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Abstract Arsenic is a carcinogenic environmental factor found in food and drinking water around the
world. The mechanisms in which arsenic alters homeostasis are not fully understood. Over the past few
decades, light has been shed on varying mechanisms in which arsenic induces cancer. Such mechanisms
include gut microbe perturbations, genotoxic effects, and epigenetic modification. Gut microbe
perturbations have been shown to increase the level of pathogen-associated molecular patterns such as
lipopolysaccharide (LPS) leading to uncontained inflammation. Increase in inflammation is the major
factor in cirrhosis leading to hepatocellular carcinoma. Alterations in gut permeability and metabolites
have also been observed as a fallout of arsenic induced gut microbe modification. The guts proximity and
interaction through portal flow make the liver susceptible to gut perturbations and ensuing inflammatory
responses. Genotoxic and epigenetic dysregulation induced by arsenic and its toxic metabolites present a
more direct mechanism that works synergistically with gut microbe perturbations to induce the incidence
of cancers. These pathways combined could be some of the main causes of arsenic-induced
carcinogenesis.
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1. Introduction

Arsenic is the 20th most common element in the earth's crust and
is considered a group 1 carcinogen1. Arsenics abundance and
known cariogenic properties make it a global health concern.
Arsenic is an environmental factor that is known to contaminate
drinking water and food supply if not adequately regulated. Over
100 million people worldwide rely on arsenic-contaminated
drinking water on 5 of the earth's continents2. There are multiple
forms of arsenic, but naturally occurring trivalent inorganic arsenic
possess the highest toxicity. Trivalent arsenic can be directly
methylated leading to volatile products while pentavalent arsenic is
not readily taken up by cells and is often reduced to trivalent
arsenic3. Once ingested arsenic is metabolized in the liver where
hepatocytes uptake trivalent arsenic, within the hepatocytes,
subsequent conjugations and methylations occur leading to volatile
products4.

Arsenic has been found to increase the incidence of cancers
including skin, lung, kidney, urinary bladder, prostate, and liver1.
Hepatocellular carcinoma (HCC) is the leading form of liver
cancer and will serve as the focus for this review. The mechanisms
in which arsenic induces such cancers are continually investigated.

The carcinogenic effects of arsenic cannot be pinpointed to one
simple mechanism, since arsenic perturbs physiological functions
through multiple interworking pathways. Such proposed mechan-
isms leading to cancers include shifts in gut microbiota, genotoxic
effects, and epigenetic dysregulation5–7. These mechanisms work
synergistically to induce cancers, such as HCC.

The human body is host to many trillions of gut microbes and
this microbial community works in symbiosis to aid in normal
physiological functions, such as digestion and metabolism8.
Perturbations in the gut microbiota have been associated with
many diseases from obesity to various forms of cancer9. It has
been shown that arsenic can alter the microbiome and metabolic
profile in mice. It is proposed that alterations in the gut microbiota
Figure 1 Schematic summary of arsenic-induced disease progression d
hepatocellular carcinoma (HCC). Arsenic consumption leads to both geno
increases the incidence of inflammation leading to cirrhosis and potentiall
mechanisms, increasing the potential for HCC development.
by arsenic can lead to many physiological imbalances aiding in
HCC development.

As mentioned previously, arsenic has the potential to induce
genotoxic fallout and abnormal epigenetic modifications5. Arsenic
is considered a genotoxic metalloid with the ability to cause DNA
strand breaks, sister chromatid exchanges, and micronuclei10.
Aberrant epigenetic modifications have also been related to arsenic
exposure11. Arsenic has the potential to induce HCC through
multiple mechanisms, therefore proving an elusive environmental
carcinogen (Fig. 1).
2. Arsenic perturbs gut microbiota

When inorganic arsenic is ingested into the body through
contaminated food and water, it is metabolized by the liver, where
hepatocytes uptake trivalent arsenic via aquaglyceroporins and
hexose permeases. Within the hepatocyte, arsenic is conjugated
with glutathione, generating arsenic triglutathione. Methylation
may also take place leading to dimethylarsenic glutathione which
has been found to be excreted in bile and into the blood stream.
Dimethylarsenic glutathione is unstable and has the potential to
form volatile compounds, such as dimethylarsine. Red blood cells
are also able to efficiently take up arsenic and store the arsenic as
protein-bound trivalent dimethylarsenicals throughout the body4.

Whether arsenic is stored in the cells of the human body or
within the gut microbe population, negative effects ensue. A
metagenomics and metabolomics analysis conducted by Lu et al.7,
in which mice were treated with arsenic through drinking water at
a concentration of 10 ppm for four weeks, revealed that the control
and treated animals were well separated with 19.95% and 10.66%
variation explained by principal component analysis. In a second
study, mice were treated with arsenic for 2, 5, and 10 weeks at low
to moderate levels of arsenic (10–250 ppb) and microbial biofilms
that lined the intestine of control mice were degraded in the
emonstrating synergistic mechanisms leading to liver cirrhosis and
toxic/epigenetic dysregulation and gut perturbations. Gut perturbation
y HCC. Genotoxic and epigenetic dysregulation disrupts intracellular



Jonathan Choiniere, Li Wang428
treatment mice indicating that moderate levels of arsenic exposure
(250 ppb) can alter the gut microbiota12. Degradation of symbiotic
microbial biofilms in the intestine may alter normal physiological
function and have the potential to open a niche for pathogenic
infection. The destruction of microbial biofilms may also alter the
permeability of the gut leading to abnormal absorption. Dheer and
colleagues12 observed a significant increase in the number of
bacteroidetes when mice were treated with 250 ppb arsenic in
water for 2, 4, and 10 weeks. An increase in bacteroidetes is
significant because bacteroidetes are Gram-negative bacteria with
lipopolysaccharide (LPS) on their outer membrane. LPS is an
important virulence factor which causes widespread inflammation
disrupting normal biological functions13. An increase in patho-
genic arginine metabolites in the mouse circulation was also
observed12. Arginine is maintained in host cells and upon infection
of intracellular pathogens, such as Salmonella typhimurium or
Mycobacterium tuberculosis, and it has the ability to utilize the
host arginine pool releasing increased levels of pathogenic
arginine metabolites. The increase in arginine metabolites acts as
an indicator of microbial perturbations and infection14. The
combination of altered gut permeability and the increase in
pathogen-associated molecular patterns (PAMPs), such as LPS,
are both possible factors in the induction or progression of liver
cirrhosis and HCC.
3. Perturbed gut microbiota has potential to induce HCC

Altering the gut microbe population has shown to stimulate
inflammatory pathways that in turn interrupts liver function
leading to cirrhosis and HCC. A recent study by Seki and
colleagues15 reported that inflammation triggered through toll like
receptor 4 (TLR4) activation induced hepatic fibrogenesis. TLR4
is a receptor responsible for recognizing certain PAMPs. TLR4
specifically recognizes the LPS layer found on gram negative
bacteria. Seki et al.16 challenged mice with LPS and observed
TLR4 activation in quiescent hepatic stellate cells (HSCs) which
resulted in chemokine secretion and an increase in chemotaxis of
Kupffer cells. The over active inflammatory response in the liver
due to LPS leads to damaged hepatic tissue and function. Seki and
colleagues16 also showed that gut sterilization and bile duct
ligation in mice lead to a decrease in hepatic fibrosis. Isolating
the liver from the gut microbe population decreases the livers
exposure to PAMPs, which in turn decreases the inflammatory
response and hepatic damage.

Increased levels of PAMPs and inflammation have been
associated with viral hepatitis in clinical study. Viral hepatitis is
a leading cause of liver cirrhosis. Sandler and colleagues17

reported through clinical studies that compared with uninfected
individuals, HCV- and HBV-infected individuals had higher
plasma levels of LPS, I-FABP (indicating enterocyte death),
sCD14 (produced upon LPS activation of monocytes), and IL-6.
Levels of CD14 correlated with markers of hepatic inflammation
and fibrosis. CD14 is a co-receptor with TLR4 that detects LPS
and other PAMPs, such as lipoteichoic acid.

Inflammation and cirrhosis are major causative factors in the
development of hepatocellular carcinoma. There are many
mechanisms that lead to HCC, but all of them start with some
form of cirrhosis of the liver18. Inflammation which was induced
via the mechanisms mentioned above leads to cirrhosis and
potentially HCC. Yu et al.19 reported in a laboratory study that
depletion of Gram-negative bacteria reduces toxic models of HCC.
Yu et al.19 treated rats with bactericidal drugs against enteric
Gram-negative bacteria days prior to diethylnitrosamine (DEN)
administration. DEN is a cancer inducing model commonly used
in rodents. Twenty-one days after DEN injection, bactericidal
treated rats showed a reduced number and size of HCC nodules.
The ability to reduce the occurrence of HCC nodules by simply
altering the gut microbiome shows the direct and significant
impact the microbes of the body have on homeostasis. Since
arsenic has been shown to alter the gut microbe population, it
should be considered as a serious environmental factor with the
potential to cause disease via multiple mechanisms.
4. Arsenic has genotoxic and epigenetic altering effects
which can induce HCC

When arsenic enters the body through water consumption, it is
metabolized in the liver. Arsenic has been shown to induce
genotoxic effects and epigenetic dysregulation which has the
potential to aid in HCC progression5. Some genotoxic mechanisms
of arsenic include DNA repair inhibition and development of
micronuclei. Sinha et al.20 reported that oxidative damage induced
by arsenic interferes with DNA repair mechanisms through
downregulation of DNA repair enzymes like β-polymerase and
inhibition of ligation. The exact mechanism in which arsenic
deploys its genotoxic effect is elusive because there are more than
5 metabolites that are all known to have toxic properties21. The
methylated arsenic metabolite methylarsonous acid (MMAIII) is
known to have carcinogenic potential. Tokar et al.22 chronically
exposed TRL1215 rat liver cells to MMAIII (0.25–1.0 μmol/L)
and were tested for oxidative DNA damage and acquired
malignant phenotype. The liver cells acquired a cancer phenotype
with MMAIII exposure at about 20 weeks, based on increased
matrix metalloproteinase secretion, colony formation and invasion.
Kojima et al.23 reported that arsenic biomethylation seems to be
obligatory for arsenic-induced oxidative DNA damage and appears
linked in TRL1215 rat liver cells with the accelerated transition to
an in vitro cancer phenotype.

Arsenic has also been shown to induce abnormal epigenetic
modifications, such as DNA hypermethylation of tumor suppressor
genes. In the past few decades, epigenetic regulation has been
identified as a major factor in post-transcriptional regulation. Many
studies have indicated that arsenic exposure leads to globally
altered DNA methylation24–26. Tsang et al.27 showed that arsenic
exposure in utero of mice in tandem with high folate administra-
tion caused a hugely significant change in CpG island methyla-
tions. CpG island methylation is known to modify chromatin
structure and potentially inhibit transcription. Cui and colleagues28

demonstrated that mice fed orally with arsenic water (100 ppm)
showed an abnormal P16 and RASSF1A methylation pattern in
lung tissues, and an increased incidence in tumor formation. A
meta-analysis conducted by Wang et al.29 indicated that long-term
inorganic arsenic exposure through drinking water increases the
risk of liver cancer mortality. Overall, arsenic has shown to alter
the gut microbe population and also cause direct genotoxic and
epigenetic effects leading to various diseased states, including
cirrhosis and HCC.
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5. Concluding remarks

Arsenic is an environmental factor with known carcinogenic
effects that make it a global health concern. Arsenic has shown
the ability to perturb the gut microbe population leading to
negative effects in mice and human. The ability of arsenic to
increase PAMPs in the perturbed gut can increase inflammatory
response leading to adverse effects. The genotoxic and epigenetic
effects of arsenic also pose a direct toxicity to tissues and organs,
revealing multiple pathways in which it can induce cancer within
above-mentioned organs.
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