH3 (2b) 3k 80 92 89

7. 3-methoxy- bromobenzene (1m) 4-F (2f) 3l 60 100 98

8. 3-methoxy- bromobenzene (1m) 4-COCH3 (2b) 3m 80 97 92

9. 3-methoxy- bromobenzene (1m) 4-CF3 (2e) 3n 60 100 98

10. 3-methoxy- bromobenzene (1m) 4-OCH3 (2b) 3o 80 99 96

11. 2-Bromo-Pyridine (1n) 4-COCH3 (2b) 3p 120 65 59
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Experimental details
Materials required.  Graphite powder (99.999%, −200 mesh) was purchased from Alfa Aesar. All other 
materials and organic solvents were purchased from Sigma-Aldrich and used without further purification. 
Materials used are 1-aminopyrene (97%), sodium tetrachloropalladate (II) (99.9%), concentrated sulfuric acid 
(H2SO4) (98%), potassium permanganate (KMnO4) (99%), sodium nitrate (NaNO3) (99%), hydrogen peroxide 
(H2O2) (30 wt.%), bromobenzene (99.5%), chlorobenzene (99%), iodobenzene (99%), 4-chlorobenzophenone 
(99%), 4-bromoacetophenone, 4-chlorobenzoic acid, 4-bromobenze-sulfonylchloride, 4-bromoanisol, 2-bro-
moaniline, 2-iodoaniline, 4-iodotoluene, sodium dodecyl sulfate (98%), phenyl boronic acid (95%), tripotas-
sium phosphate (98%).

Preparation of graphene oxide (GRO).  Graphite oxide (GO) was synthesized from graphite powder 
using a modified Hummers method57,58. Briefly, graphite powder (0.5 g) and NaNO3 (0.5 g) were taken in 23 ml 
of H2SO4. The mixture was allowed to stir for several minutes (~ 10 min) in an ice bath. Subsequently, KMnO4 
(3 g) was slowly added (the color of the mixture turned to dark green) to this mixture. After proper mixing, the 
ice bath is replaced with water bath, which is maintained at temperature between 35 and 40 ºC for one hour, 
resulting in the formation of a thick paste. Thereafter, 40 ml of water was added, and the mixture was stirred for 
another 30 min at a temperature of ~ 90 ºC. Finally, 100 ml of water was added, which is followed by the slow 
addition of 3 ml of H2O2. This resulted in the color change of the mixture from dark brown to yellowish color. 
The mixture was allowed to cooled, and subsequently filtered and washed with 100 ml of water. The resulting 
thick brown paste was dispersed in water (100 ml) and centrifuged at a low speed of 1,000 rpm for 2 min. This 
step was repeated for several times (4–5 times), until all unsettled particles were removed. Then, the same step is 
repeated at a high speed of centrifugation at 8,000 rpm to remove remaining small pieces of GRO. After this, the 
resultant paste is redispersed in water via mild sonication to obtain a solution of GRO.

Reduction of highly reduced graphene oxide (HRG).  GRO is reduced according to a previously 
reported method59. Briefly, 100 mg of GRO is dispersed in water (30 ml) and sonicated for 30 min. The result-
ing suspension was allowed to heat up to 100 ºC, and subsequently 3 ml of hydrazine hydrated was added. After 
sometime, the temperature was slightly reduced (98 ºC), and the suspension was kept under stirring for 24 h. 
Finally, a black powder is obtained which is filtered and washed several time with water to remove excessive 
hydrazine. In order to remove remaining bulk graphite, the resultant suspension is centrifuged at slow speed 
(4,000  rpm) for several minutes (3–4  min), and the final product is collected via filtration and dried under 
vacuum.

Functionalization of HRG with 1‑aminopyrene.  25 mg of HRG was dispersed in 10 ml of methanol 
via sonication for 30 min. This dispersion is added to the solution of 25 mg of 1-Aminopyrene in methanol 
(10 ml). The mixture was stirred for 48 h at room temperature and then sonicated for 6 h at 20 ºC. Then the mix-
ture was centrifuged 3 h to remove the excess of aminopyrene. Further purification was carried out to remove 
un-adsorbed aminopyrene. For this purpose, the black mixture is redispersed in 5 mL of fresh methanol and 
sonicated for 30 min at 20 °C, subsequently; the black suspension is centrifuged for 1 h, and the product is iso-
lated by decanting the resulting mixture. This process was repeated (at least three times) until the solution in the 
centrifuge tube turned colorless. The product was dried under vacuum overnight.

Preparation of functionalized graphene and palladium composites (HRG‑Py‑Pd).  In order 
to prepare the graphene-palladium nanocomposites (1:1 wt eq), the 5  ml dispersion of aminopyrene func-
tionalized HRG in ethanol (1  mg HRG/ml of ethanol) was added to 5  ml solution of Na2PdCl4 in ethanol 
(5 mg, 0.0169 mmol). The resultant mixture was sonicated for 1 h. The product was isolated by centrifugation 
(9,000  rpm) and redispersed in 10 ml of water for further use. The HRG-Pd was also prepared in the simi-
lar manner, except in this case, pristine HRG was used instead of functionalized HRG. The samples with low 
content of Pd are also prepared according to aforementioned method using 0.05 (*HRG-Py-Pd) and 0.5 wt.% 
(**HRG-Py-Pd) of Na2PdCl4 with respect to starting amount of HRG.

Catalytic activity.  The catalytic protocol was followed as earlier reported by us18. In a typical experiment, a 
mixture of sodium dodecyl sulfate (144 mg, 0.5 mmol), tripotassium phosphate (K3PO4, 399 mg), phenylboronic 
acid (146 mg, 1.2 mmol) and deionized water (20 mL) was taken in a 100 mL round bottom flask. Halobenzene 
(1.0 mmol) was added to this mixture under stirring, followed by the as-prepared HRG-Py-Pd and/or HRG-Pd 
nanocatalyst (5 mol.%, 5.32 mg). The mixture was stirred at 100 ºC in an oil bath for 5 min and then extracted 
with ethyl acetate (3 × 20 mL). The combined organic extract was dried over anhydrous sodium sulfate (Na2SO4), 
and the resulting mixture was analyzed by gas chromatography (GC). In order to identify the product obtained 
from the catalytic reaction, the as-obtained mixture was crystallized from ethanol. The resulting product was 
characterized using 1H and 13C solution NMR and mass spectroscopy18. M.p.: 68–70 °C (69–71 °C Ref. Supp 
Info reference 1); 1H NMR (400 MHz, CHLOROFORM-D) δ 7.49 (d, J = 7.7 Hz, 4H, Ar–H), 7.33 (t, J = 7.7 Hz, 
4H, Ar–H), 7.23 (t, J = 7.3 Hz, 2H, Ar–H); 13C NMR (101 MHz, CHLOROFORM-D) δ 141.34, 128.99, 128.75, 
127.36, 127.18; electron impact-mass spectrometry (EIMS) m/z 154 (M +). The 1H and 13C solution NMR spec-
tra of all other products obtained during this study and the details of their spectra anaylsis are provided in the 
supplementary information (Figs. S9–S38).
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Characterization.  The as-synthesized HRG-Py-Pd and/or HRG-Pd nanocatalysts and the product obtained 
from the Suzuki reactions were characterized by UV–Vis spectroscopy (Perkin Elmer lambda 35 (Waltham, 
MA, USA)), high resolution transmission electron microscopy (HRTEM) and EDX (JEM 2100F (JEOL, Tokyo, 
Japan)), FT-IR spectroscopy (Perkin Elmer 1,000 FT-IR spectrometer)60, (Agilent spectrometer (single quad-
rupole) MSD-5975C detector, Agilent Technologies Inc., USA, MS was acquired in EI mode (scan range m/z 
45–600, ionization energy 70 eV)). Gas chromatography (GC) (GC 7890A, Agilent Technologies Inc., equipped 
with a flame ionization detector (FID) and a 19019S-001 HPPONA column)21. The XRD analysis of the as-
prepared nanocatalysts were carried out using a D2 Phaser X-ray diffractometer (Bruker, Germany), Cu Ka 
radiation (k = 1.5418 A°). XPS spectra were measured on a PHI 5,600 Multi-Technique XPS (Physical Electron-
ics, Lake Drive East, Chanhassen, MN) using monochromatized Al Ka at 1,486.6 eV. Peak fitting was performed 
using the CASA XPS Version 2.3.14 software18. Flash chromatography was performed on 100–200 mesh silica 
gel. 1H and 13C Nuclear Magnetic Resonance (NMR) spectra were recorded on JEOL-400 MHz spectrometers at 
ambient temperature in CDCl3 & DMSO-d6 which were purchased from Sigma Aldrich. Chemical shifts (ppm) 
are referenced to the residual solvent peak. Coupling constants, J, are given in hertz18. Abbreviations used in the 
designation of the signals: s = singlet, d = doublet, dd = doublet of doublets, ddd = doublet of doublet of doublets, 
dt = doublet of triplets, t = triplet, td = triplet of doublets, m = multiplet. Melting points were performed at Lon-
don Metropolitan University.

Conclusions
We have demonstrated a simple and efficient method for the preparation of graphene-Pd nanocomposite through 
surface functionalization. For this purpose, 1-AP was utilized to tailor the surface of graphene for the efficient 
loading of Pd NPs to prepare HRG-Py-Pd nanocomposite. 1-AP provided excellent active sites for the efficient 
growth and homogeneous dispersion of ultrafine Pd NPs on the surface of HRG. HRG-Py-Pd elucidated excel-
lent stability and dispersibility when compared with HRG-Pd, (prepared without using 1-AP). The dense and 
homogeneous distribution of Pd NPs in the HRG-Py-Pd nanocomposite leads to the significant enhancement of 
its surface area, in comparison with HRG-Pd. Unlike HRG-Pd, the HRG-Py-Pd demonstrated superior catalytic 
activities toward various Suzuki reactions, due to its enhanced properties. The catalytic conversions of different 
phenyl halides to biphenyl and other biphenyl derivatives, which were carried out under aerobic conditions, 
occurred in short time with less amount of Pd. Thus, the facile method presented here may provide an excellent 
opportunity for the preparation of other high quality graphene inorganic NPs based nanocomposites using dif-
ferent PAHs, including other pyrene derivatives as noncovalent functionalizing agents.
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