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ABSTRACT

The biological impact of microRNAs (miRNAs) is de-
termined by their targets, and robustly identifying
direct miRNA targets remains challenging. Existing
methods suffer from high false-positive rates and are
unable to effectively differentiate direct miRNA tar-
gets from downstream regulatory changes. Here, we
present an experimental and computational frame-
work to deconvolute post-transcriptional and tran-
scriptional changes using a combination of RNA-seq
and PRO-seq. This novel approach allows us to sys-
tematically profile the regulatory impact of a miRNA.
We refer to this approach as CARP: Combined
Analysis of RNA-seq and PRO-seq. We apply CARP
to multiple miRNAs and show that it robustly dis-
tinguishes direct targets from downstream changes,
while greatly reducing false positives. We validate
our approach using Argonaute eCLIP-seq and ribo-
some profiling, demonstrating that CARP defines a
comprehensive repertoire of targets. Using this ap-
proach, we identify miRNA-specific activity of target
sites within the open reading frame. Additionally, we
show that CARP facilitates the dissection of com-
plex changes in gene regulatory networks triggered
by miRNAs and identification of transcription fac-
tors that mediate downstream regulatory changes.
Given the robustness of the approach, CARP would
be particularly suitable for dissecting miRNA regula-
tory networks in vivo.

INTRODUCTION

While transcriptional regulation accounts for much of gene
regulation, post-transcriptional regulation represents an
additional and consequential layer of regulation (1,2). Mi-
croRNAs (miRNAs), a class of small non-coding RNAs,
are one of the major trans-acting factors responsible for

post-transcriptional regulation (3). Together with an Arg-
onaute (AGO) protein, miRNAs function primarily by
binding to target mRNA transcripts and inducing mRNA
decay and/or translational repression. In humans and other
mammals, there are many hundreds of different miRNAs,
which collectively regulate the majority of human mRNA
transcripts (4) and likely contribute to all gene regulatory
pathways. Accordingly, identifying the targets of miRNAs
is fundamental to understanding their biological functions,
and a wide variety of genomic, biochemical and computa-
tional approaches have been developed to address this ques-
tion (5–7). Despite intense efforts, even the most effective
approaches suffer from high rates of false positives and/or
negatives (8).

The majority of miRNA target sites in bilaterian animals
are found in 3′ untranslated regions (3′UTRs), and com-
prise a short sequence with perfect complementarity to the
5′ end of the miRNA, or miRNA seed (3). Effective seed-
matching target sites are often located within a region of
3′UTR sequence that contains additional features, such as
high local AU-content, which determine site efficacy (9,10).
In addition to these canonical seed-matching sites, numer-
ous other types of sites have been reported, including sites in
coding sequence and 5′UTRs, and sites without perfect seed
matches (11–14). The extent to which such non-canonical
sites contribute to the total targeting repertoire of a miRNA
is unclear. Moreover, miRNA-specific parameters influence
the targeting properties of certain miRNAs (15,16). The
earliest effective approaches to predicting and identifying
mammalian miRNA targets used comparative genomics,
and worked by cataloguing orthologous 3′UTR sequences
whose capacity to basepair perfectly to a miRNA seed se-
quence is detectably conserved (17–19); such approaches re-
main an important component of defining biologically con-
sequential miRNA targets. In addition to conserved target
sites, a large number of non-conserved sites also respond
to their cognate miRNAs (20). Non-conserved sites con-
stitute the majority of total sites; therefore, conservation
alone cannot be used to robustly identify target sites (4).
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Numerous computational approaches exist which predict
the strength or efficacy of miRNA target sites, with varying
degrees of effectiveness (6,7). In general, these approaches
are built on experimental data in which the transcriptome or
proteome is monitored in response to high and transient ex-
posure to an exogenous miRNA. The resulting data, aggre-
gated over many experiments, is used to train a model that
captures the response to a miRNA, and the results extrapo-
lated to other miRNAs and other cell types. Such tools have
played an important role in accelerating our understand-
ing of miRNA biology. Biochemical techniques (including
CLIP-based assays) have also been used to identify miRNA
targets (21–24); however, these assays suffer from high levels
of background, perhaps arising from the transient nature of
AGO binding. Indeed, subsequent attempts to verify non-
canonical target sites identified from CLIP have shown that
such sites are largely ineffective (16).

Although approaches that identify or predict miRNA
targets have continued to evolve and improve, the vast ma-
jority of both training and validation datasets rely upon cell
culture experiments in which an exogenous miRNA is intro-
duced transiently at high concentration (5). Extending these
approaches to in vivo settings, with miRNA knockouts,
for example, has indicated that target prediction remains
valuable but imperfect. Deviations between target predic-
tion and in vivo miRNA-mediated regulation derive pre-
sumably from numerous sources. Biologically consequen-
tial miRNAs are enmeshed within complex gene regula-
tory networks, and the action of such a miRNA is likely
to elicit substantial downstream changes beyond the direct
targets (25). For example, a miRNA may directly repress
an mRNA encoding a transcription factor, thus altering the
downstream targets of the transcription factor and poten-
tially confounding efforts to identify the direct targets of
the initiating miRNA. Indeed, a large body of literature il-
lustrates intimate mingling of miRNAs and transcription
factors within gene regulatory networks (26); thus, identi-
fying transcription factors that direct downstream regula-
tory changes initiated by a miRNA is likely an important
step towards understanding biological functions of miR-
NAs. This complexity in miRNA regulatory networks alone
makes miRNA target prediction in vivo problematic. Three
major challenges exist: (i) the relatively subtle regulation
elicited by a miRNA, often < 2-fold, (ii) the large number of
potential targets, often several hundred, and finally, (iii) for
consequential miRNAs, the extent of downstream changes.

A popular and effective approach to identifying miRNA
targets in vivo is to intersect lists of genes differentially ex-
pressed in response to a specific miRNA with lists of pre-
dicted targets. Importantly, both lists often include many
hundreds of genes; thus, random overlap alone will gener-
ate a substantial set of intersecting candidate direct miRNA
targets. We reasoned that eliminating genes whose differ-
ential expression derives from transcriptional regulation
might enable more robust delineation of the direct targets
of a miRNA. Prior to our work, a conceptually similar ap-
proach has been developed: EISA (Exon–Intron Split Anal-
ysis) exploits intron-mapping reads in RNA-seq data to in-
dicate levels of pre-mRNAs and thus serves as a proxy for
transcriptional activity (27). The advantage of EISA is that
it is straightforward to implement; nevertheless, pre-mRNA

levels are not a direct sensor of transcription, potentially
compromising the accuracy of this method.

Here, we use PRO-seq (Precision Run-On sequencing), a
tool that directly monitors transcription across the genome
(28), in combination with RNA-seq to robustly distinguish
between direct miRNA targets and indirect effects aris-
ing from downstream regulation. We corroborate the effi-
cacy of our approach using orthogonal genomic assays to
measure AGO-miRNA binding to targets (AGO eCLIP-seq
(29)) and translational efficiency (ribosome profiling (30)).
We use these data to investigate mechanisms of miRNA-
mediated repression; for example, we quantify the contribu-
tions of miRNA-mediated mRNA decay and translational
repression using miRNAs expressed at physiological lev-
els. Additionally, we identify novel, effective miRNA target
sites residing within the open reading frame (ORF); inter-
estingly, such coding sites are only prevalent for a subset
of miRNAs that we examine. Because PRO-seq also pro-
files activity of DNA regulatory elements, such as enhancers
and promoters (31), we identify candidate transcription fac-
tors associated with regulatory elements exhibiting altered
transcriptional activity. We find that activities of these tran-
scription factors are modulated by specific miRNAs target-
ing the cognate transcript, and that such repression con-
tributes to the downstream changes in transcriptional reg-
ulation. Using CARP to deconvolute regulation occurring
at the level of transcription, post-transcription, or both,
we demonstrate that the combined analysis of RNA-seq
and PRO-seq is a powerful approach to investigate com-
plex transcriptional and post-transcriptional gene regula-
tory networks.

MATERIALS AND METHODS

Cell culture

Flp-In T-REx 293 (HEK293-derived; Invitrogen) and
HEK293T (American Type Culture Collection, ATCC)
cells were used for all experiments in this study. Cells
were cultured at 37◦C in a humidified incubator con-
taining 5% CO2 and maintained in DMEM (Life Tech-
nologies) containing 10% FBS (Sigma-Aldrich) and 1%
penicillin/streptomycin (Life Technologies); Flp-In T-REx
293 cells were also supplemented with 100 �g/ml Zeocin
(Invitrogen). Cells were passaged every 2–4 days. Cell lines
were not tested for mycoplasma contamination.

Synthetic miRNA hairpin constructs

Expression cassettes consisting of the doxycycline-inducible
cytomegalovirus (CMV) promoter (derived from the Invit-
rogen T-REx system), the intron-containing EF1� 5′UTR,
and Aequorea coerulescens GFP were cloned into a lentivi-
ral transfer vector containing a neomycin selective resis-
tance cassette. To clone synthetic miRNA hairpins into the
intron, XbaI and XmaI restriction sites were introduced. To
ensure accurate processing of the mature miRNAs, we de-
signed miRNA hairpins based on established sequence and
structural features favored by the miRNA biogenesis ma-
chinery (32). An artificial hairpin backbone (‘A5’ from (32)
was used and the sequence of the mature miRNA was re-
placed with the sequences of the seven miRNAs used in this
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study: hsa- miR-1, hsa- miR-122, hsa- miR-133a, hsa- miR-
155, hsa-miR-302a, hsa-miR-372 and hsa-miR-373 (hair-
pin sequences included in Supplementary Table S1). To in-
sert the hairpin sequences, pairs of complementary oligonu-
cleotides were designed containing the sequences with ter-
minal restriction enzyme sites XbaI and XmaI. The oligos
were annealed, extended, digested and ligated into the GFP
vector. The parent GFP vector lacking a miRNA hairpin
was used as a negative control for all experiments.

Generation of stable cell lines expressing specific miRNAs

Lentiviruses were generated by transfecting the lentivi-
ral transfer vectors described above along with packag-
ing (psPAX2, Addgene plasmid #12260) and envelope
(pMD2.G, Addgene plasmid #12259) plasmids with Lipo-
fectamine 2000 (Invitrogen) in HEK293T cells. The media
was replaced 24 h later with fresh DMEM containing 30%
FBS, and lentiviral supernatants were collected 24 h later.
To generate stable cell lines expressing miRNA constructs,
Flp-In T-REx 293 cells were transduced and selected with
1 mg/mL Geneticin (Invitrogen) for six days, after which
the Geneticin concentration was lowered to 0.8 mg/ml. To
ensure steady-state miRNA levels (33), miRNA-GFP cas-
settes were induced by adding 1 �g/mL doxycycline every
day for seven days (Supplementary Figure S1A).

Biological replicates were transduced and maintained
separately for all experiments. Two biological replicates
were generated for experiments employing miR-1 and miR-
122, while three replicates were generated for miR-133a,
miR-155, miR-302a, miR-372 and miR-373 experiments.

miRNA qPCR

Primers were designed as described previously (34) (primer
sequences in Supplementary Table S2). The reverse tran-
scription primer for all miRNAs is 5′-CAGGTCCAGTT
TTTTTTTTTTTTTVN, where V is A, C and G and N
is A, C, G and T. The reverse primer for all miRNAs is
5′-CAGGTCCAGTTTTTTTTTTTTTTT. For cDNA syn-
thesis, 100 ng of total RNA from all samples and 100 amol
spike-in RNA (sequence in Supplementary Table S2) were
heat denatured at 65◦C for 30s. The reaction mix included
1 �l of 10x poly(A) polymerase buffer (NEB), 0.1 mM
of ATP, 1 �M of RT primer, 0.1 mM of each deoxynu-
cleotide (dATP, dCTP, dGTP and dTTP), 100 U of Rever-
tAid Reverse Transcriptase (Thermo Scientific) and 1 unit
of poly(A) polymerase (New England Biolabs) and was in-
cubated at 42◦C for 1 h followed by enzyme inactivation at
95◦C for 5 min. For quantitative PCR, synthetic templates
used for the standard curve were DNA oligonucleotides
complementary to the miRNAs with a reverse primer bind-
ing site incorporated into the 5′ end (sequences in Supple-
mentary Table S2). Synthetic templates were used to gener-
ate a standard curve, with dilutions ranging from 0.5 fM to
50 pM final concentrations with 0.2 ng salmon sperm DNA.
Quantitative PCR of biological replicates was performed in
10 �l total volume with 0.1 �l of cDNA. Cycling conditions
were 95◦C for 5 min followed by 40 cycles of 95◦C for 10 s
and 60◦C 30 s and 70◦C 30 s. A melting curve analysis (55–
95◦C) was performed after the thermal cycling. Quantita-

tive PCR was performed on a LightCycler 480 Instrument
II (Roche).

PRO-seq

Library preparation. Biological duplicates of cells express-
ing miR-1, miR-122 and empty vector control were har-
vested after seven days of induction with doxycycline. For
each sample, cells were scraped from one 10 cm plate in
ice-cold PBS. A portion of the cells (20%) was set aside
for RNA-seq and the remaining 80% was used for PRO-
seq following a protocol adapted from (35). Briefly, nu-
clei were isolated using a buffer containing 0.05% Tween-
20, and incubated with biotin-labeled nucleotides in a nu-
clear run-on reaction along with sarkosyl. The total RNA
was extracted using Trizol and fragmented using NaOH
hydrolysis for 20 min on ice. The biotin-labeled fragments
of nascent RNAs were enriched using Streptavidin M280
beads (Invitrogen) followed by ligation of 3′ ends with pre-
adenylated DNA adapters (App-GATCGTCGGACTGTA
GAACTCTGAAC/3InvdT/) using T4 RNA Ligase 2 trun-
cated K227Q (NEB) in absence of ATP. Following another
round of biotin-enrichment, the 5′ ends of the RNA were
modified and ligated with 5′ RNA adapter (CCUUGGCA
CCCGAGAAUUCCA). The cDNA was generated using
SuperScript III RTase (Invitrogen). The libraries were PCR
amplified, size selected using PAGE and sequenced on an
Illumina NextSeq 500.

For miR-133a, miR-155, miR-302a, miR-372 and
miR-373, libraries were prepared in biological triplicate
(along with the empty vector control), as described above,
except for the following modifications, adapted from
(36). A 3′ RNA adapter (pNNNNNNXXXXXXNNG
AUCGUCGGACUGUAGAACUCUGAAC/3InvdT/)
containing sample barcodes (‘X’s) was ligated to the RNA
3′ termini using T4 RNA ligase I (Invitrogen), allowing
us to pool samples post ligation, streamlining subsequent
steps in the protocol. We used unique molecular indexes
(UMIs) in both the 3′ and 5′ RNA adapters (5′ adapter:
CCUUGGCACCCGAGAAUUCCANNNNN) to mini-
mize ligation bias and facilitate removal of PCR duplicates
from the sequencing data.

Data processing. For miR-1, miR-122 and the empty vec-
tor control, single-end sequencing reads were trimmed to
remove adapter sequences using fastx clipper tool from
FASTX Toolkit v0.0.13 (-a TGGAATTCTCGGGTGCCA
AGG -l 0 -Q33) for miR-1 and miR-122, and cutadapt v1.12
(-a TGGAATTCTCGGGTGCCAAGG -m 0 -f fastq) for
miR-133a, miR-155, miR-302a, miR-372 and miR-373. All
trimmed sequences shorter than 15 nucleotides were re-
moved and the remaining reads were reverse complemented.
The reads originating from PhiX or rRNAs were removed
using Bowtie v1.1.2-based alignments (37) to respective
reference sequences. The resulting high-quality reads were
aligned to hg19 genome using Bowtie v1.1.2 (-p7 -v2 -m1
-q), and the resultant BAM files were used for further anal-
ysis.

For miR-133a, miR-155, miR-302a, miR-372 and miR-
373 and the empty vector control, reads were first demul-
tiplexed using the in-line sample barcode. The UMI se-
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quences were removed from each read and placed into the
read name. Subsequent processing steps were as described
for miR-1 and miR-122 samples, with an additional re-
moval of PCR duplicates, defined as reads containing iden-
tical UMI sequences and mapping locations.

Visualization of PRO-seq data on genome browser. The
PRO-seq BAM alignments were converted to BED for-
mat using bamToBed (BEDTools v2.26.0; (38)) and were
split into two files based on the genomic strand they be-
long to. The read alignments were converted to genome
coverage using genomeCoverageBed (-i stdin -3 -bg; BED-
Tools v.2.26.0). The resulting bedgraph files were normal-
ized by read depth and were converted to bigwig files us-
ing bedGraphToBigWig (39) for visualization on the UCSC
genome browser.

Peak calling using dREG. PRO-seq BAM alignments were
converted to BED format using bamToBed (BEDTools
v.2.26.0) and were split into two files based on the genomic
strand they belong to. The read alignments were converted
to genome coverage using genomeCoverageBed (-i stdin -3
-bg; BEDTools v.2.26.0). The resulting bedgraph files were
converted to bigwig files using bedGraphToBigWig (39),
without read depth normalization. dREG (v18.11.2016;
(40) was used to call peaks using the bigwig files and default
dREG parameters. Transcriptional activity was estimated
by counting the number of reads mapping to the dREG
peaks using featureCounts (-F SAF -s 0 -Q 50 -T 10) of Sub-
read package v1.5.1 (41). Peak centers were identified using
dREG (v6.1.2018; (42)) and default parameters.

Quantification of transcriptional output. To calculate tran-
scriptional output from PRO-seq, we considered only gene-
body reads, removing all reads originating from regulatory
elements such as promoter or enhancer elements. These
transcriptional regulatory elements were predicted using
dREG. BEDTools was used to remove reads mapping to
these regulatory elements, and the remaining gene-body
reads were counted using featureCounts (-F SAF -s 1 -Q
50).

RNA-seq

Library preparation. Cells scraped from 10 cm plates in
PBS were pelleted and resuspended in 1 ml Trizol (Invitro-
gen). The total RNA was extracted from Trizol according
to manufacturer’s instructions, with the addition of a chlo-
roform extraction. Directional RNA-seq libraries were pre-
pared from 1000 ng total RNA per sample using the NEB-
Next Ultra II Directional RNA Library Prep Kit for Illu-
mina (New England Biolabs), with initial polyA+ isolation,
by the Transcriptional Regulation and Expression Facility
at Cornell University.

Data processing. Raw reads were trimmed to remove
adapter sequences using fastx clipper (parameters: -l 15
-Q33 -a GATCGGAAGAGCACACGTCTGAACTCCA
GTC) and were aligned to the human genome (hg19) using
TopHat v2.1.1 (–library-type fr-firststrand; (43)); the resul-
tant BAM files were used for the further analyses. The fea-
tureCounts software was used to count reads mapping to

exons (parameters: -F SAF -s 2 -Q 50) and introns (param-
eters: -F SAF -s 2 -Q 50 –fracOverlap 1). The differential
expression analysis was performed using edgeR v3.24.3 (44)
and q-values were computed using qvalue v2.14.1 R pack-
age (45).

Predicting 3′UTR isoforms. The BAM files across all
RNA-seq samples were merged and the read alignments
with mapping quality ≥ 50 were extracted using samtools
v1.9 (46). The resultant read alignments were used to pre-
dict the poly(A) cleavage sites using GETUTR v2.0.0 (47).
The predicted poly(A) cleavage site with the highest score
(representing the major 3′UTR isoform) was used to modify
3′UTR annotations (gencode v19). Specifically, annotated
3′UTRs were trimmed up to the genomic locations of the
highest-scored poly(A) cleavage site. Annotations were not
adjusted for inferred poly(A) cleavage sites downstream of
annotated 3′UTRs. The modified annotations were used to
exclude genes that lose predicted miRNA target sites due to
alternative polyadenylation and cleavage.

Statistical significance of post-transcriptional regulation

Transcriptional output estimated using PRO-seq and
mRNA abundance quantified using RNA-seq were
used for determining genes that exhibit significant post-
transcriptional regulation. Lowly expressed genes (counts
per million ≤ 1 in any sample) were filtered out and the
remaining genes were used for a statistical test using edgeR,
based on code provided in (27). The edgeR analysis was
performed under generalized linear modeling framework.
Like typical edgeR expression analysis, one factor was
defined based on the experimental conditions, and the
second factor represented type of assays (RNA-seq versus
PRO-seq). A model containing these two factors and
an interaction term between the two (full model) was
compared with the reduced model, the full model without
the interaction term, using likelihood ratio test (LRT). The
q-values were computed using qvalue R package (45).

Exon-intron split analysis (EISA)

EISA was performed in the same manner as the analysis of
post-transcriptional regulation explained above, except for
using intronic read counts obtained from RNA-seq experi-
ments (see above) in place of PRO-seq read counts.

small RNA sequencing

Library preparation. Cells were lysed in confluent 6-well
plates using 500 ul Trizol (Invitrogen). Total RNA was ex-
tracted from Trizol according to manufacturer’s instruc-
tions, with the addition of a chloroform extraction. Li-
braries were prepared from 1000 ng total RNA using the
NEBNext Multiplex Small RNA Library Prep Set for Illu-
mina (New England Biolabs) by the Transcriptional Regu-
lation and Expression Facility at Cornell University.

Data processing. The small RNA data were processed us-
ing miRDeep2 (48). Briefly, the adapters were trimmed and
duplicate reads were collapsed using mapper.pl (-d -e -h -i -j
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-k AGATCGGAAGAGCACACGTCT -l 18 -m -s reads.fa
-v). The collapsed reads were aligned to miRNA hairpins
and reads originating from mature miRNAs were counted
using quantify.pl (-t hsa -d -W). The miRNA hairpins and
mature miRNA sequences used in quantify.pl were down-
loaded from miRbase v21 (49). The sequences of synthetic
hairpins used in this study were appended to the miRNA
hairpin file. The miRNA processing efficiency was deter-
mined by calculating the fraction of read ends mapping at
each position of the hairpin using the miRBase.mrd file gen-
erated by quantify.pl.

AGO eCLIP

Library preparation. Biological duplicates of cells stably
integrated with miR-1, miR-122, or the empty vector con-
trol were passaged in the presence of 1 �g/ml doxycy-
cline for seven (replicate 1) or eight (replicate 2) days. For
each sample, two ∼70% confluent 10 cm plates were UV
crosslinked on ice at 400 mJ/cm2, washed with PBS, lifted
from the plates, pooled, pelleted, snap frozen in liquid ni-
trogen and stored at –80◦C. For preparing eCLIP libraries,
cell pellets were thawed, lysed and prepared with a proto-
col adapted from (29). Briefly, cell pellets were thawed and
lysed in 1 ml lysis buffer (50 mM Tris–HCl pH 7.4, 100
mM NaCl, 0.5% Igepal CA-630) supplemented with pro-
tease inhibitor cocktail III (EMD Millipore), treated with
RNase I (Ambion), Turbo DNase (Invitrogen), and clari-
fied. At all points, RiboLock RNase inhibitor (Thermo Sci-
entific) was used instead of Murine RNase Inhibitor. For
immunoprecipitation, 10 �g Ago2 antibody (Anti-AGO2
clone 11A9, MABE253, EMD Millipore) was bound to 100
�l washed Dynabeads Protein G (Invitrogen). The clari-
fied lysate (950 �l) was added to washed antibody-coupled
beads and rotated at 4oC for 4 h. The IP was washed 2x
with high salt wash buffer (50 mM Tris–HCl pH 7.4, 1
M NaCl, 1 mM EDTA, 0.5% Igepal CA-630), 1× wash
buffer (20 mM Tris–HCl pH 7.4, 10 mM MgCl2, 0.2%
Tween-20), and then washed with 1× FastAP buffer (10
mM Tris pH 7.5, 5 mM MgCl2, 100 mM KCl, 0.02% Tri-
ton X-100). Beads were treated with FastAP (Thermo Sci-
entific), Turbo DNase, and T4 PNK (NEB). A 3′ RNA
adapter (5′ P-TGGAATTCTCGGGTGCCAAGG/3Invd
T) was ligated to the RNA on-bead, and resuspended in
LDS sample buffer (Life Technologies). Inputs and 10%
IP were run on SDS-PAGE, transferred to nitrocellulose
membrane, and visualized by western blot to verify pull-
down. For preparing eCLIP libraries, 90% of the IP was run
on SDS-PAGE and transferred to nitrocellulose membrane.
For each sample, the membrane was cut from ∼97kDa
up to ∼275kDa to isolate AGO2–RNA complexes. Mem-
brane slices were treated with proteinase K and urea, ex-
tracted with acid phenol:chloroform and cleaned as de-
scribed (29). RNA was reverse transcribed with Super-
Script III (Invitrogen) with the RT primer 5′ CCTTGG
CACCCGAGAATTCCA. cDNA was cleaned up and a
3′ DNA adapter (5′ P-NNNNNNNNNNGATCGTCGG
ACTGTAGAACTCTGAAC/3InvdT) containing a 10 nu-
cleotide unique molecular identifier (UMI) was ligated to
the 3′ end of the cDNA, and cleaned as described (29).
Approximately 90% of the cDNA was amplified for 16

cycles using sample-specific Illumina-compatible primers,
ethanol precipitated and run on an 8% PAGE gel. The li-
brary smear from ∼160bp to ∼400bp was cut from the gel,
purified, quantified, pooled and sequenced on the Illumina
NextSeq500 with the 75 bp kit.

Data processing. Following removal of UMI sequences
from the read sequence, the reads were subjected to adapter
trimming using cutadapt v1.8.3 (-a TGGAATTCTCGG
GTGCCAAGG -m 18). All reads mapping to ribosomal
RNAs using Bowtie2-based alignment (v2.3.5.1; (50)) were
removed and the remaining reads were aligned to the hu-
man genome (hg19) using TopHat v2.1.1 (-g 1 -p 2 –library-
type fr-secondstrand). The alignments were processed using
samtools. PCR duplicates, as defined by reads containing
identical UMI barcodes and mapping locations, were re-
moved using an in-house Perl script. Peaks were called with
CLIPper (51), and reproducible peaks (IDR < 0.1) were ob-
tained using Irreproducibility discovery rate (IDR) analysis
(52). The reproducible peaks from all samples were pooled
and overlapping peaks were merged using BEDTools to
produce a set of consolidated eCLIP peaks, which was used
for the further analyses. Relative AGO density was calcu-
lated for each peak by computing a ratio of normalized read
counts in miRNA-expressing cells to those in control cells.
Because increased AGO binding results in reduced mRNA
levels due to miRNA repression, this measurement of AGO
density is underestimated.

Ribosome profiling

Library preparation. Ribosome profiling libraries were
prepared with the TruSeq Ribo Profile (Mammalian) Kit
(Illumina). RNA-seq libraries for normalizing ribosomal
footprints were prepared in parallel according to kit in-
structions. Biological duplicates of cells stably integrated
with miR-1, miR-122 or the control were induced with 1
�g/ml doxycycline for seven days. To stall ribosomes, cells
in 10 cm plates were incubated in media supplemented with
100 �g/ml cycloheximide for two minutes at 37◦C. Cells
were washed in ice-cold PBS supplemented with 100 �g/ml
cycloheximide, lifted from the plates, pelleted and lysed in
750 �l mammalian lysis buffer on ice for 10 min. Lysate was
clarified and split into two tubes: (i) 100 �l for preparing
total RNA libraries and (ii) 200 �l for preparing ribosome
footprint libraries. Library preparation was performed ac-
cording to the protocol. Ribosomes were treated with 60
U TruSeq Ribo Profile Nuclease to generate ribosome-
protected fragments and isolated via size-exclusion with an
Illustra MicroSpin S-400 HR column (GE healthcare). Ri-
bosomal RNA was depleted from both ribosome-protected
fragments and RNA-seq libraries using the Illumina Ribo-
Zero Gold Kit (Human/Mouse/Rat) according to the pro-
tocol. Libraries were sequenced on the Illumina NextSeq
500 with the 75 bp kit.

Data processing. The raw reads were trimmed to remove
adapter sequences using cutadapt v1.8.3 (-a AGATCGGA
AGAGCACACGTC -m 18). Trimmed reads originating
from rRNA were removed using Bowtie2 v2.3.5.1 with de-
fault parameters for RNA-seq datasets and with ‘-L 20’
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and other default parameters for Ribo-seq datasets. Re-
maining reads were mapped to the hg19 genome and gen-
code v19 annotated genes using Tophat v.2.1.1 (–no-novel-
juncs –transcriptome-index <indexFile> -p 3 –library-type
fr-firststrand). Reads mapping to coding region excluding
the ends (initial 45nt and ending 15nt) were counted using
featureCounts (-F SAF -s 1 -Q 50 -T 10 –fracOverlap 1).
The change in translational efficiency was calculated using
edgeR in the same manner as the calculation for change in
post-transcriptional regulation. Briefly, the first factor rep-
resented experimental conditions and the second factor rep-
resented the type of assay (ribosome profiling verses RNA-
seq). The models with or without the interaction term be-
tween the two factors were compared using likelihood ratio
test in edgeR framework. The q-values were computed us-
ing qvalue R package (45).

Tissue-specificity analysis of miRNA direct targets

This analysis was performed as described previously (53).
Briefly, for each gene, 53 different tissues were ranked based
on the expression of that gene in the tissue expression data
obtained from the GTEx Portal (downloaded on February
2020). Using these ranks as expression levels, for each tis-
sue, the distribution of ranks of miRNA direct targets were
compared with that of 5000 randomly selected genes. To
test if the expression levels of miRNA direct targets are
significantly lower compared to that of the randomly se-
lected genes, one-sided Wilcoxon rank sum tests were per-
formed, and the resultant P values were corrected using the
Benjamini-Hochberg method. The genes with zero counts
in > 26 tissues were excluded from the analysis.

Prediction of 5′UTR and ORF sites

Since TargetScan predictions do not include 5′UTR
and ORF sites, the predictions for sites located in
5′UTR and ORF were performed based on matches with
8mer, 7mer-m8 and 7mer-A1 sites motifs. The conserved
ORF sites were obtained from PACCMIT-CDS (predic-
tions human cons.txt) (54) by filtering predictions with
P SH values larger than 0.05.

Motif enrichment analysis for transcription factor binding
sites

The motif enrichment analysis was performed as described
previously (55) with modifications. Putative transcription
factor binding sites (TFBS) were identified in dREG peaks
by first obtaining the 3059 motifs corresponding to bind-
ing sites for 1735 distinct transcription factors (TF) CISBP
(56). These TF binding motifs were then searched in a win-
dow of 150 bp centered on dREG peak centers to iden-
tify putative TFBS, using FIMO with P-value cut-off of
10e5 (meme 4.12.0; (57)). TFBS enrichment was computed
for different subsets of peaks. Subsets of peaks, denoted by
S, that are significantly (FDR < 0.05) more/less active in
miRNA-expressing cells compared to the control cells were
identified using edgeR. Computations were performed to
calculate number of peaks in a subset s, and fraction of
peaks in a set of 10 000 randomly selected peaks that con-
tain at least one binding motif for a TF t, which were used

in the binomial test. The significance P value of enrichment
was computed using a one-sided binomial test (alternative
= ‘greater’), where the set of 10 000 randomly selected peaks
was used as the null distribution, followed by FDR correc-
tion.

Enrichment of miRNA target sites in promoters

The numbers of predicted target sites (matches to 8mer,
7mer-m8 and 7mer-A1 site motifs) were calculated for pro-
moters (1 kb upstream and 0.5 kb downstream of transcrip-
tion start site) of all genes. The significance P value for en-
richment of miRNA target sites in promoters of transcrip-
tionally up- or down-regulated genes (q-value < 0.05) was
computed using a one-sided binomial test (alternative =
‘greater’), where the set of 5000 randomly selected promot-
ers was used as the null distribution, followed by FDR cor-
rection.

Comparing two distributions

Statistical significance for the difference between two dis-
tributions were calculated using two-sided Wilcoxon rank
sum test (wilcox.test function in R) for all comparisons un-
less mentioned otherwise.

TargetScan

The TargetScan predictions were downloaded from http://
www.targetscan.org/vert 70/. Predictions with Pct value of
‘NULL’ were excluded.

Luciferase reporter assays

For verifying miRNA activity of stably-integrated miRNAs
(Supplementary Figure S1F), a sequence containing two
miR-1 target sites was excised from pAG76 (20) using re-
striction enzymes SacI and XbaI and inserted into pmir-
GLO Dual-Luciferase vector (Promega) using restriction
enzyme sites for SacI and XbaI (sequence for miR-1 sites in
Supplementary Table S3). The miR-1 sites were disrupted to
generate a negative control (sequence in Supplementary Ta-
ble S3). The constructs used in Supplementary Figure S1G
contained a perfectly complementary site inserted in pmir-
GLO vector at XbaI and SalI restriction sites (sequences in
Supplementary Table S4).

For assaying miR-122 ORF target sites, candidate sites
were chosen from those genes that contain exactly one pre-
dicted target site in the ORF and none in the 3′UTR, and
that exhibited post-transcriptional repression. A 78nt re-
gion (sequences in Supplementary Table S5) centered on the
candidate miR-122 ORF site was cloned with NEB HiFi
DNA Assembly Master Mix (New England Biolabs) into
the open reading frame of firefly luciferase in pmirGLO.
A short linker (amino acid sequence GGGSGGGS) was
added to firefly luciferase after the last amino acid, followed
by the 26 amino acid sequence taken from the ORF site, fol-
lowed by a stop codon. As a control, 2–4 nucleotide synony-
mous mutations were introduced within the miRNA seed
sequence to disrupt the site, with attempts to maintain sim-
ilar codon usage frequencies.

http://www.targetscan.org/vert_70/
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For all reporter assays, 1 × 105 HEK293 cells were seeded
per well in 24-well plate 24 h prior to transfection. For ex-
periments in Supplementary Figure S1F and G, HEK293
cells expressing specific miRNAs were transfected with 30
ng of pmirGlo reporter plasmids using 0.5 �l of Lipo-
fectamine 2000 (Invitrogen) and were harvested 24 h af-
ter transfection. For the experiments in Figure 4C and
Supplementary Figure S4F, cells were transfected with 100
nM miR-122 mimics or a non-specific miRNA mimic (se-
quences in Supplementary Table S6) and 6 ng pmirGlo re-
porter plasmid and harvested 24 h after transfection. As-
says were performed using the dual-luciferase reporter as-
say kit (Promega) and a Veritas Microplate Luminometer
(Turner Biosystems). Firefly luciferase values were normal-
ized to Renilla luciferase as a transfection control. For Fig-
ure 4C and Supplementary Figure S4F, luciferase values for
cells transfected with the wild-type or mutant reporters and
the miR-122 mimic were also normalized to the geometric
mean of cells co-transfected with the identical reporter plas-
mids and the non-specific miRNA mimic.

Modeling miRNA expression over time

The empirical determination of the time required for
miRNA levels to reach steady-state was performed by com-
bining the synthesis (�) and decay (�) rates of miRNAs in
the following exponential function.

M(t) = β

α

(
1 − e−tα)

where M(t) represents the level of miRNAs at time t (h). The
synthesis rate � was assumed to be 1 unit and the decay rate
� was calculated using ln(2)/h, where h represents half-life
of a miRNA in hours. Different half-lives ranging from 6
to 36 h, comprising the majority of miRNAs (33) were used
to calculate levels of miRNAs over 1–8 days period. The
results are plotted in Supplementary Figure S1A.

RESULTS

A system for measuring miRNA-mediated post-
transcriptional regulation

Given the limitations of conventional methods for identify-
ing direct miRNA targets, we sought to develop an experi-
mental approach to robustly identify genes subject to post-
transcriptional regulation. While direct miRNA targets are
regulated exclusively at the post-transcriptional level, in-
direct targets can be regulated at multiple stages of gene
regulation. We began this work under the assumption that
indirect targets would be regulated predominantly at the
transcriptional level, as transcriptional control is presumed
to be the major mode of gene control (58–60); moreover,
the expression of many transcription factors are controlled
by miRNAs (26,61,62). We used RNA-seq and PRO-seq
to measure steady-state mRNA levels and transcriptional
output, respectively, and integrated these datasets to de-
convolute post-transcriptional regulation (Figure 1A). To
develop this method and to evaluate its efficacy, we pro-
filed HEK293 cells in the presence and absence of spe-
cific miRNAs. We chose first to study miR-1 and miR-

122 because they are well-studied human miRNAs not ex-
pressed in HEK293 cells. The majority of datasets used
to identify miRNA targets and to train prediction algo-
rithms are generated using cell culture with transiently
transfected miRNA, which are typically introduced at high
levels. We elected to stably integrate miRNA hairpins em-
bedded within the intron of a doxycycline-inducible GFP
reporter, to more closely approximate endogenous process-
ing and in vivo expression levels. After induction of miR-
NAs for seven days, we confirmed expression and accu-
rate processing of induced miRNAs using small RNA se-
quencing (small RNA-seq; Supplementary Figure S1A, B
and C) and quantitative PCR (qPCR; Supplementary Fig-
ure S1D). Compared to miR-10, the most highly detected
endogenous miRNA in our small RNA-seq data, miR-122
is expressed at about the same level and miR-1 is two-
fold higher, as measured with qPCR (Supplementary Figure
S1D). Furthermore, using small RNA-seq and RNA-seq,
we noted that the overall miRNA profile and activity of en-
dogenous miRNAs, respectively, were unchanged upon in-
duction of these exogenous miRNAs (Supplementary Fig-
ure S1E). Importantly, using reporter assays, we confirmed
that the induced miRNAs are functionally active (Supple-
mentary Figure S1F) and that the anticipated miRNA guide
strand was chosen selectively for loading onto AGO (Sup-
plementary Figure S1G). Collectively, these results indicate
that our synthetic miRNA expression system mimics pro-
cessing and expression of endogenous miRNA, facilitating
the analysis of miRNA targets while approximating normal
in vivo conditions.

To simultaneously measure transcriptional and post-
transcriptional changes upon miRNA induction, we per-
formed PRO-seq and RNA-seq on cells expressing miR-1
or miR-122 and compared them to control cells lacking a
miRNA hairpin. Principal component analysis (PCA) of
the RNA-seq data showed that the transcriptomes of cells
expressing miR-1 and miR-122 are distinct from each other
and from the control cells (Figure 1B, left panel). When we
performed PCA of the PRO-seq data, however, we found
that the genome-wide transcriptional profile of control and
miR-122 expressing cells were not well separated (Figure
1B, right panel), perhaps indicating that miR-122 does not
elicit wide-spread changes in transcription. Indeed, tran-
scription of 370 genes were significantly altered (q-value <
0.05) in response to miR-1, whereas only nine genes were
significantly altered in response to miR-122, supporting this
interpretation (Supplementary Figure S1H).

To investigate the effects of miRNA induction on tran-
scriptional and post-transcriptional regulation, we com-
pared changes in PRO-seq and RNA-seq across individ-
ual genes. The mRNA abundance at steady-state is de-
termined by transcriptional regulation (controlling syn-
thesis rate) and post-transcriptional regulation (control-
ling degradation rate). Therefore, we reasoned that changes
in PRO-seq signal (�PRO-seq), representing changes in
transcriptional outputs, subtracted from changes in RNA-
seq (�RNA-seq), representing changes in steady-state
RNA levels, would provide a quantitative readout for
post-transcriptional regulation. This combined analysis of
RNA-seq and PRO-seq, referred to as CARP hereafter,
identified many genes subjected to post-transcriptional re-
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Figure 1. Combined analysis of RNA-seq and PRO-seq identifies genes subject to post-transcriptional regulation. (A) Schematic representation of com-
bined analysis of RNA-seq and PRO-seq data. Changes in transcriptional output (y-axis; PRO-seq) and mRNA abundance (x-axis; RNA-seq) are plot-
ted. The blue diagonal region (concordant change in transcription and steady-state RNA levels) contains genes regulated exclusively at the transcriptional
level. The red horizontal region (change in steady-state RNA levels with no change in transcription) contains genes that are regulated exclusively at the
post-transcriptional level. The light gray region contains genes changing at both the transcriptional and post-transcriptional level, and the dark gray circle
contains changing at neither level. (B) Principal component analysis of RNA-seq (left) and PRO-seq (right) data, for cells induced with miR-1 or miR-
122, and control cell lines without induced miRNAs. (C) Dot plots depicting changes in steady-state mRNA levels (RNA-seq; x-axis) and transcriptional
output (PRO-seq; y-axis) for all expressed genes (dots) upon miR-122 (left) or miR-1 (right) expression. The grey, blue, and red dots represent genes with-
out predicted target sites, predicted weak targets (TargetScan context++ > –0.2) and predicted strong targets (TargetScan context++ < –0.2) of cognate
miRNAs, respectively. The gradient of red color indicates predicted efficacy of targets (TargetScan context++ score). A log2 fold-change of 0.2 in PRO-seq
(�transcription) and CARP (�post-transcription) is indicated using horizontal and diagonal dotted lines, respectively. The violin plots on the top and
right illustrate distributions of log2 fold-changes in RNA-seq and PRO-seq, respectively, for the different categories of genes, color-coded as described
above.

pression in response to miR-122 or miR-1, as indicated
by repression in RNA-seq profiles without any changes in
PRO-seq (Figure 1C). In fact, the 3′UTRs of most of these
genes contained target sites predicted to be strongly effec-
tive, as defined by TargetScan ((16); context++ score < –
0.2; referred to as predicted strong targets hereafter). Cor-
relating post-transcriptional repression with predictions of
site efficacy, most genes containing target sites predicted to
be weakly effective (as defined by TargetScan context++
score > –0.2; referred to as predicted weak targets here-
after), showed very subtle changes, if any, in RNA-seq com-
pared to genes without predicted target sites (Figure 1C;
log2 fold-change of –0.02 and –0.03 for miR-122 and miR-1,
respectively). Additionally, many genes, including predicted

strong targets, demonstrated concordant changes in both
PRO-seq and RNA-seq in cells expressing miR-1 (Figure
1C, right panel; Pearson correlation, r = 0.42), likely repre-
senting genes that are regulated predominantly at the level
of transcription, and not direct targets of miR-1. However,
such concordant changes were minimal in cells expressing
miR-122 (Figure 1C, left panel, r = 0.19). Furthermore,
the majority of genes were insensitive to induced miRNAs
(63% and 79% genes in miR-1 and miR-122 samples, re-
spectively, with absolute log2 fold-change smaller than 0.2
in both RNA-seq and PRO-seq). These unchanged genes in-
cluded 45% and 60% of predicted targets (including strong
and weak) of miR-1 and miR-122, respectively (47% and
55%, if considering conserved target sites predicted by Tar-
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getScan, at a probability of conserved targeting threshold >
0.5), likely representing high false-positive rates of predic-
tion algorithms, as reported previously (4,8,19,63). Taken
together, CARP robustly deconvolutes and quantifies post-
transcriptional and transcriptional regulation, enabling a
robust experimental framework for distinguishing the direct
miRNA targets from the resulting downstream regulatory
changes.

Combined analysis of RNA-seq and PRO-seq identifies direct
miRNA targets

Direct miRNA targets correspond to transcripts bound by
miRNA-loaded AGO at target sites, resulting in accelerated
decay and/or translational repression. To assess the ability
of CARP to detect direct targets, we first performed a likeli-
hood ratio test (LRT) (44) to identify genes that experience
a significant post-transcriptional change – that is, a signif-
icant change in steady-state mRNA level after accounting
for any change in transcription. Consistent with the role of a
miRNA as a negative regulator, most of the genes subject to
post-transcriptional regulation (98% and 75% for miR-122
and miR-1, respectively) exhibited repression upon miRNA
induction (Figure 2A and B). To evaluate further the prop-
erties of post-transcriptionally regulated genes, we assessed
the presence of predicted target sites for the cognate in-
duced miRNAs, using TargetScan v7.0 (16). The 3′UTRs of
the majority of post-transcriptionally down-regulated genes
contained predicted target sites for miR-122 or miR-1 (90%
and 63%, respectively), although we note that many addi-
tional predicted targets (567 and 2573 predicted strong and
weak targets, respectively, for miR-122; and, 742 and 1969,
respectively, for miR-1) were not detectably repressed. To
confirm that the post-transcriptional repression of the pre-
dicted targets (potential direct targets) is due to direct bind-
ing of miRNA-loaded AGO, we performed UV crosslinking
and immunoprecipitation of AGO followed by sequencing
(eCLIP-seq; (29)) to identify mRNAs bound by AGO. Fol-
lowing the quality control of eCLIP data and peak calling,
we found that a majority (54%) of our reproducible peaks
overlapped with 3′UTRs, with only 7% in introns (Supple-
mentary Figure S2A), as expected for AGO CLIP (21,64).
To assess further the quality of our eCLIP data, we com-
pared relative AGO density (see Materials and Methods)
for targets with varying predicted target site efficacy (Tar-
getScan) (16). As the predicted site efficacy increased, we
observed an increase in relative AGO density in 3′UTRs
(Supplementary Figure S2B), concomitant with an increase
in post-transcriptional repression (Supplementary Figure
S2B, inset), indicating that our eCLIP data reflect high qual-
ity AGO density profiles.

Using the AGO eCLIP data, we next asked whether our
classification of true direct targets (predicted targets exhibit-
ing significant post-transcriptional repression) is supported
by AGO binding. We found that relative AGO density
is strongly enhanced in 3′UTRs of post-transcriptionally
down-regulated genes containing predicted target sites, with
85 and 90% of genes bound by more AGO in cells expressing
miR-122 and miR-1, respectively, compared to control cells
(Figure 2C and D, orange line). Furthermore, consistent
with the absence of significant post-transcriptional repres-

sion for a large number of predicted targets, we observed
a negligible, albeit statistically significant, increase in AGO
density in their 3′UTRs (Figure 2C and D, pink line). Col-
lectively, these observations indicate that high confidence
miRNA targets can be readily identified by intersecting the
list of genes containing a predicted target site and the list
of genes post-transcriptionally changing, as measured by
CARP.

The robustness of CARP is dependent on its ability to
reliably profile post-transcriptional regulation. To evaluate
the specificity of post-transcriptional changes identified us-
ing CARP, we assessed the overlap between miR-1-specific
and miR-122-specific post-transcriptional changes. Since
the seed sequences of these miRNAs differ by only a single
nucleotide (miR-122: GGAGUGU; miR-1: GGAAUGU),
they served as reciprocal negative controls. We found only
five genes repressed post-transcriptionally by both miR-1
and miR-122, all of which contained predicted target sites
for both miRNAs in their 3′UTRs (Supplementary Figure
S2C). There was no overlap for the post-transcriptionally
up-regulated genes. To further evaluate the reliability of
CARP, we sought to investigate whether the targets we iden-
tified in HEK293 cells correspond to targets regulated by
these miRNAs in vivo. We reasoned that the true targets
of tissue-specific miRNAs such as miR-122 (liver-specific)
and miR-1 (muscle-specific) would be expressed at lower
levels in those specific tissues, a defining feature of tissue-
specific miRNAs (53,65–67). To this end, we compared the
expression of miR-1-specific and miR-122-specific direct
targets identified by CARP across 53 different tissues from
Genotype-Tissue Expression (GTEx) Project (BROAD In-
stitute). Consistent with our hypothesis, only the liver and
skeletal muscle tissues exhibited significantly lower expres-
sion of CARP-identified direct targets of miR-122 and miR-
1, respectively, compared to the randomly selected set of
genes (Supplementary Figure S2D). Collectively, these re-
sults establish that CARP detects true targets of miRNAs
with strong specificity.

CARP relies on mRNA steady-state measurements, and
therefore cannot detect miRNA targeting that results ex-
clusively in translational repression. Thus, we investigated
whether predicted targets that lacked significant post-
transcriptional regulation (detected by CARP) were under-
going translational repression. To address this possibility,
we performed ribosome profiling (30) to measure changes
in translation upon miRNA induction, comparing cells ex-
pressing miR-1 or miR-122 to control cells. We first evalu-
ated the change in translational efficiency (see methods) for
all genes in miRNA-expressing cells compared to control
cells. We found that only a small number of predicted targets
(including strong and weak) exhibited significant evidence
of translational repression (Supplementary Figure S2E; 8
and 25 genes for miR-122 and miR-1, respectively). Of these
translationally repressed targets, a subset also exhibited ac-
celerated mRNA decay (2 and 10, for miR-122 and miR-1,
respectively), whereas others (6 and 15) were repressed ex-
clusively via translational regulation (Supplementary Fig-
ure S2E). We next assessed the translational efficiency of
CARP-identified direct targets, which revealed that these
miRNA targets experienced significant, albeit subtle, trans-
lational repression compared to non-targets (Figure 2E and
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Figure 2. Identification and analysis of direct miRNA targets. (A) Identification of post-transcriptional changes in cells expressing miR-122 (left) or miR-1
(right). The dot plots are as described in Figure 1C, except that the filled and open dots illustrate genes with and without significant post-transcriptional
change (q-value threshold of 0.05), respectively. Filled dots are color-coded based on q-value. (B) Pie charts depicting the percentages of genes without
predicted target sites (grey), genes predicted to be weak targets, and genes predicted to be strong targets for post-transcriptionally down-regulated and up-
regulated sets of genes in cells expressing miR-122 (left) or miR-1 (right). (C and D) Cumulative distribution plots of relative AGO density at eCLIP peaks
within 3′UTRs in cells expressing miR-122 (C) or miR-1 (D) compared to the control cells. Genes were partitioned into four color-coded groups based
on presence or absence of predicted target site (Site), and whether genes are significantly post-transcriptionally repressed in response to miRNA induction
(CARP). Genes without predicted target sites and not subject to post-transcriptional regulation (Site-/CARP-; black) was used as the background set
and compared to the remaining three groups. P values and number of eCLIP peaks (in parentheses) are indicated by color (see legend). A bar plot with
standard error (error bars) is shown within each cumulative distribution plot depicting median log2(miR/Control) AGO density (y-axis) for each category.
(E and F) Cumulative distribution plots of translational efficiency in miR-122 (E) or miR-1 (F); otherwise as described in panels C and D. P values and
number of genes (in parentheses) are indicated by color. A bar plot is shown within each cumulative distribution plot depicting median log2(miR/Control)
translational efficiency (y-axis) for each category. (G and H) Box plots comparing contributions of mRNA degradation (green) and translational inhibition
(orange) in miRNA-mediated post-transcriptional repression of CARP-identified direct targets in cells expressing miR-122 (G) or miR-1 (H). The plotted
log2 fold-changes were normalized by the median regulation observed for the background genes (genes lacking predicted 3′UTR sites for the cognate
miRNA that showed no significant change in respective measurements). Mean and median log2 fold-changes are indicated by white point and horizontal
bar, respectively. The medians of log2 fold-changes were used to quantify relative contributions of decay and translational repression (see equation above
each plot).
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F, compare orange lines to black lines). These results in-
dicated that miRNAs expressed at physiological levels re-
press targets predominantly via accelerated mRNA decay
and that targets regulated principally by translational reg-
ulation are exceedingly rare; thus, CARP is well suited for
identifying direct targets.

Excluding certain specific cellular contexts (68,69),
mRNA decay is thought to be the major mode of miRNA-
mediated repression, with translational repression playing
only a minor role (70). To revisit this important question,
with our rigorous set of direct targets identified by CARP,
and with miRNAs expressed at physiological levels, we used
our ribosome profiling dataset to quantify contributions
from both translational repression and mRNA decay in
miRNA-mediated repression. We found that the magnitude
of mRNA decay was significantly greater than that of trans-
lational repression (6-fold greater for both miR-122 and
miR-1; Figure 2G and H). Indeed, reduced mRNA levels
explain most of the overall regulation observed (86% and
85%, for miR-122 and miR-1, respectively) compared to
translational repression (14% and 15%, Figure 2G and H).
These estimates are consistent with those obtained in previ-
ous studies using transiently transfected miRNAs (71), and
in marked contrast with other reports (72–74).

Combined analysis of RNA-seq and PRO-seq facilitates dis-
covery of indirect targets

In addition to direct targets, we found a smaller portion
(10% and 37%, for miR-122 and miR-1, respectively) of
post-transcriptionally repressed genes that lacked predicted
target sites (Figure 2B). This set represents either genes
with non-canonical target sites, or genes whose transcripts
are targeted indirectly through a post-transcriptional mech-
anism. Notably, these genes do not have significantly in-
creased relative AGO density within their 3′UTRs (Fig-
ure 2C and D; compare green lines to black), indicating
that they are indirect targets of miR-122 and miR-1, which
are down-regulated post-transcriptionally. Additionally, we
observed post-transcriptional up-regulation of 129 genes
upon miR-1 induction, which presumably represent indi-
rect post-transcriptional regulation, as miRNAs are repres-
sive molecules (Figure 2B). Consistent with this interpreta-
tion, most (75%) up-regulated genes lacked predicted tar-
get sites, and the up-regulated gene set also lacked an in-
crease in relative AGO density (Figure 2D). Thus, while
we initially assumed that the indirect targets must be pri-
marily regulated at the level of transcription, our results
indicate that indirect targeting triggered by miR-1 results
in both widespread transcriptional (Supplementary Figure
S1H) and post-transcriptional regulation, presumably as a
result of miRNA-mediated repression of transcripts cod-
ing for transcription factors and RNA-binding proteins,
respectively. Indeed, the direct targets of miR-1 included
many genes coding for transcription factors (56) and RNA-
binding proteins (75), whereas miR-122 repressed relatively
few (Supplementary Figure S2F). Taken together, these
data indicate that miR-122 primarily regulates direct targets
in HEK293 cells, while miR-1 elicits more complex regu-
latory responses involving both direct and indirect target-
ing. Intriguingly, a substantial proportion of the indirect

effects induced by miR-1 occurs via post-transcriptional
regulation. Importantly, however, the lack of predicted tar-
get sites within such genes enables reliable partitioning of
post-transcriptionally repressed genes into those that are
direct targets and those that are indirectly regulated by
additional miRNA-independent decay pathways. In addi-
tion, because our approach directly quantifies transcription
and mRNA levels, CARP is well-suited to disentangling
these complex transcriptional and post-transcriptional reg-
ulatory changes.

Partitioning modes of regulation elicited by miRNAs

To systematically investigate the utility of CARP, we ex-
amined relationships among three categories of genes: (i)
genes exhibiting reduced mRNA abundance in response to
either miR-122 or miR-1, which we measured using RNA-
seq, (ii) genes predicted to be strong microRNA targets,
which we determined using TargetScan (context++ < -0.2)
(16) and (iii) genes that we found to undergo significant
post-transcriptional repression in response to miR-122 or
miR-1. We compared these three gene sets, and depicted
the results using Venn Diagrams (Figure 3A). A substan-
tial fraction of predicted targets, for both miR-122 and
miR-1 (72 and 57%, respectively), do not exhibit evidence
of significant changes in mRNA abundance or in post-
transcriptional levels, consistent with established high rates
of false-positive predictions (set a in Figure 3A). Consis-
tent with this interpretation, this set of genes exhibited no
change in CARP, RNA-seq, PRO-seq or ribosome profiling
(Figure 3B). Similarly, we found minimal evidence for in-
creased AGO density in the 3′UTRs of this gene set (Figure
3C and D, Supplementary Figure S3A). We note that the
transcripts of the majority (54% and 57% for miR-122 and
miR-1, respectively) of these genes exist as 3′UTR isoforms
that contain the predicted target sites; thus, the absence of
regulation cannot be attributed solely to alternative process-
ing (Supplementary Figure S3B). Taken together, these re-
sults indicate that this category likely corresponds to false-
positive predictions and/or targets that are not effective in
this cell line.

The second subset of genes we considered were those
that contain predicted target sites whose mRNA abun-
dance is reduced in response to the cognate miRNA, and
which we determined were regulated post-transcriptionally
(set b, Figure 3A). Importantly, this gene set exhibited the
largest reduction in mRNA levels in response to the cognate
miRNA (Figure 3B). Moreover, post-transcriptional regu-
lation was the primary (and for many genes, sole) factor re-
sponsible for repression (Figure 3B). Congruently, this set
of genes also demonstrate the strongest increase in relative
AGO density in their 3′UTRs in response to the induced
miRNAs (Figure 3C and D, Supplementary Figure S3A).
This target set corresponds to direct miRNA targets. We
note that translational repression for these set of targets is
minimal (Figure 3B).

We next considered predicted target genes that were
down-regulated in mRNA abundance but without signifi-
cant post-transcriptional repression (set c, Figure 3A). As a
set, such genes exhibit minimal evidence of either miRNA-
induced post-transcriptional repression or translational re-
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pression (Figure 3B). We recognize that a subset of these
genes may represent bona fide direct targets, but with re-
duced site efficacy, thus reducing the ability to detect exper-
imentally. Nevertheless, the average post-transcriptional re-
pression is substantially less (Figure 3B) than that observed
for direct targets defined by CARP (set b). Moreover, al-
though relative AGO density is significantly increased for
these genes, the average magnitude of this increase is min-
imal (1.6 and 1.1-fold, compare to 2.2- and 2.5-fold for set
b; for miR-122 and miR-1, respectively; Figure 3C and D,
Supplementary Figure S3A). It is important to note that in
numerous conventional analyses of miRNA target sets, in-
cluding our previous work (76), all genes in set c would have
been erroneously declared as direct targets.

An important class of genes are those that have lower
steady-state mRNA levels but do not contain predicted tar-
get sites for miR-122 or miR-1 (set d, Figure 3A). Simi-
lar to set c, they exhibit a negligible magnitude of post-
transcriptional regulation (1.17- and 1.14-fold for miR-122
and miR-1, respectively) even though mRNA levels are
significantly reduced in response to the induced miRNAs.
Concordantly, in response to miR-1 or miR-122, we did
not observe any significant increase in relative AGO den-
sity in 3′UTRs or in ORFs of these genes (Figure 3C–F,
Supplementary Figure S3A and C), nor any evidence of
translational repression (Figure 3B), ruling out the pos-
sibility that they are potential direct targets containing
non-canonical target sites. Interestingly, these genes also
demonstrated subtle repression in transcriptional output
(Figure 3B, PRO-seq). Perhaps this set represents targets
of feed-forward control, which are repressed minimally at
both a transcriptional and post-transcriptional level, to ulti-
mately exhibit effective repression in mRNA abundance. As
a group, however, they exhibit characteristics indicative of
indirect miRNA targets regulated minimally at both tran-
scriptional and post-transcriptional levels.

We also identified genes that are significantly post-
transcriptionally repressed, but which lack predicted
miRNA target sites (set e, Figure 3A). The magnitude of
post-transcriptional repression for this gene set matched set
b, the set of confidently identified direct targets of miR-
122 and miR-1. We considered two possibilities to explain
the observed post-transcriptional repression for set e: either
they represented indirect targets whose regulation is post-
transcriptional, or they represent direct targets lacking con-
ventional miRNA target sites. We recognize that both sce-
narios might apply to different genes within the set. No-
tably, we did not observe increased relative AGO density
in the 3′UTRs of these genes (Figure 3C and D), consis-
tent with lack of predicted 3′UTR target sites. Given the
absence of increased relative AGO density in the 3′UTR,
we considered whether these genes might be repressed via
target sites within their ORFs. For miR-1, we detected only
five AGO eCLIP peaks in ORFs across the 115 genes of set
e and the increase in relative AGO density at these peaks
was very weak (Figure 3F), implying that these genes are
indeed indirect targets of miR-1, which are regulated post-
transcriptionally and independent of the miRNA pathway.
We note that this interpretation is consistent with our ob-
servation that many genes were post-transcriptionally up-
regulated in response to miR-1; that is, miR-1 induces

widespread indirect post-transcriptional regulation. In con-
trast, we observed a strong increase in relative AGO density
in the ORFs of miR-122-regulated genes in set e (Figure
3E, Supplementary Figure S3C), comparable in magnitude
to that observed in the 3′UTR of bona fide direct targets (set
b; 2.6- and 2.2-fold increase in ORFs of set e genes and in
3′UTRs of set b genes, respectively). We note that for miR-
122, set e encompasses only a modest number of genes (n
= 10). Nevertheless, these results suggest that miR-122 di-
rectly regulates a small group of genes via target sites in the
ORF.

In response to miR-1, but not miR-122, we observed a
small number of genes that are both predicted strong tar-
gets and significantly repressed post-transcriptionally, but
without a detectable change in mRNA abundance (Figure
3A and B; set f). We hypothesized that these genes are di-
rect targets, but also transcriptionally up-regulated, result-
ing in no net change in mRNA levels. Consistent with this
idea, we observed a strong increase in relative AGO density,
comparable to that seen in set b, in 3′UTRs for such genes
(Figure 3D; average fold-changes of 2.51 and 2.45, for sets
b and f, respectively). The weaker statistical significance of
relative AGO density is due to the small number of genes in
this category. Importantly, we also observed increased tran-
scription of these genes (Figure 3B), confirming transcrip-
tional up-regulation triggered by miR-1. This gene set illus-
trates an interesting class of direct targets that are invisible
to studies reliant on RNA-seq alone.

The final possible class of genes corresponds to those ex-
hibiting post-transcriptional repression without any signif-
icant change in mRNA abundance and without predicted
target sites (Figure 3A and B, set g). We observed this
class of genes in response to miR-1 alone. Consistent with
the absence of predicted target sites, we did not observe
an increase in relative AGO density in their 3′UTRs (Fig-
ure 3D, Supplementary Figure S3A), nor within ORFs of
these genes (Figure 3F, Supplementary Figure S3C), sug-
gesting that these genes are indirect targets that are re-
pressed post-transcriptionally reminiscent of the genes in
set e. Similar to set f, these genes also exhibited transcrip-
tional up-regulation, the impact of which is masked by post-
transcriptional repression, resulting in no change in mRNA
abundance (Figure 3B). Collectively, this set of genes rep-
resents indirect targets that are regulated at both the tran-
scriptional and post-transcriptional levels.

It is important to acknowledge that partitioning genes
into sets and subsets according to RNA-seq and PRO-seq
signals necessitates use of statistical thresholds. Accord-
ingly, we examined whether our interpretations (relating to
Figure 3A) are robust over a range of reasonable thresholds.
Overall, our observations remain consistent across a series
of statistical thresholds (Supplementary Figure S3A and C).
For example, irrespective of the significance threshold, we
observed large numbers of predicted strong targets which
did not exhibit evidence of post-transcriptional repression,
consistent with high rates of false-positive predictions. No-
tably, consistent with CARP’s ability to robustly separate
true direct targets (set b) from false targets of conventional
approaches (set c), even when we assessed the most lenient
threshold (q-value < 0.1), we found many predicted targets
that exhibited reduced mRNA abundance without a signifi-
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Figure 4. MicroRNA-specific targeting of sites located in open reading frames. (A) Cumulative distribution plots of post-transcriptional regulation (CARP,
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cant change in post-transcriptional regulation (set c). Taken
together, our approach identifies not only the robust direct
targets, distinguishing them from the large numbers of pre-
dicted yet ineffective targets, but also discovers a variety of
complex regulatory outcomes elicited by miRNAs.

MicroRNA-specific targeting of sites located in open reading
frames

The prevalence and efficacy of miRNA target sites within
coding sequence is unclear and controversial. Whereas cer-
tain studies indicate that such sites exert a negligible effect,
perhaps due to ribosome-mediated removal of miRNA-
loaded AGO from translating ORFs (77), others indicate
that such sites are often effective in mediating repression
(78). Here, we revisited this important question, using our
improved ability to quantify post-transcriptional regula-
tion.

We observed increased relative AGO density within
ORFs in response to miR-122 for a small set of genes (Fig-
ure 3E, Supplementary Figure S3C; set e); importantly,
this set of genes was devoid of predicted 3′UTR sites, and
exhibited no evidence of increased relative AGO density
within the 3′UTR (Figure 3C, Supplementary Figure S3A;
set e). In addition, this set of genes was repressed post-
transcriptionally in response to miR-122; thus, it seemed
plausible that miR-122 was directly repressing mRNAs of
these genes using target sites within the ORFs. To system-
atically examine miRNA-mediated regulation of ORF tar-
get sites, we grouped genes based on the location of po-
tential target sites (matches to 8mer, 7mer-m8 and 7mer-
A1 site motifs) within the mRNA and compared the de-
gree of post-transcriptional regulation. In response to miR-
122, genes containing predicted miR-122 target sites in the
ORF were significantly repressed, and the average efficacy
of these sites exceeded the efficacy of those predicted to
be weakly effective when located within 3′UTRs (Figure
4A, compare orange line with purple; P-value < 10−6). For
miR-122, we also found that post-transcriptional repres-
sion grows stronger with increasing number of miR-122 tar-
get sites in ORFs (Supplementary Figure S4A). Consistent
with activity of miR-122 ORF sites, we observed increased
relative AGO density in ORFs containing miR-122 target
sites (Supplementary Figure S4B). Moreover, we observed
that sequence conservation of predicted miR-122 ORF sites
is associated with the site efficacy, with conserved ORF
sites exhibiting 2.7-fold stronger repression compared to all
ORF sites, suggesting biological importance of such sites
(Supplementary Figure S4C). We note that the efficacy of
predicted conserved ORF sites is weaker compared to pre-
dicted conserved 3′UTR sites (Supplementary Figure S4C).
In stark contrast, we found no evidence for effective miR-
1 target sites within ORFs (Figure 4A), even when we ex-
amined genes harboring multiple miR-1 ORF sites or con-
served miR-1 ORF sites (Supplementary Figure S4A and
C, respectively), suggesting that specific miRNAs differ in
their ORF targeting propensities. Sites within 5′UTRs were
ineffective for both miRNAs (Figure 4A).

Next, we investigated whether the miR-122 ORF sites
share properties associated with functional 3′UTR sites.
Canonical 3′UTR sites differ in their average efficacy de-

pending on nucleotide sequence and pairing potential with
the 5′ terminus of the miRNA (referred to as the miRNA
seed (19)); we examined 8mer, 7mer-m8 and 7mer-A1
sites (ordered from stronger to weaker sites; (9)) located
within ORFs. Additionally, we also inspected a set of non-
canonical sites, referred to as G-bulged sites, that are sub-
ject to a marginal repression by miR-122 (79). We found a
consistent pattern for predicted miR-122 ORF sites, with
highest average repression elicited by 8mer sites followed
by 7mer-m8 and 7mer-A1 sites, with the least repression
for G-bulged sites (Supplementary Figure S4D). Beyond
the type of seed match, a major additional determinant
of 3′UTR target site efficacy is local AU content, with
higher AU content correlating with increased strength of
miRNA-mediated repression (9). We found that predicted
miR-122 ORF sites embedded in AU-rich regions exhibit
increased post-transcriptional repression, with average re-
pression correlating with local AU content (Figure 4B). No
such relationships for site type nor AU content were ob-
served for miR-1 (Supplementary Figure S4D and E).

To validate the efficacy of predicted miR-122 ORF sites,
we generated luciferase reporters containing translational
fusions between luciferase and a short region (encoding 26
amino acids) of endogenous sequence containing a poten-
tial miR-122 site. We also generated negative control vari-
ants of these reporters, which contained two to four synony-
mous mutations within the target site, designed to inactivate
the site. Reporter assays using the wild-type and mutant (in-
active site) constructs in the presence of miR-122 or a con-
trol miRNA indicated repression of wild-type reporters in
response to miR-122 (Figure 4C). However, only two of the
ten sites tested mediated statistically significant repression
(Figure 4C, Supplementary Figure S4F), consistent with the
reduced efficacy of predicted ORF sites compared to pre-
dicted 3′UTR sites observed in genome-wide analyses (Fig-
ure 4A and Supplementary Figure S4C). In agreement with
the importance of AU content to miRNA-mediated repres-
sion, the observed repression in reporter assays correlated
with local AU content, albeit not significantly, likely due to
the limited sample size (Supplementary Figure S4G). These
results provide additional evidence that miR-122 regulates
post-transcriptional expression by targeting ORF sites.

Given the modest impact of ORF sites in post-
transcriptional regulation, we wondered whether such sites
might function in concert with 3′UTR sites. To answer
this question, we evaluated three groups of genes, (i) genes
without predicted 3′UTR sites, (ii) genes with predicted
weak 3′UTR sites and (iii) genes with predicted strong
3′UTR sites, and asked if post-transcriptional regulation
of these three groups changed depending on presence or
absence of predicted ORF sites. Consistent with the effi-
cacy of miR-122 ORF sites, for genes without miR-122
3′UTR sites, those that contained ORF sites were signif-
icantly down-regulated compared to those without (Fig-
ure 4D, left). Interestingly, genes containing predicted weak
3′UTR sites were significantly more repressed when their
ORFs also contained miR-122 sites. In contrast, the pres-
ence of ORF sites in genes containing predicted strong
3′UTR sites did not provide additional benefit, particularly
for those genes that already are strongly repressed (genes
with log2(miR/Control) < –0.3). Consistent with our ear-
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lier results, there was no impact of miR-1 ORF sites on
post-transcriptional regulation for genes with or without
sites within the 3′UTR (Figure 4D, right). Collectively, these
observations suggest that miR-122 ORF sites potentiate
miRNA-mediated repression for genes containing marginal
sites within their 3′UTR.

It has been suggested that effective miRNA target sites in
ORFs elicit translational repression as a larger component
of total repression, when compared to sites within 3′UTRs
(78). Our data, however, indicate that targeting of ORF
sites by miR-122 mediated no significant effect on trans-
lation (Supplementary Figure S4H). To examine further
whether translation status influences the degree of miRNA-
mediated repression of ORF sites, we grouped genes based
on the degree of translation, approximated using the ratio
of ribosome profiling signal and expression in RNA-seq. We
observed, irrespective of the amount of translation, a grad-
ual increase in post-transcriptional repression with increas-
ing number of predicted miR-122 ORF sites (Supplemen-
tary Figure S4I, left panel). Taken together, these results
suggest that regulation triggered by miRNAs is mechanisti-
cally equivalent whether sites are located in the ORF or the
3′UTR, and not detectably altered by the translation status
of the transcript.

Utility of CARP across multiple miRNAs

To establish the general efficacy of CARP, we extended
our approach to additional miRNAs. We reanalyzed our
miRNA profiling data and selected five more miRNAs
(miR-133a, miR-155, miR-302a, miR-372 and miR-373)
whose expression is absent or negligible in HEK293 cells.
We generated HEK293 cell lines stably expressing each of
these miRNAs. Following induction of miRNAs for one
week, we performed RNA-seq and PRO-seq to quantify the
global changes in mRNA abundance and transcriptional
output upon miRNA induction. Similar to the observa-
tions for miR-1 and miR-122, the predicted strong targets of
these miRNAs exhibited reduced mRNA abundance with-
out any change in transcription, and predicted weak tar-
gets experienced only a subtle change (Supplementary Fig-
ure S5A). Using the likelihood ratio test (44), we identi-
fied gene sets demonstrating significant changes in post-
transcriptional levels and compared these genes with sets
of predicted targets. The majority of post-transcriptionally
down-regulated genes (63–97%) contained predicted target
sites for the cognate miRNA, whereas a majority of the up-
regulated genes lacked predicted target sites (Figure 5A),
consistent with the suitability of CARP in estimating post-
transcriptional regulation. Notably, the PRO-seq data re-
vealed different degrees of altered transcription, with cer-
tain miRNAs eliciting widespread changes in transcription
(Supplementary Figure S5B), which can be attributed to
variable degrees of indirect targeting triggered by different
miRNAs. These results indicate that CARP effectively de-
convolutes post-transcriptional from transcriptional regu-
lation.

Next, we investigated relationships between the three cat-
egories of genes, as defined in Figure 3, for all seven miR-
NAs examined in this study; thus, we partitioned genes
by whether they were repressed post-transcriptionally, ex-

hibited reduced mRNA levels, and contained a predicted
strong miRNA target site. Consistent with results we ob-
served for miR-1 and miR-122, a large number of predicted
targets (set a) were not under the control of miRNAs (Fig-
ure 5B). Similarly, attributes of other sets of genes (sets b-
g) were consistent with the results observed in Figure 3. In
particular, direct miRNA targets identified by CARP (set b)
exhibit strong post-transcriptional repression without any
changes in transcription (Figure 5B, heatmaps for set b).
The union of sets b and c represents hundreds of predicted
targets that exhibit reduced mRNA abundance in response
to the cognate miRNA, all of which would be considered
as direct targets by conventional approaches. However, the
improved resolution provided by CARP indicates that only
a fraction (33%; set b) of those genes exhibit evidence of sig-
nificant post-transcriptional repression, as opposed to only
subtle changes for set c genes, for which transcriptional reg-
ulation (indirect regulation) is contributing to the observed
reduction in transcript abundance (Figure 5B, heatmaps for
set c). Consistent with this interpretation, the set c genes
were predicted to contain target sites of somewhat lower
efficacy than those in set b (Supplementary Figure S5C).
Nevertheless, the set b genes exhibited far stronger post-
transcriptional repression compared to those in set c (Fig-
ure 5B). Notably, when we sub-sampled set c to match the
predicted efficacies of set b, the post-transcriptional regu-
lation for set b greatly exceeded that of their TargetScan-
score-matched counterparts from set c (Figure 5C). Thus,
CARP enables partitioning of predicted targets with equiv-
alent sites into true miRNA direct targets and likely down-
stream indirect targets. These results suggest that CARP
offers substantial improvement over existing approaches.
We do not rule out the possibility that some of set c genes
could be true direct targets that CARP is missing because of
failing significance threshold resulting from inherent noise
in their measurements. We believe that this type of false-
negative would be more prevalent for those miRNAs whose
dysregulation does not lead to many indirect changes at
transcription, such as miR-122, where incorporating PRO-
seq would only contribute more noise to the quantifica-
tion of post-transcriptional changes in the absence of sub-
stantial transcriptional change. Nonetheless, for the major-
ity of miRNAs that we examined, we observed widespread
changes in transcription (Supplementary Figure S5B), and
hence it is likely that CARP does not miss many true direct
targets.

In response to most miRNAs, we identified a small
cohort of genes (set f) that experienced direct miRNA-
mediated post-transcriptional down-regulation and indirect
transcriptional up-regulation, resulting in minimal or no
net change in mRNA abundance (Figure 5B, heatmap for
set f). Such genes cannot be identified using transcriptome
profiling alone, and such targets may represent an impor-
tant and underappreciated component of miRNA biology.

Because we observed activity of ORF sites in response
to miR-122 but not miR-1 (Figure 4), we systematically ex-
amined whether this activity extended to other miRNAs.
We evaluated the efficacy of ORF sites for the new set of
miRNAs and compared them with the efficacy of predicted
3′UTR and 5′UTR sites. We observed that different miR-
NAs varied substantially in their activity of ORF sites: miR-
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122, miR-133a, miR-155, miR-302a and miR-372 triggered
post-transcriptional down-regulation of genes containing
predicted ORF sites, whereas the influence of miR-1 and
miR-373 on messages containing predicted ORF sites was
negligible (Figure 5D). In particular, ORF sites for miR-
122, miR-133a, miR-155, miR-302a and miR-372 were of
comparable or greater efficacy to predicted weak 3′UTR
sites. Furthermore, although of lower efficacy compared
to conserved 3′UTR sites for all miRNAs, the conserved
ORF sites for miR-122, miR-133a, miR-155 and miR-302a
mediated stronger repression when compared to all pre-
dicted ORF sites, whereas miR-1, miR-372 and miR-373
lacked such a distinction (Supplementary Figure 5D). We

did not observe any substantial activity of predicted 5′UTR
sites for most miRNAs; the strongest evidence for effective
5′UTR sites was for miR-155, although this class of sites
was weaker than sites within the ORF. Taken together, these
data indicate unexpected variability in the efficacy of ORF
sites between different miRNAs. Although the average ef-
ficacy of these sites was substantially lower than for pre-
dicted strong 3′UTR sites, for some miRNAs, we observed
evidence of extensive miRNA-mediated repression via ORF
sites.

Prior to our work, the conceptually equivalent approach
exon-intron split analysis (EISA) (27) used pre-mRNA lev-
els, approximated by intronic reads in RNA-seq, as a proxy
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for transcriptional output. To compare the performance of
EISA with CARP, we contrasted changes in transcriptional
output measured using PRO-seq with those inferred using
intronic reads from RNA-seq. We found that changes in in-
tronic reads in response to miR-1 were weakly correlated
with changes in PRO-seq measurements (Pearson’s r be-
tween 0.11 and 0.46; Supplementary Figure S6A). Because
PRO-seq directly measures transcription by capturing tran-
scriptionally engaged RNA polymerase (28), our results
suggest that the level of intronic reads may not be a par-
ticularly accurate measure of transcription. Furthermore,
we found fewer genes with significant post-transcriptional
change in EISA compared to CARP for most miRNAs
(Supplementary Figure S6B and C, left panel), even when
down-sampling the PRO-seq data to match the intron se-
quencing depth of the RNA-seq data used for EISA (Sup-
plementary Figure S6C, right panel). Collectively, these
findings demonstrate that CARP outperforms EISA in the
quantification of post-transcriptional regulation and iden-
tification of miRNA direct targets. Nevertheless, it is clear
that EISA, which requires only RNA-seq profiling, is eas-
ier to implement and is a valuable tool to define miRNA
targets.

Here, we demonstrate that, for a wide variety of miR-
NAs, CARP is able to confidently exclude a large num-
ber of false-positive predictions and selectively identify
false negatives of conventional target identification ap-
proaches, in addition to robust identification of direct
targets.

Dissecting miRNA regulatory networks with CARP

Distinguishing direct miRNA targets from downstream
regulatory changes is critical to gaining a systems-level un-
derstanding of miRNA gene regulatory networks. Addi-
tionally, identifying the specific direct targets (e.g. tran-
scription factors) whose regulation results in these down-
stream effects is an essential component in understand-
ing the biological roles of miRNAs. In addition to quan-
tifying transcriptional output of genes, PRO-seq also cap-
tures and quantifies active DNA regulatory elements across
the genome by measuring transcription at those elements,
and has been used to identify transcription factors con-
tributing to cell state changes by searching for transcrip-
tion factor binding motifs within the differentially active
elements (40). Thus, we explored whether our PRO-seq
data could be used to identify transcription factors con-
tributing to the downstream regulatory changes triggered
by miRNAs.

In order to identify differential activity of DNA regu-
latory elements in response to miRNA induction, we first
identified active elements using dREG, a tool for predict-
ing regulatory elements using divergent transcription at ac-
tive elements obtained from PRO-seq data (42). We grouped
the dREG peaks into two sets: first, proximal peaks, de-
fined as those that are close (within 1.5 kb upstream and
0.5 kb downstream of) to annotated transcription start sites,
representing promoters; and second, the remaining, dis-
tal, peaks, representing enhancers. We found a strong cor-
relation between the changes in transcriptional activity at
dREG peaks and the changes in transcriptional output of

the nearest gene, with the strongest enrichment for proxi-
mal peaks (Figure 6A and B). These results indicate that
we can effectively capture changes in transcriptional activity
at DNA regulatory elements which contribute to the tran-
scriptional regulation of nearby genes.

The ability to profile differential transcriptional activ-
ity of DNA regulatory elements using PRO-seq provides a
unique opportunity to identify critical transcription factors
embedded in the miRNA regulatory network. We hypothe-
sized that a handful of specific transcription factors would
be targeted by the cognate miRNA, and those transcription
factors would be responsible for the observed downstream
differences in transcription. To investigate this hypothesis,
we gathered the subset of dREG peaks exhibiting signifi-
cantly increased or decreased transcriptional activity and
looked for enrichment of transcription factor binding mo-
tifs within these peaks. In cells expressing miR-1, we found
two candidate transcription factors, TAL1 and E2F5, that
are direct targets of miR-1 and whose putative binding sites
were enriched in down-regulated peaks, whereas none were
enriched in up-regulated peaks (Figure 6C, Supplementary
Table S7). To more comprehensively assess these transcrip-
tion factors, we evaluated their genome-wide influence on
gene expression. We first examined all dREG peaks con-
taining putative binding sites for a given transcription fac-
tor and compared their activity in cells expressing miR-
NAs to control cells. We found that the regulatory effects
of these candidate transcription factors are widespread;
for example, transcriptional activity at TAL1 binding sites
was down-regulated genome-wide in cells expressing miR-
1 (Figure 6D). These results suggest that miR-1 down-
regulates the mRNAs of these genes directly which in turn
reduces the activity of the encoded transcription factors,
leading to widespread downstream transcriptional effects.
Consistent with our results, previous studies have suggested
that miR-1 incorporates E2F5 in its regulatory network to
control cell proliferation (80,81). Additionally, we found an-
other transcription factor, KLF15, whose activity is regu-
lated in response of miR-1 (Supplementary Figure S7A);
lack of predicted target sites in the KLF15 3′UTR suggests
that miR-1 mediated regulation of KLF15 is indirect. Simi-
larly, in response to miR-133a, we identified three transcrip-
tion factors whose putative binding sites were enriched in
down-regulated peaks (Figure 6C); two of the three, namely
SP3 and FLI1, are among the direct targets of miR-133a,
whereas the third, KLF3, is likely an indirect target. As
expected, we observed genome-wide decrease in transcrip-
tional activity at the putative binding sites of these tran-
scription factors (Figure 6D, Supplementary Figure S7A).
We did not identify any such transcription factor signatures
in cells expressing miR-122 (Supplementary Table S7), con-
sistent with our observations that there are limited indirect
transcriptional effects for miR-122 (Supplementary Figure
S1H). While we also did not find any candidate transcrip-
tion factors for miR-155, miR-302a or miR-372 (Supple-
mentary Table S7), likely because there were very few dREG
peaks with significant change in activity, we found one can-
didate transcription factor, ZBTB7A, among the direct tar-
gets of miR-373, whose putative binding sites were enriched
in those dREG peaks that exhibited increased transcrip-
tional activity (Figure 6C). ZBTB7A has been shown to
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acts as a transcriptional repressor (82), predicting that miR-
373-mediated post-transcriptional repression of ZBTB7A
would promote transcriptional up-regulation of its target
genes. Consistent with this prediction, we observed genome-
wide activation of transcriptional activity at the putative
binding sites for ZBTB7A (Figure 6D).

Previous reports have suggested that some small RNAs,
including miRNAs, bind directly to gene promoters and
modulate transcription of target genes (83–85). However,
the changes in transcription in response to miRNAs that we
observed (Supplementary Figure S1H) appeared to not be
driven by direct binding of miRNAs to promoters of target
genes, as judged by analysis of the enrichment of target sites
within the promoters (Supplementary Figure S7B). Taken
together, we have shown that PRO-seq not only measures
transcriptional outputs, but also captures differentially ac-
tive DNA regulatory elements, allowing us to perform mo-
tif enrichment analysis and thereby identify candidate tran-
scription factors responsible for genome-wide downstream
transcriptional regulation. We believe that this additional
benefit of PRO-seq will be of substantial value for gaining
a comprehensive understanding of the impact of miRNAs
at a systems-level.

DISCUSSION

Identifying the direct targets of a miRNA and distinguish-
ing these direct targets from downstream changes (indirect
targets) is challenging. These challenges derive from (i) the
subtle nature of miRNA regulation, (ii) false positives and
false negatives in target prediction, (iii) the large number of
potential targets and (iv) the potential for an extensive num-
ber of downstream indirect targets. Inevitably, some down-
stream targets will possess putative target sites, and will of-
ten be erroneously considered as direct targets. Our work
highlights the extent of such errors, together with many
other aspects of miRNA-controlled regulatory networks
that are difficult to parse without directly measuring tran-
scriptional regulation that is triggered by a miRNA. The
combination of miRNA target prediction and RNA-seq
profiling is routinely applied to the study of miRNAs. This
study demonstrates that adding PRO-seq (or related tools
that measure transcription across the genome) provides far
more reliable definition of the target set of a miRNA, with
significant added insights into the overall regulatory net-
work controlled by a miRNA. This study was motivated
by the assumption that many miRNAs with consequential
functions work, in part, by eliciting substantial downstream
regulatory changes, and that most such changes would oc-
cur via transcriptional regulation. That is, miRNAs likely
function, to some extent, by controlling one or more tran-
scription factors. Our data, and many others (26,61,62,86–
90), corroborate this assumption. Intriguingly, we also ob-
serve substantial indirect post-transcriptional changes for
some miRNAs. Importantly, CARP is able to distinguish
direct from indirect post-transcriptional regulation by clas-
sifying only those that contain predicted target sites as true
targets. CARP is uniquely able to parse out these complex
regulatory mechanisms, as it directly deconvolutes tran-
scriptional from post-transcriptional effects.

An important aspect of this study is the reliance on cell
lines that ectopically express miRNAs within the physio-
logical range, rather than using miRNA transfection, as is
common in earlier work examining the regulatory impact
of miRNAs. Indeed, perhaps the extent of false positives
that exist amongst predicted targets derives, in part, from
the dependence on training datasets that used transiently
transfected miRNAs that likely exceed physiological levels.
Another important aspect of this study is the use of mul-
tiple genomic tools to profile the regulatory changes medi-
ated by a miRNA––namely, RNA-seq, PRO-seq, ribosome
profiling and AGO eCLIP-seq––generating a comprehen-
sive dataset of orthogonal approaches that encapsulates al-
most all aspects of miRNA-mediated targeting and regu-
lation. Finally, we have provided combined RNA-seq and
PRO-seq data for five additional miRNAs; in total, these
data serve as an ideal resource to aid in our understanding
of miRNA target sites and in further improvement of pre-
diction algorithms.

The precision with which targets are identified by CARP
allows us to more reliably examine non-canonical miRNA
targeting; that is, targeting that extends beyond seed-type
sites within 3′UTRs. In particular, we have found that cer-
tain miRNAs (e.g. miR-122) have large numbers of func-
tional target sites within coding sequence, whose efficacy is
comparable to many canonical 3′UTR sites. Importantly,
we validated this observation using AGO eCLIP-seq. In
contrast, the suite of target sites for other miRNAs includ-
ing miR-1 and miR-373, were restricted to their conven-
tional location within 3′UTRs. We note that other stud-
ies have also hinted at miRNA-specific differences in tar-
geting propensities (15). Although there is certainly prece-
dence for miRNA coding sites, we are not aware of com-
pelling evidence that certain miRNAs possess large num-
bers of effective sites within coding sequence, nor studies
that robustly compare the extent of such targeting among
a cohort of different miRNAs. Thus, two important con-
clusions from this study are that the targeting properties of
miRNAs are not uniform, and that for some miRNAs, a
substantial fraction of their regulatory impact is mediated
by target sites within coding sequence. It is also worth not-
ing that for miR-122, sites within the ORF appear to poten-
tiate repression of genes with predicted weak 3′UTR sites,
whereas there is no additional repression from ORF sites
for genes with predicted strong 3′UTR sites. Future studies
will be needed to decipher the mechanistic bases for these
observations.

The relative contributions of translational repression and
accelerated decay due to miRNA-mediated regulation is an
important question, both because of mechanistic implica-
tions, and, pragmatically, due to the reliance on transcrip-
tome profiling in the vast majority of miRNA studies, in-
cluding CARP. Here, we have investigated two miRNAs,
miR-1 and miR-122, using a suite of tools that provides
an ideal dataset to rigorously quantify the relative contribu-
tions of decay and translational regulation elicited by miR-
NAs. We estimate that < 15% of total regulation occurs
via translational regulation; moreover, targets that are regu-
lated exclusively via translational repression are exceedingly
rare. Therefore, CARP is well-suited for the identification
of true miRNA targets, except for the rare contexts such as
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the Zebrafish embryo (68,69) where miRNA direct targets
are subjected exclusively to translational repression without
any change in mRNA stability.

Discovery of indirect targets is equally important for
the understanding of miRNA-mediated regulation as the
knowledge of miRNA direct targets. We discovered sub-
stantial indirect regulation at transcription for many miR-
NAs; for example, expression of miR-1 triggered transcrip-
tional up-regulation of 133 genes and transcriptional down-
regulation of 237 genes. Interestingly, not all of the in-
direct targeting we observed in such cases was transcrip-
tional; we also found a set of genes that are indirectly reg-
ulated at the post-transcriptional level. It is important to
note that direct regulation by miRNAs is unlikely to ac-
count for this class of targets, because we saw no increase
in relative AGO density in mRNA of genes subject to post-
transcriptional regulation that lack canonical target sites,
and, for miR-1, many of these post-transcriptionally chang-
ing genes were up-regulated. For miR-1, the extent of this
regulation was surprisingly widespread; while we identified
370 genes changing at transcription, we estimate 273 genes
to be indirectly post-transcriptionally regulated. This indi-
cates that miRNAs are likely embedded in complex regula-
tory networks comprised of both transcriptional and post-
transcriptional regulation.

A major advantage of CARP is its ability to simulta-
neously measure transcriptional and post-transcriptional
changes. One set of genes that illustrates this importance
is the set of high confidence direct targets, across multiple
miRNAs, which show little or no change in mRNA abun-
dance. Our data indicate that these targets are simultane-
ously directly repressed and indirectly activated. Identifying
such targets previously was challenging. Overall, such tar-
gets constitute 2% of the genes subject to miRNA-mediated
post-transcriptional regulation. We argue that the study of
these miRNA targets is important in order to understand
how miRNAs regulate a complete gene regulatory network.
Although this study was not intended to investigate the bi-
ological roles of any of the miRNAs we used, the frequency
with which we found miRNA targets whose repression
is balanced by transcriptional up-regulation suggests that
such targets may also be common in native regulatory path-
ways involving miRNAs. Furthermore, we envision CARP
becoming a particularly apt tool for dissecting complex
gene regulatory networks in vivo. For example, with miRNA
knockout mouse models, CARP can measure and parti-
tion the transcriptional and post-transcriptional regulation
elicited by a given miRNA in vivo. Post-transcriptional reg-
ulation measured by CARP could also be incorporated into
network modeling algorithms, which would be of particular
interest for studying the combinatorial impact of multiple
miRNAs.

The primary motivation for this study was to demon-
strate the utility of PRO-seq, in combination with RNA-
seq, to robustly identify post-transcriptional regulation,
and thereby robustly identify miRNA targets. However, in
addition to genome-wide quantification of transcription, an
integral aspect of PRO-seq data is genome-wide quantifica-
tion of promoter and enhancer activities. This additional
feature greatly amplifies the utility of PRO-seq in under-
standing the regulatory impact of a miRNA. Presumably,

many gene regulatory pathways incorporate both miRNAs
and transcription factors, and the combination of RNA-seq
with PRO-seq is clearly well justified in effectively separat-
ing regulatory contributions of miRNAs from those medi-
ated by transcription factors. This combination identifies
genes subject to transcriptional and post-transcriptional
control, and provides a profile of active DNA regulatory ele-
ments genome-wide. The ability of CARP to provide this in-
formation makes it an ideal approach for probing complex
regulatory networks. Taken together, we show that CARP
provides a framework for simultaneously measuring regula-
tion occurring at multiple stages of gene expression, which
could prove to be a powerful approach for comprehensively
disentangling miRNA gene regulatory networks in vivo.
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