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      Rheumatoid arthritis (RA) is believed to be an 
autoimmune disease mainly caused by the long-
standing observation of the presence of increased 
levels of autoantibodies. The classical autoanti-
bodies are rheumatoid factors (RFs), i.e., anti-
bodies reactive with IgG. Although these are 
likely to be relevant, as their occurrence pre-
dates the development of clinical arthritis ( 1 ), it 
is still unclear what their pathophysiologic role 
is. However, one of the most exciting recent 
discoveries is the fi nding that antibodies rec-
ognizing citrullinated proteins show a higher 
specifi city for RA as compared with RFs ( 2, 3 ). 
Citrullination is a posttranslational modifi cation 
of proteins in which a peptidyl arginine is con-
verted into the nonstandard amino acid pep-
tidyl citrulline. The reaction is catalyzed by 
calcium-dependent peptidyl arginine deiminase 
(PAD), an evolutionarily conserved protein 
with several isoforms in both mice and humans 

(PAD1 – 4 and PAD6) ( 4 ). The most prominent 
diff erence between the distinct PAD isotypes 
is the distribution of expression among specifi c 
tissues. PAD4 can be found in monocytes and 
macrophages, whereas both PAD2 and PAD4 
have been observed in synovial fl uid ( 5 – 7 ). 
Citrullination has been detected in many tissues 
and has been shown to occur in both mouse 
and human infl amed joints ( 5, 8, 9 ). Not only 
the expression but also the activation of PAD is 
required for citrullination. This activation re-
quires a local calcium concentration of  � 10  � 5  
mol/liter, which is much higher than normal 
cytosolic calcium concentration ( � 10  � 7  mol/
liter) ( 7 ). However, the calcium concentration 
is increased in the cytoplasm during apoptosis 
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 Antibodies to citrulline-modifi ed proteins have a high diagnostic value in rheumatoid 

arthritis (RA). However, their biological role in disease development is still unclear. To 

obtain insight into this question, a panel of mouse monoclonal antibodies was generated 

against a major triple helical collagen type II (CII) epitope (position 359 – 369; ARGLTGRP-

GDA) with or without arginines modifi ed by citrullination. These antibodies bind cartilage 

and synovial tissue, and mediate arthritis in mice. Detection of citrullinated CII from RA 

patients ’  synovial fl uid demonstrates that cartilage-derived CII is indeed citrullinated in 

vivo. The structure determination of a Fab fragment of one of these antibodies in complex 

with a citrullinated peptide showed a surprising  � -turn conformation of the peptide and 

provided information on citrulline recognition. Based on these fi ndings, we propose that 

autoimmunity to CII, leading to the production of antibodies specifi c for both native and 

citrullinated CII, is an important pathogenic factor in the development of RA. 
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Importantly, mice expressing the RA associated DR4 or 
DR1 class II molecules are also susceptible to arthritis because 
of recognition of an almost identical glycopeptide (CII261-
273). In fact, T cell responses to this peptide, in particular to 
the galactosylated form, are raised in RA ( 20 ). Both mouse 
and human T cells predominantly recognize the posttransla-
tionally modifi ed lysine side chain at position 264. The B cell 
response in the CIA model is directed to a series of epitopes 
located at the triple helical form of the CII molecule, and 
these epitopes are also conserved and recognized in RA ( 23 ). 
Antibodies to certain epitopes correlate with arthritis severity 
in both CIA and RA, and mAbs directed to these epitopes 
induce arthritis in mice (the so-called collagen antibody – in-
duced arthritis [CAIA]). Interestingly, these triple helical epi-
topes on the CII molecule contain a conserved motif that 
contains an arginine (G-X-R-G hydrophobic amino acid). In 
fact, some of the defi ned epitopes contain the conserved mo-
tifs in a tandem repeat like the dominating  “ C1 ”  epitope at 
position 359 – 370 ( 24 ). Clearly, this opens up the possibility 
that these arginines could be citrullinated, exposing a second 
type of posttranslationally modifi ed epitope in addition to the 
galactosylation of lysine 264 recognized by T cells. We have 
recently demonstrated that one of the major B cell epitopes 
on CII, the C1 epitope CII 359 – 370 (GARGLTGRPGDA), 
is also recognized in RA in its citrullinated form ( 25 ). 

 We have now made a panel of mAbs against the citrulli-
nated C1 epitope and show that both CII- and citrulline-spe-
cifi c antibodies induce as well as promote arthritis in the mouse. 
Using these antibodies, citrullinated CII can be identifi ed in 
mouse and human RA joints. The structural interactions be-
tween one of the antibodies recognizing the citrullinated epi-
topes were revealed, and it was found that the peptide forms a 
hairpin exposing the citrulline side chain into the combining 
site of the antibody. These data thus demonstrate that citrul-
lination of CII occurs in RA, and the antibodies specifi c for 
at least one of the citrullinated collagen epitopes induces and 
promotes the development of arthritis. 

  RESULTS  

 Generation and specifi city of mAbs to citrullinated 

CII ACC1 – 5 

 The mAb ACC1, specifi c for citrullinated CII, was isolated 
from a B10.RIII  Cia5  congenic mouse immunized with bo-
vine CII. The ACC2 – 4 antibodies were raised from DBA/1 
or (B10.Q  ×  DBA/1) F1 mice immunized with PAD4-
treated B+T-Cit peptides emulsifi ed in CFA. GB8 and ACC5 
stem from B10.Q mice with chronic arthritis after CII/CFA 
immunization. The cloned hybridomas were characterized by 
VDJ sequencing, and the mAbs were purifi ed and tested for 
specifi city ( Fig. 1 a  and  Table I ).  

 Sequencing revealed that ACC1, ACC4, GB8, and 
UL1 have unique cDNA V gene sequences, whereas the 
ACC2 and ACC3 clones shared both V H  and V L  (Figs. S1 
and S2, available at http://www.jem.org/cgi/content/full/
jem.20081862/DC1). The ACC2 and ACC3 clones were 
derived from the same mouse and are therefore likely to 

or necrosis ( 10 ), which allows PAD to be released. In in-
fl amed tissues, the released PAD could therefore also citrulli-
nate extracellular proteins like fi brinogen and collagen. 

 Antibodies against citrullinated proteins (ACPAs) have 
been identifi ed in the synovium of a high number of RA pa-
tients (50 – 70%) ( 11, 12 ). In contrast, ACPAs are rarely found 
in healthy individuals or patients with other diseases ( < 2%). 
Interestingly, ACPAs share with RFs the fact that they can be 
detected in patient sera even before the onset of initial RA 
symptoms, and are therefore believed to play a pathogenic 
role ( 13 ). These fi ndings have stimulated the search for the 
origin of ACPA production. The recognition of citrulline is 
dependent on the protein backbone, and it has therefore been 
of considerable interest to identify proteins that elicit and per-
petuate the ACPA response. Clearly, ACPAs are produced in 
the joints ( 11, 14 ), and one possibility is that the recognized 
citrulline is an antigenic determinant that is preferentially as-
sociated with proteins deposited in joints like fi brin ( 15 ). In 
fact, immunization of mice with citrullinated fi brin has been 
reported to induce joint infl ammation, which, however, dif-
fers considerably in its histopathologic features from those 
that are characteristic of RA or its well-established experi-
mental models, such as collagen-induced arthritis (CIA) ( 16 ). 
In addition, fi brin deposition is not specifi c for RA joints 
( 17 ). An alternative hypothesis is closely related to the discov-
ery that citrullination of a vimentin-derived peptide increases 
its binding to the RA-associated MHC class II molecule DR4 
( 18 ). Similar to previous discoveries in celiac disease, the 
posttranslational modifi cation of a potential T cell determi-
nant could explain the breakdown of self-tolerance ( 19 ). Al-
though tolerance remains restricted to the nonmodifi ed self, 
it could easily allow for T cell activation in response to a pre-
sented citrullinated self-determinant, thereby giving rise to 
autoantigen-specifi c B cell help. However, so far there is no 
evidence for an enhanced T cell response to citrullinated vi-
mentin neither in RA nor in animal models. An alternative 
perspective on the potential mechanism that may lead to the 
development of humoral immunity to citrullinated self-pro-
teins in RA is off ered by the assumption of a so-called linked 
recognition. According to this concept, the B cells with spec-
ifi city for a citrullinated determinant get activated upon co-
operation with T cells recognizing another (nonmodifi ed 
cryptic) epitope on the same protein. In fact, the major carti-
lage protein, collagen type II (CII), provides such a possibility 
for recognition as a relevant joint-specifi c autoantigen. Im-
portantly, if a linked recognition occurs, it could operate in 
two steps; i.e., B cells producing antibodies to other citrulli-
nated proteins may capture citrullinated CII and subsequently 
activate pathogenic CII-reactive T and B cells. In this case, a 
response to CII should occur in RA joints. 

 Immunization of genetically susceptible animals with 
CII induces arthritis and is the basis for one of the most 
commonly used animal models for RA, CIA. The critical 
immune recognition structures have been identifi ed in the 
mouse ( 20 – 22 ). T cells recognize a glycopeptide derived 
from CII position 260 – 270 on the MHC class II molecule A q . 
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  Figure 1.     ACC mAb antibody specifi city in vitro and in vivo.  (a) ACC mAb specifi city in ELISA. Several arginine-containing peptides and their citrul-

line analogues have been tested to characterize the citrulline specifi city of our generated antibodies. Some of the epitopes were accessible in the triple 

helical form of the citrulline-containing C1 III  epitope (THPCII-Cit) for some of the antibodies (ACC1 – 3 and ACC5; A and B). Nevertheless, this epitope 

seems not to be accessible for ACC4. Some of the antibodies cross react to selected citrullinated peptides even with a noncollageneous backbone. ACC2, 

ACC3, and ACC5 bind not only to CII but also to the citrullinated derivative of fi brinogen (C and D). Furthermore, ACC4 and ACC5 bind stronger to the 

citrullinated form of cyclic fi laggrin (cyc-Cit) than to its arginine-containing form (cyc-Arg; E and F). Enzymatic deimination of CII with PAD4 generates 

neoepitopes, which are recognized by ACC2 – 4 (G – I). C1 III  peptides containing an additional biotinylated lysine have been synthesized, which in turn bind 

to NeutrAvidin-precoated ELISA plates (J – M). This setup allows free accessibility of the different antibodies specifi c for the citrulline-modifi ed immuno-

dominant CII epitopes. All of the assays were done in duplicate. (b) Staining of arthritic joints. Citrulline-specifi c antibodies bind to arthritic cartilage. 

Joint sections (10 mm) from arthritic BALB/c (A, C, and D), naive (BALB/c  ×  B10.Q) F1 (B), or BALB/c (E) mice are shown. Results shown are representative 

histological pictures of arthritic ( n  = 4) and control ( n  = 3) mice used in the staining of joints with anticitrulline antibodies. Arthritis was induced in 4 – 6-

mo-old naive male BALB/c mice ( n  = 36) by injecting 9 mg of an arthritogenic anti-CII mAb cocktail containing antibodies M2139 (binding to the J1 epi-

tope) and CIIC1 (binding to the C1 I  epitope). The arthritis induction experiment was performed four times independently with 100% incidence and a mean 

maximum arthritis score of 32.9  ±  3. The four mice that were used for histology had arthritis scores of 59, 60, 47, and 50. Paw samples were taken on day 

11 after antibody transfer (5 d after LPS injection). Sections were treated with no antibodies (A), ACC1 (B), or ACC4 (C – E) mAbs. Magnifi cation,  × 10.   
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CII IgG antibodies M2139 (recognizing the J1 epitope), 
CIIC1 (recognizing the C1 I  epitope), and UL1 (recognizing 
the U1 epitope), and injected them in vivo in both naive 
mice and mice suff ering from chronic CIA ( Fig. 2 ; and 
 Tables II and III ).  The ACC1 antibodies could induce mild 
arthritis in naive mice, and a more severe form of the arthri-
tis was developed after a booster injection of LPS, similar to 
pathogenic anti-CII antibodies ( Fig. 2 a ). The severity of ar-
thritis was enhanced when the ACC1 antibody treatment 
was combined with the anti-CII antibodies M2139 or CIIC1 
(unpublished data). As the induction of arthritis with ACC1 
could possibly be caused by its cross-reactivity with dena-
tured CII, we also used the ACC4 antibody that showed no 
cross-reactivity with nonmodifi ed CII and recognized the 
citrulline epitope on a single  � -chain peptide. Injection of 
ACC4 antibody enhanced the arthritis when given concom-
itantly with another CII-specifi c antibody (M2139 ACC4) 
but could not induce arthritis by itself ( Fig. 2 a ). This lack of 
direct arthritogenic potential could be caused by the non-
complement-binding subclass of the ACC4 antibody (IgG1). 
Another citrulline-specifi c antibody, the IgM ACC5 mAb 
preferentially recognizing the noncollagenous citrullinated 
antigens fi laggrin and fi brinogen, induces arthritis but with 
very low severity ( Fig. 2 b ). The monoclonal IgG2b anti-
body GB8 that recognized denatured CII was also unable to 
enhance arthritis in combination with anti-CII antibodies 
( Fig. 2 a ). We conclude that antibodies to citrullinated CII 
can induce arthritis in naive mice by themselves, and the ar-
thritis severity is enhanced by combining them with anti-
bodies to noncitrullinated CII. 

 To test whether the ACC antibodies could trigger a re-
lapse of arthritis in an already ongoing chronic arthritis, we 
used a model in which chronic arthritis was induced in 
(BALB/c  ×  B10.Q) F1 mice. These mice develop a chronic 
relapsing disease with a duration of  > 200 d, and we selected 
mice in remission from a large cohort of mice. Anti-CII anti-
bodies induce arthritis relapses 1 – 2 d after injection in this 
cohort. Similarly, both ACC1 and ACC4 could both induce 

originate from the same clone in vivo. All of these ACC 
antibodies contained somatic mutations, indicating that they 
are produced by T cell – dependent follicular B cells (Table S1). 
All ACC antibodies bind to citrullinated forms of the C1 
epitope. ACC1 – 3 and ACC5 bind to the triple helical citrul-
linated C1, and ACC4 binds to the citrullinated C1 epitope 
as an  � -chain peptide. None of the ACC antibodies cross 
react to the respective noncitrullinated variant of the  �  chain 
of the C1 epitope. However, they cross react with variable 
degrees to citrullinated epitopes on other peptide backbones. 
ACC4 and ACC5 bind to cyclic citrullinated fi laggrin pep-
tide (i.e., CCP1), and ACC2 and ACC3 bind to citrullinated 
fi brinogen. Thus, these antibodies are mouse monoclonal 
ACPAs. Although they are all directed to the citrullinated 
C1 epitope, their specifi cities are not identical. The ACC1 
antibody cross reacted to denatured CII as well as to the 
denatured triple helical C1 epitope. There are two arginines 
in the C1 epitope, which can be posttranslationally con-
verted to citrulline. ACC2 – 4 recognize the fi rst citrulline at 
position 360, and ACC1 recognizes the second citrulline at 
position 365. 

 To determine whether the citrullinated epitope is ex-
posed in vivo, we stained joint sections from adult arthritic 
mice using the ACC1 and ACC4 antibodies. The ACC1 an-
tibody stained cartilage and the ACC4 antibody stained the 
infl amed synovial tissue in the vicinity of cartilage ( Fig. 1 b ). 
Although the staining with ACC4 clearly demonstrates the 
occurrence of citrullinated denatured CII in the cartilage, the 
interpretation of the ACC1 staining is less clear because it 
might refl ect either antibody recognition of citrullinated CII 
or cross-reactive binding to the denatured CII. 

 Induction of arthritis 

 To investigate the arthritogenic potential of the ACC mAbs, 
we purifi ed the ACC1 (an IgG2c specifi c for triple helical 
C1 epitope), ACC4 (an IgG1 specifi c for the citrullinated 
C1 epitope on the  �  chain), and ACC5 antibodies (an IgM 
specifi c for the triple helical C1 epitope), as well as the anti-

  Table I.    Summary of mAb specifi cities 

Clones Sub-  

 class

nCII-  

 Arg

dCII-  

 Arg

dCII-  

 Cit

THPCII  

 Arg

THPCII  

 Cit

pCII-  

 Arg

pCII  

 Cit1

pCII  

 Cit2

pCII  

 Cit1+2

cyc-  

 Arg

cyc-  

 Cit

FibArg FibCit

ACC1  � 2a  + +++ +++  � ++  �  � ++ +  � +  �  � 

ACC2  � 2b  �  � ++  � ++  � +++  � +++  �  �  � +++

ACC3  � 2b  �  � ++  � ++  � +++  � +++  �  �  � +++

ACC4  � 1  �  � +  � +  � +++  �  � + +++  �  � 

ACC5  �  �  �  �  � +  �  �  �  � ++ +++  � ++

GB8  � 2b  � + + ++ ++ +++ ++ +++ ++  �  �  �  � 

CIIC1  � 2a ++  �  � +++  �  �  �  �  �  �  �  �  � 

M2139  � 2b ++ + +  �  �  �  �  �  �  �  �  �  � 

UL1  � 2b +  �  �  �  �  �  �  �  �  �  �  �  � 

Grading of values obtained with a 200-ng/ml antibody concentration. Scale for relative luminescence unit (RLU; CII assay) values:  � ,  < 20,000; +,  > 20,000; ++,  > 100,000; and 

+++,  > 200,000. Scale for RLU (THP assay):  � ,  < 100,000; +,  > 100,000; ++,  > 500,000; and +++,  > 1,000,000. Scale for RLU (FibC assay):  � ,  < 1,000; +,  > 1,000; ++,  > 5,000; and 

+++,  > 10,000. Scale for OD values:  � ,  < 0.05; +,  > 0.05; ++,  > 0.25; and +++,  > 0.5.
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bodies. We conclude that not only anti-CII antibodies but 
also antibodies specifi c for citrullinated CII induce relapses 
during the chronic phase of arthritis. 

arthritis and enhance severity in this situation ( Fig. 2 b ). The 
induction of an arthritic relapse was, however, less pro-
nounced but more prolonged as compared with anti-CII anti-

  Figure 2.     Citrulline-specifi c antibodies mediate arthritis.  (a) The frequency of arthritis on different days is shown. Groups (ACC1,  n  = 14; ACC4, 

 n  = 10; M2139 + PBS,  n  = 33; M2139 + ACC3,  n  = 10; M2139 + ACC4,  n  = 28; M2139 + ACC5,  n  = 10; M2139 + CIIC1,  n  = 20; and M2139 + GB8,  n  = 10) 

of 4-mo-old naive male B10.RIII mice were injected i.v. with 9 mg of a single mAb or an equal combination of two mAbs. M2139 with CIIC1 and 4.5 mg 

M2139 with PBS constituted positive and negative controls, respectively. 25  μ g LPS per mouse was injected i.p. on day 5 to enhance the incidence and 

severity of arthritis. Results shown are pooled values from three similar experiments with balanced groups. M2139 + ACC4 versus M2139 + PBS, P  ≤  

0.0113 (days 3 – 4) and P  ≤  0.001 (days 5 – 27); ACC1 versus ACC4, P  ≤  0.0034 (days 10 – 14 and days 21 – 27) and P  ≤  0.0013 (days 17 – 19). *, P  <  0.05; **, P  <  

0.005; and ***, P  <  0.001. (b) 2-mo-old QB = (BALB/c x B10.Q) F1 mice were injected with CII + CFA on day 0 and boosted with CII + IFA on day 35. These 

mice developed chronic arthritis that persisted for a minimum of 210 d. Mice that had no arthritis after 210 d were injected with 9 mg of a single mAb or 

an equal combination of two mAbs constituted different groups (ACC4,  n  = 9; PBS,  n  = 20; M2139 + PBS,  n  = 7; UL1 + PBS,  n  = 8; M2139 + ACC4,  n  = 

10; and UL1 + ACC4,  n  = 9). M2139 with CIIC1 or UL1 and 4.5 mg M2139 or UL1 with PBS constituted positive and negative controls, respectively. LPS 

was not injected in these mice. The PBS-injected group denotes spontaneous relapse. All of the mice were used for calculations. Results shown are pooled 

values from two similar experiments with balanced groups. M2139 + ACC4 versus M2139 + PBS, P  ≤  0.026 (day 13) and P  ≤  0.026 (day 15); UL1 + ACC4 

versus UL1 + PBS, P  ≤  0.0311 (day 5). *, P  <  0.05 indicates a signifi cant increase in arthritis frequency induced by ACC4 antibodies.   
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plex with a collagen C1 peptide citrullinated at position 360 
(peptide pCII-Cit1) were determined, and data and refi ne-
ment statistics are shown in  Table IV .  The Fab – peptide com-
plex crystal belongs to space group P2 1 , with two independent 
molecules per asymmetrical unit. The crystal of the ACC4 
Fab alone has space group P2 1 2 1 2 1 , with one molecule per 
asymmetrical unit. The overall structure of ACC4 ( Fig. 4 a ) is 
similar to other Fab fragments for which the structure is 
known.  The Fab fragment contains four Ig fold domains: two 
for the heavy chain (V  H   and C H ) and two for the light chain 
(V L  and C L ). Each domain consists of a stable arrangement of 
hydrogen-bonded, antiparallel  �  strands, further stabilized by 
disulfi de bond bridges between L23-L93, L139-L199, H22-
H96, and H145-H200. The variable domains contain nine  �  
strands and the constant domains contain seven  �  strands. The 
binding pocket is formed by residues from complementary 
determining region (CDR) loops H1, H2, H3, L1, L2, and L3 
of the Fab fragment. CDR loops L1, L2, L3, H1, and H2 fall 
into canonical classes 4, 1, 1, 1, and 2, respectively ( Table V ).  
The elbow angle of the ACC4 peptide complex was deter-
mined by RBOW ( 26 ) as being 184.5 °  for the fi rst molecule 
in the asymmetrical unit and 188.6 °  for the second, whereas 
the elbow angle of the unliganded Fab is 181.6 ° . These values 
are within the range (127 – 227 ° ) for known Fab models. 

 Conformation of the bound citrullinated collagen peptide 

 The Fo-Fc maps revealed a clear density for bound peptide 
and allowed us to build 9 out of 18 residues unambiguously 
(A5-Cit6-G7-L8-T9-G10-R11-HyP12-G13;  Fig. 4 b ). The 
ordered part of the peptide corresponds to the C1 (359 – 367) 
epitope on CII. The second Fab molecule is relatively more 
disordered, and therefore only seven residues of bound peptide 
(Cit6-G7-L8-T9-G10-R11-HyP12-) are ordered; however, 

 Immunoprecipitation of citrullinated CII from human RA 

and osteoarthritis (OA) joints 

 To determine whether citrullination of CII also occurs in hu-
man RA, we immunoprecipitated CII from synovial fl uid 
( Fig. 3 a ).  For screening of citrullinated CII in 72 synovial 
fl uid specimens from patients with OA ( n  = 47), RA ( n  = 10), 
and reactive arthritis (Reac A;  n  = 15), a capture ELISA pro-
cedure was designed. The titer plates were coated with a mix-
ture of three earlier characterized mAbs (CIIE10, M2139, and 
D3) ( 24 ) recognizing distinct epitopes on native CII to cap-
ture the triple helical CII from the synovial fl uid for sub-
sequent detection with the biotinylated mAb ACC2 in 
combination with avidin-peroxidase. Citrullinated CII was 
detectable in synovial fl uid from 7 out of 10 RA- and 20 out 
of 47 OA-derived samples (OD values  >  mean + 2SD of BSA 
control), whereas the results remained negative for all of the 
15 specimens collected from Reac A patients, usually repre-
senting a nonerosive form of joint infl ammation that does not 
lead to CII degradation ( Fig. 3 b ). For specifi city control of 
the ELISA procedure, immunoprecipitation of selected syno-
vial fl uid samples was performed using the described cocktail 
of anti-CII mAbs followed by SDS-PAGE and immunostain-
ing. Thus, precipitated CII was blotted onto a nitrocellulose 
membrane for subsequent detection of the CII-citrulline resi-
dues after a specifi c chemical modifi cation procedure with an 
antimodifi ed citrulline monospecifi c antibody ( Fig. 3 a ). In 
addition, a gel staining of citrullinated CII was performed us-
ing the specifi c mAb ACC2 as a detecting reagent ( Fig. 3 b ). 

 Molecular structure of ACC4 complexed 

with the citrullinated C1 epitope 

 To investigate the molecular interactions between the mAbs 
and citrullinated CII, we selected the ACC4 antibody that 
recognized the citrullinated CII single-chain peptide. The 
structure of the ACC4 (IgG1/ � ) Fab fragment and its com-

  Table II.    Arthritogenicity of citrulline-specifi c mAbs 

in naive mice 

mAbs Incidence Mean max arthritis score  

 (mean  ±  SEM)

ACC1 9/14** 17  ±  5**

ACC4 0/10 0

M2139 + PBS 9/33 12  ±  2

M2139 + ACC4 20/28*** 27  ±  3****

M2139 + ACC5 3/10 5  ±  3

M2139 + CIIC1 18/20 26  ±  4

M2139 + GB8 4/10 15  ±  5

Groups of 4-mo-old naive male B10.RIII mice were injected i.v. with 9 mg of a 

single mAb or an equal combination of two mAbs. M2139 with CIIC1 and 4.5 mg 

M2139 with PBS constituted positive and negative controls, respectively. 25  μ g 

LPS per mouse was injected i.p. on day 5 to enhance the incidence and severity of 

arthritis. Cumulative incidence: M2139 + ACC4 versus M2139 + PBS, P  ≤  0.0006; 

and ACC1 versus ACC4, P  <  0.001. Maximum arthritis score: M2139 + ACC4 versus 

M2139 + PBS, P  <  0.0001; and ACC1 versus ACC4, P = 0.0024. Results shown are 

pooled values from three similar experiments. **, P  <  0.005; ***, P  <  0.001; and 

****, P  <  0.0001.

  Table III.    Citrulline-specifi c antibodies mediate 

arthritis relapse 

mAbs Incidence Mean max arthritis score  

 (mean  ±  SEM)

ACC4 4/9* 20  ±  3*

PBS 1/20 5

M2139 + PBS 2/7 3  ±  2

UL1 + PBS 4/8 18  ±  3

M2139 + ACC4 7/10 14  ±  2*

M2139 + CIIC1 18/20 26  ±  4

M2139 + UL1 9/9 25  ±  2

UL1 + ACC4 4/9 15  ±  6

2-mo-old QB = (BALB/c x B10.Q) F1 mice were injected with CII + CFA on day 0 and 

boosted with CII + IFA on day 35. These mice developed chronic arthritis that 

persisted for a minimum of 210 d. Mice that had no arthritis after 210 d were 

injected with 9 mg of a single mAb or an equal combination of two mAbs. M2139 

with CIIC1 or UL1 and 4.5 mg M2139 or UL1 with PBS constituted positive and 

negative controls, respectively. The PBS-injected group denotes spontaneous 

relapse. LPS was not injected in these mice. Results shown are pooled values from 

two similar experiments. Cumulative incidence: ACC4 versus PBS, P  ≤  0.0093. 

Maximum arthritis score: M2139 + ACC4 versus M2139 + PBS, P  ≤  0.0266; and 

ACC4 versus PBS, P  ≤  0.0073. *, P  <  0.05.
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hydrophobic moiety of the citrulline side chain interacts with 
Trp50H, which is a framework (FRH2) residue. 

 The tip of the peptide (Leu8P and Thr9P) has hydropho-
bic contacts with CDRL3 (Gly96L, Phe99L, and Leu101L) 
and with the heavy-chain second framework residues Trp47H 
and Trp50H. Another framework residue, Thr59H (FRH3), 
contacts with Leu8P via a bridging water molecule in the in-
terface. Thr9P forms a hydrogen bond with Glu104H. The 
arginine (Arg11P) is located in the middle of the C-terminal 
half of the peptide and provides the most extensive interac-
tions by making contacts with 11 diff erent residues of the 
Fab ( Fig. 4 d ). The negatively charged residues from the 
light chain, Asp31L and Asp33L, are in close proximity to 
Arg11P, but the distance is too large to form a salt bridge. 
Although there is not a proper salt bridge, Arg11P contacts with 
Glu104H (CDRH3) and has cation –  	  interactions with 
Tyr37L (CDRL1). Arg11P forms a single hydrogen bond 

the conformation of the peptide is virtually the same as the for 
the one in the other molecule. The overall conformation of 
both pCII-Cit1 peptides is similar to a  �  hairpin with a type II 
 �  turn on the tip formed by Leu8P and Thr9P. The confor-
mation of the peptide is stabilized by a network of intra- and 
interchain hydrogen bonds together with polar, apolar, and hy-
drophobic interactions. This conformation provides an overall 
cyclic shape to the peptides. 

 There are two NH ∙  ∙  ∙ O=C hydrogen bonds between 
N(Gly10P) ∙  ∙  ∙ O(Gly7P) and N(Gly7P) ∙  ∙  ∙ O(Arg11P). An ac-
ceptor water molecule connects donor amide nitrogen of 
Thr9P, Arg11P, and the side chain of Thr9P by hydrogen 
bonds, which increases the stability of the conformation 
(Fig. S3, available at http://www.jem.org/cgi/content/full/
jem.20081862/DC1). Although the second peptide complex 
in the asymmetrical unit is more disordered, electron density 
of this water is present at lower  
  levels. The plane of the 
hairpin is perpendicular to plane of the paratope cavity; 
therefore, only the lower edge and the tip of the hairpin 
plane are interacting with the Fab, whereas the upper edge is 
mostly solvent exposed. Arg11P, HyP12P, and Gly13P at 
the C terminus are twisted away from the  �  structure be-
cause a rotation of the C  �  -C �  bond of Gly10P causes the car-
bonyl oxygen of Gly10P to be directed to the exterior rather 
than to the interior part ( Fig. 4 c ). 

 Fab – peptide interactions 

 The pCII-Cit1 peptide fi lls a groove in the antibody-com-
bining site, which is surrounded by the CDR loops. The C-
terminal half of the peptide has more extensive contacts with 
the Fab because this half is buried into the Fab, whereas the 
N-terminal half is partially exposed to the solvent and has 
fewer contacts with the Fab. The buried accessible surface 
areas ( � BSAs) on the Fab and the peptide are 549.1 and 720.4 
 Å  2 , respectively. The  � BSA on the Fab is formed mainly by the 
heavy chain (69.3%) involving CDRH1 (17.2%), CDRH2 
(7.5%), FRH2 (19.1%), FRH3 (1%), and CDRH3 (24.6%), 
and the light chain (30.7%) involving CDRL1 (8.1%) and 
CDRL3 (22.3%; calculated using PISA software at EMBL-
EBI) ( 27 ). The CDRL2 loop did not have any contact with 
the peptide. Although Ala5P has clear electron density, this 
residue does not form any contacts with Fab. The remaining 
eight visible residues of the peptide have contacts with CDR 
loops and framework residues ( Table V ). 

 Citrulline (Cit6P) is the second residue in the visible part 
of the pCII-Cit1 peptide. Although the N-terminal side of 
the peptide hairpin has only a limited number of interactions 
with the Fab, the citrulline side chain is involved in the most 
of these interactions ( Fig. 4 d ). Citrulline interacts with 
CDRH1, CDRH2, and FRH2. Thr30H, Asp31H, Tyr32H, 
and Ser33H from CDRH1 contact with citrulline with 
their main-chain atoms. These interactions are mainly Van 
der Waals interactions. The backbone carbonyl oxygen of 
Thr30H also forms a hydrogen bond with citrulline (N8). 
Citrulline is further stabilized by hydrogen bonds with the 
side chain of the residue Thr53H (N and OG1;  Fig. 4 d ). The 

  Figure 3.     Detection of citrullinated CII in human synovial fl uid.  

(a) Immunoprecipitation of citrullinated CII from synovial fl uid. Western blot 

staining with the antimodifi ed citrulline antibody (AMC) upon appropriate 

pretreatment of the nitrocellulose membrane and immunostaining with 

the anticitrullinated CII mAb ACC2 are shown (+, ELISA-positive synovial 

fl uid;  � , ELISA-negative synovial fl uid [compare with b]). Shown is a repre-

sentative result of three independently performed experiments. (b) Capture 

ELISA for detection of citrullinated CII in synovial fl uid specimens obtained 

from patients with OA, Reac A, and RA. Synovial fl uid specimens were col-

lected from patients with OA ( n  = 47), RA ( n  = 10), and Reac A ( n  = 15).   
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  Figure 4.     Molecular structural analysis of the ACC4 interacting with citrullinated collagen.  (a) The structure of ACC4 Fab complexed with pCII-

Cit1 peptide. The light chain of the Fab is shown in cyan, the heavy chain is shown in green, and the bound pCII-Cit1 peptide is shown in red. The overall 

shape of ACC4 Fab is same as the other Fab structures in the Protein Data Bank. The peptide has bound to the interface between CDR loops on top of the 

variable domain, as anticipated. The images were created with PyMOL (reference  60 ). (b) The structure of the peptide pCII-Cit1. The difference (2Fo-Fc) 

electron density map is shown in blue. The density is contoured at 1  
 . The water molecule is shown as a red ball. The electron density is strong enough 

to build nine residues of peptides, shown as sticks. The PCII-Cit1 peptide adopts a  �  turn conformation. Cit6P represents citrulline residue 6 and Hyp12P 
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represents hydroxyproline residue 12 of the peptide. (c) Surface representations of ACC4 Fab – peptide complex from the top (left) and the side (right). The 

pCII-Cit1 peptide is shown as sticks. The water molecule on the peptide is shown as a red ball. The peptide fi lls a cavity on top of the variable domain. 

Although the C-terminal side of the peptide is buried inside the cavity, the N-terminal side is solvent exposed. (d) Fab – peptide interactions. (A) The resi-

dues that contact with citrulline (Cit6P). (B) The residues that contact with arginine (Arg11P). The black dashed lines represent hydrogen bonds. The green 

residues are from the heavy chain and the cyan residues are from the light chain.   

 

with the carbonyl oxygen of Gly96L. The CDRH3 loop 
contacts Arg11P with all of its residues. Hydroxyproline 
(Hyp12P) is involved in Van der Waals interactions with 
Ala99H, Thr100H, and Thr101 (CDRH3). Gly13P has con-
tacts with Tyr32H and Asp31H. 

 The comparison of the peptide bound and unliganded 
Fab structures reveals that no signifi cant conformational 
changes are required for binding. The overall root mean 
square deviation for the variable domains of the two struc-
tures is only 0.47  Å . There are only minor diff erences in the 
side-chain orientations of residues, which are close to the 
contact interface. Therefore, the binding of peptide follows 
the key-lock mechanism that requires a structurally stable 
antibody-combining site. 

  DISCUSSION  

 Antibody formation against CII is not only a common auto-
immune phenomenon in RA but may also have pathogenic 
consequences. We now show that CII is citrullinated in the 
joints and that an antibody response to such epitopes could 
be a pathogenic link to CII autoimmunity. The present study 
provides the fi rst molecular insights into how antibodies rec-
ognize a citrullinated epitope and the functional consequence 
of such an interaction. Mouse B cell hybridomas with speci-
fi cities for citrullinated variants of the immunodominant CII 
epitope were established, and the respective mAbs were used 
to demonstrate their arthritogenicity in transfer experiments 
to naive mice as well as for the detection of citrullinated CII 
in human joints. Our systematic analysis of the pathogenicity 
of these mAbs is also the fi rst study in the area of APCA 
research that provides a detailed characterization of the anti-
body fi ne specifi cities, including their relevant cross-reactivi-
ties. Because the availability of the latter information is critical 
for interpretation of the results of antibody transfer experi-
ments, our study not only provides experimental evidence 
for the arthritogenicity of autoantibodies to citrullinated CII 
but also evidence for such a role of ACPAs in general. Con-
trolled experiments have so far not been able to show a spe-
cifi c response to citrullinated proteins in several investigated 
arthritis models, including spontaneous arthritis in lupus 
mice, streptococcal cell wall – induced arthritis, pristane-in-
duced arthritis in rats, and in some reports of CIA in DBA/1 
mice ( 5, 28 ). There are some notable exceptions of mouse 
experimental arthritides: one study that uses bovine CII in 
CFA for induction of CIA ( 29 ), and another study of geneti-
cally engineered DBA/1 mice expressing human MHC class II 
molecules in the joints ( 30 ). Recently, another study showed 
spreading of antibody responses to citrullinated proteins in 
CIA in the DBA/1 mice ( 31 ). 

 It also has been previously shown that the injection of 
monoclonal IgM and IgG antibodies reactive with citrulli-
nated fi brinogen enhance the development of CAIA ( 29 ). 
These antibodies were not cross-reactive with native CII, but 
it was not investigated if cross-reactivity to CII  �  chains or to 
citrullinated CII could account for their arthritogenic eff ect. 

 In the present study, the crystal structure analysis elucidates 
important new information on the specifi city of the interac-
tion between a mAb-derived Fab fragment and a citrullinated 
arginine in the conserved motif of a major CII epitope. Al-
though the pCII-Cit1 peptide contains, besides the citrulline 
residue, fl anking sites that form the entire citrullinated B cell 
epitope (GACitGLTGRPGDA), the interpretable electron 
density only covers a shorter stretch (ACitGLTGRP) that 

  Table IV.    Data processing and refi nement statistics 

of ACC4 structures 

Dataset I  

 (complex)

Dataset II  

 (noncomplex)

Data collection

   Space group P2 1 P2 1 2 1 2 1 

   Cell dimensions

       a ,  b ,  c  ( Å ) 57.7, 128.4, 72.6 44.8, 70, 136.6

       � ,  � ,  �  ( ° ) 90, 106.1, 90 90, 90, 90

   Resolution ( Å ) 2.21 1.45

    R  sym  or  R  merge 8.2 (27.2)* 6.6 (27.8)*

    I / 
  I 14.6 (4.4)* 20.8 (6.3)*

   Completeness (%) 96.6 (97.8)* 97.3 (97.7)*

   Redundancy 3.8 3.6

Refi nement

   Resolution ( Å ) 24.23 – 2.21 68.2 – 1.45

   No. refl ections 45,714 64,156

    R  work / R  free 23.4/28.5 18.8/22.7

   No. atoms 6,894 3,888

   Water 219 498

   RMS deviations

      Bond lengths ( Å ) 0.014 0.017

      Bond angles ( ° ) 1.84 1.783

Ramachandran plot  

 statistics (%)

   Most favored regions 88.4 92.3

   Additional allowed  

    regions

11 7.2

   Generously allowed  

    regions

0.4 0.3

   Disallowed region 0.3 0.3

Asterisks indicate the statistics for the highest resolution shell. RMS, root mean square.
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peptides in solution. This energetically favored peptide con-
formation is also likely to contribute to the predominance of 
 �  turns compared with other possible structures in peptide –
 antibody complexes ( 32, 33 ). Accordingly, the adoption of a 
 �  turn by the pCII-Cit1 peptide in complex with the ACC4 
Fab might follow a more general principle. However, the 
elucidation of the pCII-Cit1 conformation in the ACC4 
complex might provide a clue to a better understanding un-
derlying the pathophysiologically relevant functional aspect 
of cross-reactive autoantibody recognition. Thus, we previ-
ously described human IgG antibodies in RA sera that exhibit 
cross-reactivities between the citrullinated C1 epitope and 
citrullinated cyclized peptides ( 25 ). Accordingly, we also de-
tected a weak but signifi cant cross-reactivity of the mouse 
ACC4 mAb with the cyclic citrullinated fi laggrin peptide 
CCP1. It is therefore conceivable that the  �  turn adopted by 
the pCII-Cit1 peptide provides a cyclic shape that is similar to 
that recognized by the ACC4 mAb in the fi laggrin peptide. 
Moreover, such  �  turn motifs are frequently encountered 
within the fi laggrin sequences ( 34 ). However, fi laggrin is not 
expressed in the joints, so autoantibody cross-reactivity to fi l-
aggrin is unlikely to be relevant for joint pathology. On the 
other hand, type II  �  turn motifs are quite diff erent from the 
native structure of CII, a putative candidate cartilage – specifi c 
autoantigen that has a characteristic structure of an extended 
helical coil wrapped in a triple helical conformation ( 35 – 39 ). 

 This structural diff erence implies that those ACC mAbs 
capable of recognizing citrulline in the context of a triple he-
lical conformation may diff er from ACC4 with regard to ci-
trulline side chain recognition. Alternatively, citrullination of 
the collagen triple helix could provoke a weakening of its 
rigid structure that eventually allows the citrulline residue to 
protrude into the CDR regions of the antibody. Thus, the 
partial unfolding or denaturation by citrullination of particu-
lar arginine residues could represent a mechanism causing 
conformational changes of distinct domains of the triple helix 
into  �  turns. In accordance, it has already been reported for 
noncollagenous proteins that citrullination can destabilize 
their tertiary structure and enhance their vulnerability to 
proteolytic digestion upon unfolding ( 34 ). Thus, an analo-
gous partial unfolding of the triple helix upon PAD-induced 
deimination of certain arginine residues remains an intrigu-
ing possibility to trigger arthritogenic CII autoimmunity by 
the introduction of primary as well as tertiary structural 
changes into the tolerated self-protein. In turn, activation of 
adaptive and innate immune responses in the joints causes 
infl ammation and proteolytic cartilage destruction with the 
subsequent liberation of native as well as denatured CII frag-
ments into the synovium and synovial fl uid. Subsequently, 
these peptides may get enzymatically deiminated by PADs, 
particularly PAD4. In agreement with such a scenario, we 
could not only demonstrate the occurrence of citrullinated 
CII in mouse cartilage and infl amed synovial tissue by im-
munohistology but also in synovial fl uid specimens from RA 
patients. However, detection of these modifi ed CII frag-
ments also occurs in OA, thereby emphasizing that it is the 

extends in length to the previously described noncitrullinated 
CII epitope C1 ( 24 ). The analysis of the crystal further uncov-
ers that the citrulline is buried within the antibody-combining 
sites and is recognized via interactions with the CDR1 and 
CDR2 regions of the V H  chain, whereas the collagen strand 
forms a distinct stable  �  hairpin with a type II  �  turn confor-
mation. Thus, the bound CII peptide considerably diff ers from 
the deposited characteristic structures of triple helical collagen 
peptides in the database. 

 Adoption of a  �  hairpin is energetically more stable, and 
is therefore expected to be the preferred conformation of 

  Table V.    Amino acids in CDR fragments of ACC4 

in comparison with germline residues involved in interactions 

CDR Sequence Canonical  

 form
 � BSA

L1

   IMTG  27 QSLLDSDGKTY 37 Class 4 44.61  Å  2   

     (8.1%)

   Germline

   Contact            D D     Y 

L2

   IMTG  55 LVS 56 Class 1 0  Å  2   

     (0%)

   Germline

   Contact

L3

   IMTG  94 WQGTHFPLT 102 Class 1 122.56  Å  2   

     (22.3%)

   Germline

   Contact          GT HF L

H1

   IMTG  26 GYTFTDYS 33 Class 1 94.26  Å  2   

     (17.2%)

   Germline

   Contact           TDYS 

H2

   IMTG  51 INTETGEP 58 Class 2 42.24  Å  2   

     (7.5%)

   Germline

   Contact     NTE 

H3

   IMTG  97 ARATTATELAY 107 135.1  Å  2   

     (24.6%)

   Germline

   Contact        ATTATE 

FR2

   Contact H 35  W 47   W  50 105.5  Å  2   

     (19.1%)

FR3

   Contact T 59 4.86  Å  2   

     (1%)

The CDR regions are determined according to IMGT rules. Residues that contact 

arginine7P are bolded. The residues that contact citrulline2P are underlined. FR, 

framework region.
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at position 360 (GP-HyP- GACitGLTGR-HyP -GDAGP-HyP), peptide 

pCII-Cit2 has a citrulline at position 365 (GP-HyP- GARGLTGCit-HyP -

GDAGP-HyP), and peptide pCII-Cit1+2 has citrulline residues at both po-

sition 360 and 365 (epitopes are denoted in bold). The triple helical peptide 

THPCII-Arg contains the C1 epitope of mouse CII in its triple helical form 

(GP-HYP-GP-HYP-GP-HYP-GP-HYP-GP-HYP-GARGLTGR-HyP-

GDAGP-HyP-GP-HYP-G- � ACA) ( 3 ), and the citrullinated version of the 

peptide, THPCII-Cit, has citrullines at both position 360 and 365. A citrul-

linated cyclic (cyc) fi laggrin peptide ( 47 ), cyc-Cit (HQ  C  HQEST (cit) GRS

RGR  C  GRSGS; cit, citrulline;   C  , cysteines forming the disulfi de bond 

upon oxidative cyclization), and a respective noncitrullinated peptide ana-

logue, cyc-Arg (HQ  C  HQEST R GRSRGR  C  GRSGS) ( 47 ), were obtained 

as commercially synthesized reagents (mass spectrometrically confi rmed 

peptide identity and fast protein liquid chromatography – controlled purity 

 > 98%; Herman GbR Synthetische Biomolek ü le). Fibrinogen and citrulli-

nated fi brinogen were isolated as previously described in detail ( 48 ). 

 Generation of mAbs and induction of CAIA.   The CII-specifi c hy-

bridomas have been previously generated and characterized ( 25, 46 ). The 

ACC1 hybridoma was established by immunizing and boosting a  Cia5  

congenic B10.RIII mouse ( 47 ) at the base of the tail with 100 or 50  μ g of 

bovine CII in CFA or IFA (Difco), respectively. The other ACC hybrid-

omas were produced using PAD4-treated triple helical CII peptides con-

taining T and B cell epitopes for immunization and boosting of DBA/1 or 

(B10.Q  ×  DBA/1) F1 mice. The GB8 and ACC5 clones originated from 

B10.Q mice, which had chronic arthritis after CII/CFA immunization. 

Specifi city selection was done using native or denatured CII, CII peptides, 

and single and triple helical citrullinated or native C1 epitopes. mAbs were 

produced and purifi ed as previously described ( 48 ). CAIA was induced in 

naive mice using a standard procedure ( 48 ), and antibody-induced relapses 

were induced as previously described ( 49 ). 

 ELISA.   For the characterization of the mAbs, either antigen-coated maxi-

sorp immuno plates (Thermo Fisher Scientifi c) or biotinylated antigens 

linked to the plates via 2  μ g/ml NeutrAvidin (PerkinElmer) were used. The 

direct coating of 10  μ g/ml of antigens in PBS was used for the following 

polypeptides: heat-denatured (60 ° C for 15 min) CII (dCII-Arg), PAD4-

treated CII (dCII-Cit), and native triple helical CII (nCII-Arg). The anti-

gens cyc-Cit (citrullinated cyclic fi britin peptide), cyc-Arg (cyclic fi britin 

peptide), THPCII-Cit, and THPCII-Arg at 4  μ g/ml, and Fib-Arg and Fib-

Cit at 0.5  μ g/ml were used for coating in PBS. All plates were blocked using 

2% BSA (Sigma-Aldrich). After washing in Tris-based ELISA buff er, serial 

dilutions of the mAbs starting at 1,000 ng/ml were added and incubated for 

2 h at room temperature. The  �  light chain – specifi c mAb 187.1-biotin or 

goat anti – mouse IgM – biotin and SA-Eu+3 (PerkinElmer) were used for de-

tection. The indirect coating via NeutrAvidin was used for the following 

antigens: biotinylated pCII-Arg, biotinylated pCII-Cit1, biotinylated pCII-

Cit2, and biotinylated pCII-Cit1+2 at a concentration of 4  μ g/ml in PBS. 

Plates were blocked and washed before serial dilutions of antibodies were 

added. Horseradish peroxidase – conjugated goat anti – mouse – IgG (Jackson 

ImmunoResearch Laboratories) or goat anti – mouse – IgM (SouthernBiotech) 

antibodies and ABTS tablets (Roche) were used for detection. 

 Synovial fl uid specimens and patients.   The synovial fl uid specimens 

were obtained from patients in the outpatient clinic of the Department of 

Internal Medicine III and the Department of Orthopedic Surgery of the 

Friedrich-Alexander-University of Erlangen-Nuremberg on the occasion 

of diagnostic and/or therapeutic knee joint punctures. The diagnosis of 

RA, OA, or Reac A was made by an experienced board-certifi ed rheu-

matologist, thereby also ensuring that the respective existing classifi cation 

criteria of the American College of Rheumatology (for RA and OA of the 

knee) were met. Written informed consent was obtained from all patients 

included in the study that had earlier been approved by the Ethical Com-

mittee of the Medical Faculty of the Friedrich-Alexander-University of 

Erlangen-Nuremberg. 

immune response to the citrullinated peptide that is unique 
for RA rather than the deimination of joint proteins, which 
is in support of previous fi ndings ( 40 ). 

 Citrulline modifi cation within the structural frame of a 
relatively stable conformation such as a  �  turn or a triple helix 
may help to activate B cells. Importantly, activation of B cells 
that fi nally lead to the generation of highly specifi c IgG anti-
bodies depends on appropriate T cell help. This requirement 
also applies to the induction of arthritogenic responses by 
CII-specifi c B cells that receive activating signals from CII-
specifi c T cells recognizing an immunodominant determinant 
on CII that diff ers from the respective B cell epitopes ( 22, 41, 
42 ). In both mice with the A q  MHC class II molecules or in 
humans with RA-associated shared-epitope MHC class II 
variants, this critical CII determinant has been localized to the 
domain 261 – 271 that harbors a galactosylated lysine side 
chain that is critical for T cell receptor recognition ( 20, 43 ). 
It is highly likely that the same type of T cell specifi city can 
also trigger B cell responses to the presently studied citrulli-
nated CII epitopes because they are found on the same pro-
tein backbone as the immunodominant C1 epitope on CII. 

 Humoral immune response to citrullinated proteins pre-
cedes the development of RA and is genetically associated 
with MHC class II alleles that confer increased risk for disease 
onset and severity ( 44, 45 ). In this context, our results suggest 
that the autoantibody responses to citrullinated proteins are 
likely to play a critical pathogenic role beyond their unequiv-
ocal value as early diagnostic markers. Their involvement in 
cross-reactive hapten-carrier mechanisms may lead to the ac-
tivation of pathogenic B and T cells reactive with native and 
posttranslationally modifi ed CII, thereby initiating an ampli-
fying vicious circle of infl ammatory responses in the joints. 
Furthermore, it is of interest to note that anticitrulline anti-
bodies can also play an important role in inducing antibody-
mediated arthritic relapses that could be of potential importance 
for future therapeutic intervention during the chronic phase 
of arthritis in both animals and humans. 

 To summarize, we have demonstrated the molecular struc-
ture of the specifi c interactions between an antibody and a 
citrullinated antigen and have shown that this interaction will 
have pathogenic consequences in vivo. We believe this will be 
useful for understanding the functional role of the antibody re-
sponse to citrullinated proteins in RA and points toward a spe-
cifi c link to CII as one of the relevant self-antigens involved. 

 MATERIALS AND METHODS 
 Animals.   All mice used in this study were bred in the animal facilities of the 

Section for Medical Infl ammation Research at Lund University, but the orig-

inal founders for the B10.Q/rhd and B10.RIII/rhd mice were from Univer-

sity of T ü bingen, and the original founders for the BALB/cJ mice were from 

the Jackson Laboratory. All animals were treated according to the Swedish 

guidelines for humane treatment of laboratory animals, and the experiments 

were approved by the Lund-Malm ö  laboratory animal ethical committee. 

 Peptides and proteins.   The following linear and triple helical peptides 

were synthesized using methods previously described in detail ( 23, 46 ). The 

linear peptide pCII-Arg contains the C1 epitope of mouse CII (GP-HyP-

 GARGLTGR-HyP -GDAGP-HyP), the peptide pCII-Cit1 has a citrulline 
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 Crystallization.   10 mg/ml ACC4 Fab in 30 mM of Tris buff er (pH 8) with 

and without the pCII-Cit1 peptide was crystallized using the hanging drop 

method using a Peg/Ion screen (Hampton Research). For Fab – peptide 

complex crystallization, the collagen peptide and Fab were mixed at a 5:1 

molar ratio and incubated at 4 ° C overnight. Crystallization drops containing 

2  μ l of mother liquor and 2  μ l of protein solution were incubated at 25 ° C. 

Crystals of the Fab – peptide complex appeared only in two conditions (#31 

and #36), whereas crystals of the Fab alone appeared in several conditions. 

Promising conditions were optimized by decreasing the salt concentration 

and by adding glycerol. A crystal of the Fab – peptide complex grown in 0.15 M 

ammonium sulfate, 20% PEG 3350, and 10% glycerol was used for data 

collection, whereas for determining Fab structure, a crystal grown in 0.15 M 

ammonium nitrate and 25% PEG 3350 was used for data collection. 

 Data collection.   Datasets were collected at the I911-2 and I911-5 beam 

lines at MAX-lab. Before data collection, the crystals were soaked in a cryo-

protecting solution of 20% glycerol (vol/vol) and mother liquor before ex-

posure to synchrotron radiation. The crystals were fl ash cooled and data 

were collected at 100K. The noncomplex crystals diff racted to 1.5  Å  and 

crystals of the complex diff racted to 2.1  Å . Both datasets were processed by 

XDS ( 53 ), and further data manipulation was performed using programs 

from the CCP4 suite ( 54 ). Crystal parameters and statistics from the data 

collection are shown in  Table IV . 

 Structure determination and refi nement.   The structures of the com-

plex and noncomplex forms of the antibody were solved by molecular re-

placement using PHASER ( 55 ). The structure of anticollagen CIIC1 Fab 

( 56 ) was used as a searching model. The model was split into variable and 

constant domains, and searching and fi xing of these domains separately gave 

a single solution with an R free  of 46%. For solving the ACC4 Fab – peptide 

complex structure, the ACC4 Fab structure was used intact as a search 

model. A single solution with an R free  of 45% was obtained. Mismatching 

residues from the search model were changed to ACC4 residues, and missing 

loops were built by using the program COOT ( 57 ). Further refi nement was 

performed by REFMAC ( 58 ) in the CCP4 suite ( 54 ). Restrained and TLS 

( 59 ) refi nement helped to decrease the R factor and R free  to respectable val-

ues. For the refi nement of the Fab – peptide complex structure, noncrystallo-

graphic symmetry restraints were applied. Two sulfate ions were identifi ed 

in the model for the complex and one nitrate ion was added to the noncom-

plex Fab model. For building, the ligand Fo-Fc maps were calculated and the 

peptide was built into the positive density. In the fi nal stage, water molecules 

were added to the models. Data and refi nement statistics are shown in  Table IV . 

The coordinates of the structures are available from the Protein Data Bank 

under accession nos.  2w60  and  2w65 . 

 Online supplemental material.   Fig. S1 shows the amino acid sequences of 

antibody CDR regions, corresponding germline genes, and mouse strains that 

antibodies originated. Fig. S2 shows an amino acid sequence comparison of 

the CDR regions of the sequenced antibodies. Fig. S3 contains a stereoscopic 

view of the pCII-Cit1 peptide. Table S1 shows the somatic mutation statistics 

in light and heavy chains of antibodies. Supplemental materials and methods 

describes the DNA sequencing procedures. Online supplemental material is 

available at http://www.jem.org/cgi/content/full/jem.20081862/DC1. 
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 Immunoprecipitation of citrullinated CII from synovial fl uid.   Immuno-

precipitation was performed using earlier characterized mouse IgG mAbs 

specifi c for distinct triple helical CII epitopes (CIIE10, M2139, and CIID3) 

( 24 ) and a protein G immunoprecipitation kit (Seize X; Thermo Fisher Scien-

tifi c). 500  μ g IgG (166  μ g of each mouse mAb) was covalently cross-linked to 

400  μ l of protein G slurry according to the manufacturer ’ s instructions. 40  μ l 

anti-CII – IgG cross-linked beads were added to 4 ml of RA synovial fl uid (di-

luted 1:1 in binding buff er) and incubated overnight at 4 ° C. Upon centrifuga-

tion, the immunoprecipitated CII was eluted from the protein G slurry and 

20  μ l of each fraction was applied to an SDS gel for Western blot analysis. 

 Citrullinated CII was detected using the modifi ed citrulline Western 

blot detection kit (Millipore). Alternatively, in-gel Western blot detection of 

immunoprecipitated citrullinated CII was performed using the citrulline-

specifi c biotinylated ACC2 antibody and avidin-peroxidase (Sigma). For vi-

sualization of the results, an ECL plus detection kit (Millipore) was applied. 

 Capture ELISA for citrullinated CII in synovial fl uid.   ELISA plates 

were coated with the CII-specifi c antibodies CIIE10, M2139, and CIID3 in 

PBS (2  μ g/ml each). Subsequently, 100- μ l specimens of hyaluronidase-pre-

treated synovial fl uid were incubated for 90 min at room temperature. Incu-

bation with BSA served as a negative control. Upon thorough washings, 0.3 

 μ g/ml of the biotinylated ACC2 was added for 90 min at room temperature. 

Development was performed using avidin-peroxidase at a dilution of 1:750 

in 1% BSA/PBS and ABTS as substrate. All assays were run in triplicates. 

 Immunohistochemistry and histopathology.   Paws from naive 4-mo-

old male BALB/c or (BALB/c  ×  B10.Q) F1 mice injected with 9 mg of 

arthritogenic anti-CII mAbs (M2139 and CIIC1) on day 11 were decalcifi ed 

for 4 wk in an EDTA solution and frozen in optimum cutting temperature 

compound using isopentane on dry ice. The samples were stored at  � 70 ° C 

until cryosectioned at 10  μ m at  � 30 ° C. Joint sections were stained with a 

panel of biotinylated anti-CII citrulline-specifi c mAbs (ACC1 – 4). Streptavi-

din peroxidase was used for detection. Diaminobenzidine staining was per-

formed according to established procedures. 

 Statistics.   Statistical diff erence in the frequency (incidence) of disease be-

tween groups of mice was determined using a    2  analysis on all scoring days. 

To compare the mean arthritis score between two experimental groups, the 

nonparametric Mann-Whitney U test was used. All of the statistical analyses 

were performed using the StatView program (version 1; SAS Institute), and 

P  <  0.05 was considered signifi cant. 

 Preparation of ACC4 Fab.   ACC4 Fab fragments were prepared by using an 

ImmunoPure Fab Preparation Kit (Thermo Fisher Scientifi c) according to the 

manufacturer ’ s instructions. In brief, 20 mg of ACC4 antibody was concen-

trated and diluted with 20 mM sodium phosphate and 10 mM EDTA buff er 

(pH 7) several times by using centrifugal fi lter devices (Amicon Ultra; Milli-

pore). 20 mg of concentrated IgG was mixed with 0.5 ml of immobilized pa-

pain. The mixture was incubated by shaking overnight at 37 ° C. Crude digest 

was separated from immobilized papain and applied to a protein A column (Af-

fi nityPak; Thermo Fisher Scientifi c). Fab fragments were recovered in the fl ow 

through. Fc fragments and undigested IgG bound to the column were eluted 

with elution buff er. Collected Fab fragments were concentrated and further gel 

fi ltered on a Superdex 200 (10/30) column (GE Healthcare). The gel fi ltration 

column was previously equilibrated with 30 mM of Tris buff er (pH 8). 

 Antibody V gene sequence analysis.   The cDNA sequences of the heavy 

and light chains of anticollagen- and citrulline-specifi c antibodies were se-

quenced (see Supplemental materials and methods, available at http://www

.jem.org/cgi/content/full/jem.20081862/DC1) and analyzed by IMGT/V-

QUEST ( 50 ) and IMGT/Junction Analysis ( 51 ) from the IMGT database 

( 52 ), and IgBLAST from the National Center for Biotechnology Informa-

tion (available from GenBank/EMBL/DDBJ under accession nos.  EU159566 , 

 EU159567 ,  EU159568 ,  EU159569 ,  EU159570 ,  EU159571 ,  EU159572 , 

 EU159573 ,  EU159574 ,  EU159575 ,  EU159576 , and  EU159577 ; Fig. S1). 
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