
Reusable Generic Clinical Decision Support System Module for Immunization
Recommendations in Resource-Constraint Settings

Samuil Orlioglu, MS1, Akash Shanmugan Boobalan, MS1,
Kojo Abanyie, PharmD, MS2, Richard D. Boyce, PhD2, Hua Min, PhD3,

Yang Gong, PhD4, Dean F. Sittig, PhD4, Paul Biondich, MD5,
Adam Wright, PhD6, Christian Nøhr, PhD7, Timothy Law, DO8,
David Robinson, MD9, Arild Faxvaag, PhD10, Nina Hubig, PhD1,

Ronald Gimbel, PhD1, Lior Rennert, PhD1, Xia Jing, PhD1

1Clemson University, Clemson, SC, USA;
2University of Pittsburgh, Pittsburgh, PA, USA;

3George Mason University, Fairfax, VA, USA;
4University of Texas Health Sciences Center at Houston, Houston, TX, USA;

5Indiana University, Indianapolis, IN, USA;
6Vanderbilt University, Nashville, TN, USA;

7Aalborg University, Aalborg, Denmark;
8Ohio University, Athens, OH, USA;

9Independent Consultant, Cumbria, UK;
10Norwegian University of Science and Technology, Trondheim, Norway;

Abstract

Clinical decision support systems (CDSS) are routinely employed in clinical settings to improve quality of care, ensure
patient safety, and deliver consistent medical care. However, rule-based CDSS, currently available, do not feature
reusable rules. In this study, we present CDSS with reusable rules. Our solution includes a common CDSS module,
electronic medical record (EMR) specific adapters, CDSS rules written in the clinical quality language (CQL) (derived
from CDC immunization recommendations), and patient records in fast healthcare interoperability resources (FHIR)
format. The proposed CDSS is entirely browser-based and reachable within the user’s EMR interface at the client-side.
This helps to avoid the transmission of patient data and privacy breaches. Additionally, we propose to provide means of
managing and maintaining CDSS rules to allow the end users to modify them independently. Successful implementation
and deployment were achieved in OpenMRS and OpenEMR during initial testing.

Keywords

Clinical Decision Support System, Interoperability, Clinical Quality Language, Fast Healthcare Interoperability
Resources, Standards, Data Sharing

Introduction

The clinical decision support system (CDSS) is an effective tool1,2 to manage the clinical needs of patients. Rule-based
CDSS is an important category for clinical practices that may account for 69% to 100% of the total CDSS usage in
primary care settings in the USA3. However, these CDSS may become irrelevant to clinical practices if the associated
rules are not kept up-to-date. Managing and maintaining CDSS rules can be resource-intensive, even for large academic
medical centers, that are typically richer in resources than small medical practices.

Our group leverages technologies based on interoperability to develop reusable and sharable CDSS rules4–6; in addition,
we implement and deploy the rules through two open-source electronic medical record (EMR) systems: OpenMRS and
OpenEMR.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.22.24314152doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.09.22.24314152
http://creativecommons.org/licenses/by-nc-nd/4.0/


The former was first released in 20047,8 and it does not have a CDSS module. It is the most commonly used open-source
EMR system in the fields of clinical care, research, and development. Its current users are spread across 6,745 sites in
40 countries with 15.8 million active patients; many of these users work in resource-limited situations7,8.

OpenEMR is an open-source EMR and practice management system with over 4,000 downloads per month since
its inception9; it is available in 30 languages and currently includes a CDSS module. However, it does not offer
management, maintenance, and monitoring of the CDSS rules. Although CDSS can effectively provide consistent
preventive clinical services1,10, its relevance and usefulness can become questionable if associated rules are not updated.

It is recognized that CDSS rule management and maintenance are very resource-intensive11–14. Therefore, sustainably
introducing CDSS that is adapted to have reusable and updated rules, particularly in resource-limited settings, can
benefit users immensely (primarily health care providers). Such an improvement in the CDSS will eventually benefit
the patient populations that medical systems serve.

In this study, we demonstrate the feasibility of implementing reusable CDSS rules; as an example, (the
CDC-recommended vaccination schedules15 are used to develop CDSS rules) in the two EMR systems. The aim of our
work is to make the implementation process open-access, reusable, interoperable, and reproducible to enable the end
users to manage and maintain CDSS rules independently. In this manuscript, we share the work currently in progress to
achieve these aims, as well as the next steps.

Methods

We leverage a couple of observed commonalities between EMR systems to develop our solution. OpenMRS8 and
OpenEMR9 both have user interfaces that are displayed within a modern web browser and both EMRs support
conversion of patient data to and from the fast healthcare interoperability resources (FHIR)16 format and the internal
data model.

Overall architecture

Figure 1. High-level architecture of the CDSS with a common-module to facilitate rule-sharing and customization
across different platforms. The common-module interfaces with adapter modules for EMR systems, including OpenMRS
and OpenEMR. Each adapter module includes a local rule repository, that can pulls rule recommendations from a global
rule repository and provides individual customized recommendations for each patient.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.22.24314152doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.22.24314152
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. shows the overall architecture of the proposed solution to lack of reusable rules in CDSS. We use CDC
immunization recommendations15 to create CDSS rules in the clinical quality language (CQL) format. These rules can
be made publicly available in a repository as global rules that are downloadable by users for the creation of a local set
of these rules that can be deployed on a case-by-case basis.

In our proposed solution, the CDS engine is set into the client-side, where it runs in the web browser. This allows the
CDSS engine to process data provided by the EHR in the fast healthcare interoperability resources (FHIR)16 format to
calculate patient recommendations. The logic behind the decisions from the CDSS is not coded into the engine; instead,
it originates from the CQL rules. The operating-system and technological stack of the EHR is irrelevant to the CDSS
engine. We call this CDSS engine the "common-module" as it is designed to work universally, despite technological
inconsistencies.

Despite the uniformity of the common-module for available EMRs, specific functionalities must be added to make it
better compatible with individual EMR and operate optimally. For this purpose, we introduce the adapter module. The
adapter module is tailored for a given EMR to properly integrate it with the common-module and provide persistent
storage for rules, and recommendation display on user interfaces. The adapter module also supplies the common-module
with all the resources needed for the proper execution of rules.

In ongoing studies, we aim to improve the rule-based CDSS solution proposed here with additional features. For
instance, in addition to executing the rules for patient-specific vaccine recommendations, the module will also track past
CDSS rules usage to provide data-driven evidence for future optimization and will enable an individual or organization
to modify the rules according to their requirements.

Creation of rules

For rule-based CDSS, CDSS rules added to the CDSS in EMRs are logical components to determine patient-specific
recommendations, given the patient’s clinical history. Currently, rules are written manually in CQL17 and utilize FHIR
v4.0.116 representations of objects to compute and generate recommendations. Figure 2. shows an example of a rule for
a recommendation regarding the measles, mumps, and rubella (MMR) vaccine.

We organize CDSS rules by vaccine and follow a few principles to create them:

• Parameters are a list of FHIR16 resources, such as all immunizations administered to a patient or all clinical
observations of the patient. Parameters represent all FHIR16 resources of a single type in a patient’s record. The
logic in CQL files filters the relevant resources of interest from the list for processing in the rule. In Figure 2, the
CDSS rule uses the parameter Imm on line 8, which is a list of immunizations.

• Rules must have at least one expression called "Recommendations" or "Recommendation" followed by an integer.
This is what will be displayed to the clinician as shown in lines 21 and 26 in Figure 2.

• We utilize libraries to store useful functions and value sets for the rules, which allows the rule to be readable and
concise. In Figure 2. the CDSS rule utilizes the MMR_Common_Library on line 6, demonstrating this point.

Rules formatted in CQL must be converted into expression logical model (JSON-ELM) before they can be deployed in
the common-module. This conversion can be completed automatically using the cql-to-elm-cli17 tool or by a Docker
service called the cql-translation-service18.

Rule testing

To verify that CDSS rules are syntactically and logically correct, we utilize the cdss-testing-harness19, which is
a modified version of cql-testing-harness20. It is a framework for unit testing of CQL17 files within a Node.Js21

environment.

The cdss-testing-harness19 automatically converts CQL files into the JSON-ELM by creating a temporary Docker
container18. For this study, we created sample patients, immunization records and observations in the FHIR format to
test all possible logical branches of the rules. The test cases were stored in a directory hierarchy. We also wrote the unit
tests for every rule, to ensure rule correctness for positive and negative cases. The test cases were incorporated into the
unit tests by the cdss-testing-harness19. Once rules were thoroughly tested, they could be applied in the CDSS.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.22.24314152doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.22.24314152
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 library "MMR1regularyoungerthan12monthsNoMMRRecommendation" version '1'
2
3 using FHIR version '4.0.1'
4
5 include "FHIRHelpers" version '4.0.1'
6 include "MMR_Common_Library" version '1' called Common
7
8 parameter Imm List<Immunization>
9

10 context Patient
11
12 define "VaccineName":
13 'Measles, Mumps, and Rubella Virus Vaccine'
14
15 define "CurrentAge":
16 AgeInMonths() >= 0 and AgeInMonths() < 12
17
18 define "InPopulation":
19 CurrentAge and Count(Common.FindValidVaccines(Imm)) = 0
20
21 define "Recommendation1":
22 if InPopulation then
23 'Schedule the 1st dose of MMR when the patient is 12-15 months old'
24 else null
25
26 define "Recommendation2":
27 if InPopulation then
28 'Schedule the 2nd dose of MMR when the patient is 4-6 years old'
29 else null

Figure 2. Example of a sample CQL rule for the measles, mumps, and rubella (MMR) vaccine that checks if the
patient is between 0 and 12 months old and if they have not been administered a prior MMR vaccination. If so, it
is recommended that the clinician should ’Schedule the 1st dose of MMR when the patient is 12-15 months old’ and

’Schedule the 2nd dose of MMR when the patient is 4-6 years old’

The common-module

The key component in this project is the common-module which is written in Javascript and embedded directly into the
webpages of the EMR. It enables the execution of JSON-ELM rules, solely on the client-side. The common-module
depends on cql-execution22 for executing the logic within the rules, cql-exec-fhir23 to process FHIR16 data types and a
modified cql-exec-vsac24 called browserfy-exec-vsac25 to resolve the value sets.

The task of the common-module is to gather the FHIR16 resources and the value sets needed to execute the rules. To do
this, the common-module contains several utility functions to request FHIR16 resources, convert different data types,
and other functionalities. The process of executing a rule within the common-module is shown in Figure 3. The key
to the flexibility of the common-module is the endpoints-map, which is a flexible and adaptable data structure that
"describes" how to retrieve resources from the EMR.

For easy distribution, the entire common-module is bundled into a single Javascript file with Webpack26.

Figure 3. The process of executing rules within the common-module.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.22.24314152doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.22.24314152
http://creativecommons.org/licenses/by-nc-nd/4.0/


Endpoints-Map The endpoints-map is a key-value lookup table describing the method of retrieving the resources. The
endpoints-map is configured on a per-instance basis, using the specifics of the EMR. When the common-module needs
a resource, it refers to the endpoints-map to find out how to retrieve the resource. This can be done either by HTTP
request (as in the case of FHIR16 resources) or a function if the request cannot be a simple HTTP request. Generally,
the endpoints-map is configured specifically for the EMR that the CDSS is deployed in, therefore, it allows the system
to flexibly adopt to different configurations. Figure 4. shows an endpoints-map that is configured to request resources
from a hypothetical EMR.

1 {
2 "metadata": {
3 "systemName": "Hypothetical EMR",
4 "remoteAddress": "http://localhost/",
5 "vsacApiKey": null
6
7 },
8 "patientById": {
9 address : "http://localhost/fhir/patient?id={{patientId}}",

10 method: "GET",
11 },
12 "medicationRequestByPatientId": {
13 address : "http://localhost/fhir/medicationRequest?id={{patientId}}",
14 method: "GET",
15 },
16 "medicationByMedicationRequestId": {
17 address : "http://localhost/fhir/medication?id={{medicationRequestId}}",
18 method: "GET"
19 },
20 "immunizationByPatientId": {
21 address : "http://localhost/fhir/immunization?id={{patientId}}",
22 method: "GET",
23 },
24 "observationByPatientId": {
25 address : "http://localhost/fhir/observation?id={{patientId}}",
26 method: "GET",
27 },
28 "conditionByPatientId": {
29 address : "http://localhost/fhir/condition?id={{patientId}}",
30 method: "GET",
31 },
32 "ruleById": {
33 address : "http://localhost/rule?id={{ruleId}}",
34 method: "GET",
35 },
36 "getRules": {
37 address : "http://localhost/rules",
38 method: "GET"
39 }
40 }

Figure 4. A sample configuration of the endpoints-map for a hypothetical EMR running on localhost. The section on
metadata provides system-level details. The other sections define the endpoints that should be used to retrieve FHIR
resources, such as patients, conditions, observations and immunizations. The URLs also use placeholder parameters,
such as {{patientId}} , for dynamic queries. The rules section define which URLs must be used to obtain JSON-ELM
forms of the rules.

Browserfy-cql-exec-vsac The common-module requires a method to resolve the value sets declared in the rules.
For this purpose, a package called cql-exec-vsac24 is typically used. However, cql-exec-vsac24 works on the
server-side. To work around this limitation, we adapted the original cql-exec-vsac24 to create a client-side version called
browserfy-cql-exec-vsac25, which has the same functionality as the cql-exec-vsac24, but it does not provide system
storage and offers customizable configuration of the value set server.

Incorporating the common-module into the EMR

Many EMRs including OpenMRS and OpenEMR can be to customized to have additional functionalities by
incorporation of suitable modules. These modules have direct access to EMR and utilize its software development

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.22.24314152doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.22.24314152
http://creativecommons.org/licenses/by-nc-nd/4.0/


kit (SDK). Similarly, the common-module must also be integrated and embedded into the web pages of the EMR.
This process is facilitated by introducing an adapter module, which is simply an EMR module to properly execute the
common-module.

The adapter module has a few responsibilities; its main responsibility is to embed the common-module into the web
pages of the EMR and to configure the endpoints-map to the exact specifications of the EMR. Considering that every
EMR is different, the adapter module must configure the endpoints-map in the common-module accordingly.

The adapter modules have direct access to the EMR resources, and thus, they can serve additional functions. For example,
the adapter module can persistently store rules in an EMR; additionally, it can provide an application programming
interface (API) to retrieve rules as needed by the common-module. Last but not least, the adapter module can also
facilitate the tracking of rule usage by saving every instance when a rule is triggered in an internal EMR database.

Rule management

We are currently developing the ability for qualified users to modify rules within their local EMR environment through
its user interface. However, any changes to the rules must be tested, and the rules in CQL must be converted to
JSON-ELM before implementation in the CDSS. For this, our ongoing work involves building a web service that
automatically accepts changes in rules, tests them with the aforementioned rule testing environment, and upon success,
sends the changed rules back to the JSON-ELM for implementation in the CDSS.

Results

Common-module

The common module was completed and successfully tested in both OpenMRS and OpenEMR. Ongoing work, expected
to be released in the future, focuses on the maintenance of the common module and improvements to it.

OpenMRS

OpenMRS8 is designed in a modular manner, where the modules implement the functionality of the software. The
OpenMRS 3 modules have two layers: the back-end and front-end. The back-end is Java27 based, that utilizes the
Spring28 framework with MySQL29 or MariaDB30 as databases. The front-end is built with React31 and Typescript32.

The adapter module for OpenMRS consists of two parts: the Java27 based back-end called cdss33 to create API
endpoints, add tables to the database, and configure some OpenMRS settings. The front-end module called
openmrs-esm-cdss-app33 allows the user to interact with the cdss33 system. It adds a new section to the patient chart
view (Figure 5) and new pages to view all the events when the CDSS system was used.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.22.24314152doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.22.24314152
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5. Patient chart in OpenMRS coupled to the CDSS for hypothetical patient. Recommendations are shown in the
3rd column of the table.

Figure 6. The page in OpenMRS where one can view all the past consultation of the CDSS. The entries on this page
are displayed whether the system passes a recommendation or not.

OpenEMR

OpenEMR’s back-end relies on MySQL29 or MariaDB30 as the database management system to store patient information
and related data. The logic on the server-side is primarily written in PHP34, that interacts with the database. The
integration of health information systems and standards, such as FHIR16, for data exchange is supported by OpenEMR.
Configuration is managed through PHP34 configuration files, which include setting up the environment variables and
server connections. OpenEMR is very customizable software that can be easily adapted to various healthcare settings.

The adapter module developed for OpenEMR9 was built using the custom module framework provided by OpenEMR9;
this adapter module was integrated with the CDSS with a webpacked26 common-module33. As shown in Figure 7, a
large recommendation tile is provided on the patient dashboard in the OpenEMR9 interface by the adapter module, and
the patient’s FHIR16 data is processed according to the rules. The recommendation tile displays the results, which may
include clinical insights or recommendations based on the patient data.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.22.24314152doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.22.24314152
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7. Patient chart for a hypothetical patient in OpenEMR coupled to the CDSS. Recommendations are shown in
the Immunization Reminder section.

CDSS Rules

The project on reusable rules is still actively being developed, despite the promising results presented in this report.
Certain features have been completed, and others are in progress. Currently, we have completed and validated 13
categories, 19 vaccines, and 465 rules in tabular and chart formats. We have also completed and tested 12 CQL rules,
while the rest are being developed and assessed.

Discussion

In this study, we investigate the deployment of a CDSS module with multiple EMRs to assess the potential of
standardizing the method and generating good output, i.e., patient-specific recommendations, from multiple platforms.
The CDSS developed here is EMR-agnostic. It needs only a browser-based user interface and FHIR16 resources from
the EMR to function properly. In addition, as the CDSS runs on the client-side, there is no need to set up additional
services or to transfer patient data outside the institution, minimizing the risk of violating data privacy.

However, these benefits come at the cost of efficiency. The CDSS runs only on the client-side, which is considered
a benefit; on the downside, this configuration causes the CDSS to be heavily reliant on the processing speed of the
client-side device. Future research should focus on testing the performance and optimizing the common-module to
enhance CDSS efficiency.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.22.24314152doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.22.24314152
http://creativecommons.org/licenses/by-nc-nd/4.0/


It is important to mention that CDS Hooks35 offers the same functionality as our system; it invokes CDSS through the
workflow of the clinician. However, CDS Hooks35 and the CDSS module developed here are implemented differently,
where CDS Hooks35 requires a CDS server to determine the recommendations. In resource-constrained settings,
acquiring additional services for CDS may not be feasible. Contrarily, the CDSS module does not require additional
hardware, and thus, it offers a unique value for resource-limited situations.

Last but not least, the CDSS module developed here is based on Javascript and runs on the client-side only. Therefore,
it can feasibly be structured as a SmartOnFHIR36 app to encourage its adoption among users and institutions. The
SmartOnFHIR36 app is out of the scope in our this study, but this is an important area of development to adapt the
CDSS proposed here into a SmartOnFHIR36 app in the future.

Conclusion

In this study, we demonstrate that the same CDSS module can be deployed on disparate and technological dissimilar
EMR systems, such as the OpenEMR and OpenMRS, to generate consistent patient-specific recommendations.
Importantly, we demonstrate that it is possible to achieve a CDSS system with reusable rules without setting up
additional services. After thorough testing, we will make the codes, documentation, and CDSS rules publicly available.
We anticipate to provide additional resources for communities with limited resources to use in clinical practices. The
CDSS modules and rules can also be used in education or research to avoid duplicate efforts.

Acknowledgments

This study is made possible by funding from the National Institute of General Medical Sciences (R01GM138589)
and the Office of Data Science Strategy (3-R01-GM138589-03S1) at the National Institutes of Health, with additional
support from grants P20GM121342 and T15LM013977.

References

1. Lobach D, Sanders GD, Bright TJ, Wong A, Dhurjati R, Bristow E, et al.. Enabling health care decisionmaking
through clinical decision support and knowledge management.. National Institutes of Health; 2012. Available from:
https://effectivehealthcare.ahrq.gov/sites/default/files/pdf/clinical-decision-support_research.pdf.

2. Greenes R, Fiol GD. Clinical decision support and Beyond:Progress and opportunities in knowledge-enhanced
health and healthcare. 3rd ed. Academic Press; 2023.

3. Jing X, Himawan L, Law T. Availability and usage of clinical decision support systems (CDSSs) in office-based
primary care settings in the USA. BMJ Health and Care Informatics. 2019 12;26:e100015. Available from:
https://informatics.bmj.com/content/bmjhci/26/1/e100015.full.pdf.

4. Jing X, Min H, Gong Y, Cimino J, Sittig D, et al. A clinical decision support system (CDSS) ontology to facilitate
portable vaccination CDSS rules: preliminary results. San Diego, CA: AMIA; 2021. p. 1695.

5. Jing X, Cimino JJ, Sittig DF, Min H, Gong Y, Boyce RD, et al. Using Semantic Web Technology to leverage
interoperable clinical decision support system rules: a pathway to interoperable patient records. vol. 17. BMC
Proceedings; 2023. .

6. Boobalan AS, Orlioglu S, Boyce RD, Min H, Gong Y, Sittig DF, et al. Developing a reusable clinical decision
support system module for immunization recommendations: a case study with OpenEMR and OpenMRS. Boston,
MA: AMIA Summit; 2024. .

7. Verma N, Mamlin B, Flowers J, Acharya S, Labrique A, Cullen T. OpenMRS as a global good: Impact, opportunities,
challenges, and lessons learned from fifteen years of implementation. International Journal of Medical Informatics.
2021;149:104405. Available from: https://www.sciencedirect.com/science/article/pii/S1386505621000319.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.22.24314152doi: medRxiv preprint 

https://effectivehealthcare.ahrq.gov/sites/default/files/pdf/clinical-decision-support_research.pdf
https://informatics.bmj.com/content/bmjhci/26/1/e100015.full.pdf
https://www.sciencedirect.com/science/article/pii/S1386505621000319
https://doi.org/10.1101/2024.09.22.24314152
http://creativecommons.org/licenses/by-nc-nd/4.0/


8. OpenMRS org. OpenMRS.org – OpenMRS is an open source medical records system or EMR with a global
community.;. Available from: https://openmrs.org/.

9. OpenEMR;. Available from: https://www.open-emr.org/.

10. Greenes RA. Clinical decision support: the road to broad adoption. 2nd ed. San Diego, CA: Elsevier; 2014.

11. Wright A, Sittig DF, Ash JS, Sharma S, Pang JE, Middleton B. Clinical Decision Support Capabilities of
Commercially-available Clinical Information Systems. Journal of the American Medical Informatics Association.
2009 09;16:637–644. Available from: https://academic.oup.com/jamia/article/16/5/637/803679.

12. Sittig DF, Wright A, Simonaitis L, Carpenter JR, Allen G, Doebbeling BN, et al. The state of the art in clinical
knowledge management: An inventory of tools and techniques. International Journal of Medical Informatics. 2010
01;79:44-57.

13. Wright A, Ash JS, Erickson JL, Wasserman J, Bunce A, Stanescu A, et al. A qualitative study of the activities
performed by people involved in clinical decision support: recommended practices for success. Journal of the
American Medical Informatics Association. 2014 05;21:464-72.

14. Zhou L, Karipineni N, Lewis JA, Maviglia SM, Fairbanks A, Hongsermeier T, et al. A study of diverse clinical
decision support rule authoring environments and requirements for integration. BMC Medical Informatics and
Decision Making. 2012 11;12.

15. Vaccine Schedules For You and Your Family;. Available from: https://www.cdc.gov/vaccines/imz-schedules/index.
html.

16. HL7 org. Index - FHIR v4.0.1;. Available from: https://hl7.org/fhir/R4/index.html.

17. HL7 org. Clinical Quality Language (CQL);. Available from: https://cql.hl7.org/.

18. cqframework. cql-translation-service;. Available from: https://github.com/cqframework/cql-translation-service.

19. Orlioglu S. cdss-testing-harness;. Available from: https://github.com/sorliog/cdss-testing-harness.

20. mCODE. cql-testing-harness;. Available from: https://github.com/mcode/cql-testing-harness.

21. OpenJS Foundation. Node.js — Run JavaScript Everywhere;. Available from: https://nodejs.org/en.

22. CQFramework. cql-execution;. Available from: https://github.com/cqframework/cql-execution.

23. CQFramework. cql-exec-fhir;. Available from: https://github.com/cqframework/cql-exec-fhir.

24. CQFramework. cql-exec-vsac;. Available from: https://github.com/cqframework/cql-exec-vsac.

25. Orlioglu S. browserfy-cql-exec-vsac;. Available from: https://github.com/sorliog/browserfy-cql-exec-vsac.

26. webpack. webpack;. Available from: https://webpack.js.org/.

27. Java | Oracle;. Available from: https://www.java.com/.

28. Spring;. Available from: https://spring.io/.

29. MySQL;. Available from: https://www.mysql.com/.

30. MariaDB Foundation - MariaDB.org;. Available from: https://mariadb.org/.

31. React;. Available from: https://react.dev/.

32. TypeScript: JavaScript With Syntax For Types.;. Available from: https://www.typescriptlang.org/.

33. Orlioglu S, Boobalan AS, Jing X. EMR_EHR4CDSSPCP;. Available from: https://github.com/xjing16/EMR_
EHR4CDSSPCP.

34. PHP: Hypertext Preprocessor;. Available from: https://www.php.net/.

35. CDS Hooks;. Available from: https://cds-hooks.org/.

36. SMART Health IT;. Available from: https://smarthealthit.org/.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.22.24314152doi: medRxiv preprint 

https://openmrs.org/
https://www.open-emr.org/
https://academic.oup.com/jamia/article/16/5/637/803679
https://www.cdc.gov/vaccines/imz-schedules/index.html
https://www.cdc.gov/vaccines/imz-schedules/index.html
https://hl7.org/fhir/R4/index.html
https://cql.hl7.org/
https://github.com/cqframework/cql-translation-service
https://github.com/sorliog/cdss-testing-harness
https://github.com/mcode/cql-testing-harness
https://nodejs.org/en
https://github.com/cqframework/cql-execution
https://github.com/cqframework/cql-exec-fhir
https://github.com/cqframework/cql-exec-vsac
https://github.com/sorliog/browserfy-cql-exec-vsac
https://webpack.js.org/
https://www.java.com/
https://spring.io/
https://www.mysql.com/
https://mariadb.org/
https://react.dev/
https://www.typescriptlang.org/
https://github.com/xjing16/EMR_EHR4CDSSPCP
https://github.com/xjing16/EMR_EHR4CDSSPCP
https://www.php.net/
https://cds-hooks.org/
https://smarthealthit.org/
https://doi.org/10.1101/2024.09.22.24314152
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Keywords
	Introduction
	Methods
	Overall architecture
	Creation of rules
	Rule testing
	The common-module
	Endpoints-Map
	Browserfy-cql-exec-vsac

	Incorporating the common-module into the EMR
	Rule management

	Results
	Common-module
	OpenMRS
	OpenEMR
	CDSS Rules

	Discussion
	Conclusion
	Acknowledgments
	=References

