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Abstract	13	

Targeted	spatial	transcriptomics	hold	particular	promise	in	analysis	of	complex	14	

tissues.	Most	such	methods,	however,	measure	only	a	limited	panel	of	transcripts,	15	

which	need	to	be	selected	in	advance	to	inform	on	the	cell	types	or	processes	being	16	

studied.	A	limitation	of	existing	gene	selection	methods	is	that	they	rely	on	scRNA-17	

seq	data,	ignoring	platform	effects	between	technologies.	Here	we	describe	gpsFISH,	18	

a	computational	method	to	perform	gene	selection	through	optimizing	detection	of	19	

known	cell	types.		By	modeling	and	adjusting	for	platform	effects,	gpsFISH	20	

outperforms	other	methods.	Furthermore,	gpsFISH	can	incorporate	cell	type	21	

hierarchies	and	custom	gene	preferences	to	accommodate	diverse	design	22	

requirements.	23	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.02.03.527053doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.03.527053
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 2	

	24	

Key	words:	gene	panel	selection,	targeted	spatial	transcriptomics,	single	cell	RNA	25	

sequencing,	platform	effect,	cell	type	hierarchy	26	

	27	

Background	28	

The	building	block	of	complex	tissues	is	the	diverse	range	of	cell	types	[1–4].	29	

Knowing	the	identity	and	spatial	location	of	cells	from	different	cell	types	is	the	key	30	

for	understanding	how	they	communicate	with	each	other	to	carry	out	specific	31	

functions	and	how	diseases	emerge	when	this	complex	network	of	interactions	goes	32	

awry	[5–11].	Single-cell	RNA	sequencing	(scRNA-seq)	provides	a	powerful	tool	to	33	

study	the	identity	of	cell	types	and	cell	states	[12–17].	However,	the	spatial	34	

information	is	lost	due	to	cell	disassociation	during	library	preparation.	Recent	35	

advances	in	spatial	transcriptomics	technologies	have	overcome	this	limitation	by	36	

providing	ways	to	quantify	gene	expression	while	keeping	the	spatial	information	of	37	

cells,	leading	to	more	comprehensive	and	detailed	understanding	of	diseases	and	38	

normal	functions	[18–23].	39	

	40	

Based	on	the	number	of	transcripts	that	can	be	probed,	spatial	transcriptomics	41	

technologies	can	be	broadly	categorized	as	(1)	targeted,	measuring	a	limited	panel	42	

of	transcripts;	and	(2)	untargeted,	capturing	all	transcripts	from	the	transcriptome.	43	

Targeted	spatial	transcriptomics	include	in	situ	hybridization	(ISH)-based	[24–28]	44	

and	most	in	situ	sequencing	(ISS)-based	methods	[29–32].	Untargeted	spatial	45	

transcriptomics	include	next-generation	sequencing	(NGS)-based	methods	[33–39].	46	
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Compared	to	untargeted	spatial	transcriptomics,	targeted	spatial	transcriptomics	47	

can	achieve	high	sensitivity	and	subcellular	resolution.	However,	their	targeted	48	

nature	requires	a	panel	of	genes	(from	a	few	hundred	to	thousand)	to	be	selected	in	49	

advance	to	recognize	cell	types	or	processes	relevant	to	the	tissue	being	studied.		50	

	51	

Gene	selection	methods	are	used	to	design	gene	panels.	They	can	be	classified	into	52	

two	major	categories	based	on	their	gene	selection	objectives.	One	category	with	an	53	

imputation-based	objective	aims	to	select	genes	based	on	their	ability	to	capture	as	54	

much	of	transcriptional	variation	in	the	scRNA-seq	data	as	possible.	Examples	range	55	

from	simply	selecting	highly-variable	genes	to	more	advanced	methods	like	L1000	56	

[40],	geneBasis	[41],	and	SCMER	[42].	Specifically,	L1000	identified	the	optimal	set	57	

of	‘landmark’	transcripts	that	construct	a	reduced	representations	of	the	58	

transcriptome.	geneBasis	finds	genes	that	can	yield	a	k-nearest	neighbor	graph	that	59	

is	similar	to	the	“true”	graph	constructed	using	the	entire	transcriptome.	SCMER	60	

aims	to	select	genes	that	preserve	the	manifold	of	scRNA-seq	data.	Another	category	61	

of	gene	selection	method	with	a	classification-based	objective	selects	genes	given	62	

their	ability	to	reconstruct	cell	classifications	or	relationships.	Examples	range	from	63	

selecting	differentially	expressed	genes	(DEGs)	to	more	advanced	methods	like	64	

scGeneFit	[43],	RankCorr	[44],	and	NS-Forest	[45].		scGeneFit	selects	marker	genes	65	

that	jointly	optimize	cell	type	recovery	using	a	label-aware	compressive	66	

classification	method.	RankCorr	is	a	rank-based	one-vs-all	feature	selection	method	67	

that	selects	marker	genes	for	each	cell	type	based	on	a	sparsity	parameter	that	68	

controls	the	number	of	marker	genes	selected	per	cell	type.	NS-Forest	is	a	machine	69	
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learning-based	marker	gene	selection	algorithm	that	uses	the	nonlinear	attributes	of	70	

random	forest	feature	selection	and	a	binary	expression	scoring	approach	to	select	71	

the	minimal	combination	of	marker	genes	that	captures	the	cell	type	identity	in	72	

scRNA-seq	data.		All	these	methods	can	be	used	to	design	gene	panels	for	targeted	73	

spatial	transcriptomics	technologies.			74	

	75	

A	key	limitation	of	current	gene	selection	methods	is	that	they	select	genes	purely	76	

based	on	scRNA-seq	data	without	considering	potential	differences	between	scRNA-77	

seq	and	the	target	spatial	transcriptomics	technologies.	Such	platform	effects	78	

include	systematic	differences	in	capture	efficiency	of	genes	between	platforms	79	

caused	by	technology-dependent	factors,	including	detection	technique	and	library	80	

preparation	chemistry.	Platform	effects	have	been	previously	noted	when	81	

comparing	gene	expression	measurements	from	single-cell	and	single-nucleus	RNA-82	

seq	on	the	same	biological	sample	[46].	Platform	effects	also	exist	between	scRNA-83	

seq	and	spatial	transcriptomics	technologies	[47–49],	posing	a	challenge	when	84	

transferring	cell	type	information	from	scRNA-seq	to	spatial	transcriptomics	85	

technologies.	When	selecting	gene	panels	using	scRNA-seq	data,	such	platform-86	

specific	distortions	can	lead	to	reduced	performance	of	selected	gene	panels	in	the	87	

resulting	spatial	measurements.		88	

	89	

Besides	platform	effects,	there	are	other	complications	involved	in	gene	panel	90	

selection.	First,	current	classification-based	gene	selection	methods	[43–45]	treat	91	

cell	types	as	equally	distinct.	However,	cell	types	are	organized	in	a	hierarchical	92	
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manner	with	cell	subpopulations	belonging	to	the	same	broad	cell	type	more	similar	93	

to	each	other	than	subpopulations	belonging	to	different	broad	cell	types	[50–56].	94	

Depending	on	the	biological	questions	and	capabilities	of	the	assays,	a	gene	95	

selection	method	could	optimize	for	fidelity	at	lower	cell	type	resolution,	or	place	96	

increased	emphasis	on	certain	subgroups	of	cell	types.	More	generally,	this	is	not	97	

only	useful	for	selecting	genes	that	inform	on	cell	types	but	can	also	be	extended	to	98	

selecting	genes	for	other	biological	entities	with	a	hierarchical	structure,	e.g.,	gene	99	

ontology	and	pathways	[57,58].	Second,	both	imputation-based	and	classification-100	

based	gene	selection	methods	select	genes	solely	based	on	a	pre-defined	objective	101	

function.	However,	in	practice	of	gene	panel	design	for	targeted	spatial	102	

transcriptomics,	there	can	be	other	criteria	contributing	to	the	gene	selection.	103	

Examples	range	from	technical	factors,	such	as	ability	to	design	probes	for	targeting	104	

certain	transcripts,	to	biological	factors	such	as	preferences	for	certain	pathways	or	105	

marker	genes	commonly	used	in	the	literature.	A	framework	that	takes	such	106	

orthogonal	preferences	into	consideration	can	be	helpful	in	practice.				107	

	108	

To	address	these	challenges,	we	developed	gpsFISH,	a	classification-based	gene	109	

selection	method	that	models	and	adjusts	for	the	platform	effects	between	scRNA-110	

seq	and	targeted	spatial	transcriptomics	technologies,	yielding	more	informative	111	

gene	panels	and	better	cell	type	classification	compared	to	previously	published	112	

classification-based	gene	selection	methods.	In	addition,	gpsFISH	provides	options	113	

to	account	for	cell	type	hierarchy	and	gene-specific	custom	preferences	during	gene	114	
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panel	design,	offering	flexible	and	finer	control	of	cell	type	granularity	and	gene	115	

selection	for	different	biological	questions.		116	

	117	

Results	118	

Platform	effects	between	scRNA-seq	and	targeted	spatial	transcriptomics		119	

Even	molecule	counting	assays	carry	inherent	detection	biases,	posing	challenges	120	

for	joint	analysis	of	multiple	assays,	such	as	scRNA-seq	and	spatially-resolved	121	

counts	[47–49].	Indeed,	we	observed	a	systematic	difference	of	transcript	detection	122	

rate	across	platforms	(Fig.	1A-D),	which	distorts	the	resulting	transcriptional	123	

profile	estimates.	Consequently,	a	panel	of	genes	selected	based	on	scRNA-seq	that	124	

works	well	on	distinguishing	cell	types	may	not	achieve	similar	level	of	performance	125	

when	measured	by	targeted	spatial	transcriptomics.		126	

	127	

To	address	this	challenge,	we	estimate	the	level	of	gene	expression	distortion	in	128	

targeted	spatial	transcriptomics	data	relative	to	scRNA-seq	and	from	the	same	129	

tissue	using	a	Bayesian	model	(Fig.	S1,	Methods).	Bayesian	inference	estimates	the	130	

posterior	distribution	of	distortion	magnitudes,	which	will	be	used	to	predict	the	131	

potential	distortion	levels	for	genes	that	have	not	yet	been	observed	in	a	given	132	

assay.	Specifically,	we	assume	platform	effects	are	on	a	per	gene	basis.	𝛾!	and	𝑐!	133	

represent	gene	specific	multiplicative	and	additive	platform	effect	for	each	gene	𝑖,	134	

respectively.	These	distortion	parameters	are	assumed	to	follow	two	normal	135	

distributions	with	𝜇", 𝜇#	as	mean	and		𝜎", 𝜎#	as	standard	deviation,	respectively.	The	136	

posterior	distribution	of	𝜎"	and	𝜎#	can	be	considered	as	a	generalized	description	of	137	
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the	magnitude	of	multiplicative	and	additive	platform	effects.	We	can	use	them	to	138	

sample	the	magnitudes	of	gene	specific	multiplicative	and	additive	platform	139	

distortions	for	unobserved	genes.	The	model	is	fitted	for	a	given	pair	of	scRNA-seq	140	

and	targeted	spatial	transcriptomics	platforms	to	account	for	the	differences	141	

between	them.				142	

	143	

To	check	the	extent	to	which	the	model	is	able	to	capture	platform	biases,	we	used	144	

three	paired	scRNA-seq	and	targeted	spatial	transcriptomics	datasets:	scRNA-seq	145	

and	MERFISH	data	from	mouse	hypothalamic	preoptic	region	[24]	(Moffit	dataset),	146	

scRNA-seq	and	osmFISH	data	from	mouse	cortex	[26,59]	(Codeluppi	dataset),	and	147	

scRNA-seq	and	DARTFISH	data	from	healthy	human	kidney	[60]	(Zhang	dataset)	148	

(Methods,	Table	S1).	Fitting	a	model	for	each	pair	of	datasets,	we	then	performed	149	

posterior	predictive	check,	i.e.,	we	simulated	spatial	transcriptomics	measurements	150	

from	scRNA-seq	data	using	the	fitted	Bayesian	model	(Methods).	Comparisons	of	151	

the	distribution	of	simulated	and	observed	spatial	transcriptomics	measurements	152	

demonstrated	that	the	Bayesian	model	can	accurately	recapitulate	the	platform	153	

effects	from	different	pairs	of	technologies	(Fig.	1E,	Fig.	S2A-C).		The	posterior	154	

distributions	of	𝜎"	and	𝜎#	(Fig.	1F-G)	on	the	three	datasets	showed	distinct	levels	of	155	

additive	and	multiplicative	platform	effects,	indicating	the	need	to	account	for	156	

platform-specific	properties	during	gene	panel	selection.		157	

	158	

Gene	panel	selection	using	genetic	algorithm	159	

To	take	platform	distortions	into	account	during	selection	of	the	gene	panels,	we	use	160	
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the	platform	specific	Bayesian	model	to	simulate	spatial	transcriptomics	161	

measurements	with	distortions	(Methods).	The	gene	panels	are	optimized	for	their	162	

ability	to	recover	cell	type	labels	from	such	simulated	spatial	measurements,	rather	163	

than	the	original	scRNA-seq	measurements.	Such	an	approach	is	intended	to	164	

provide	a	more	accurate	estimation	of	panel	performance	in	a	real	spatially-165	

resolved	measurement.	Instead	of	selecting	top-performing	genes,	gpsFISH	166	

optimizes	the	entire	gene	panel	in	its	combined	ability	to	recover	cell	type	labels.	To	167	

optimize	within	this	combinatorial	gene	space,	gpsFISH	uses	genetic	algorithm	168	

optimizer	[61,62]	(Fig.	2,	Methods).		169	

	170	

Within	each	iteration	of	optimization,	multiple	cross	validations	of	classification	are	171	

performed	for	each	proposed	gene	panel.	To	avoid	biasing	towards	a	specific	172	

realization	of	spatial	transcriptomics	distortions,	gpsFISH	performs	the	platform	173	

simulations	separately	in	each	cross	validation.	As	a	result,	gene	panels	that	are	174	

more	robust	to	unexpected	platform	distortions	will	be	favored.	This	gene	panel	175	

selection	framework	ensures	the	evaluation	is	reflective	of	the	gene	panel’s	real	176	

classification	performance	when	measured	by	specific	targeted	spatial	177	

transcriptomics	technologies.		178	

	179	

We	first	tested	gpsFISH	on	the	mouse	hypothalamic	scRNA-seq	data	(Moffitt	180	

dataset)	with	simulated	platform	effect	by	optimizing	a	200	gene	panel	to	181	

distinguish	“level	1”	cell	type	annotation,	which	includes	12	broadly	defined	cell	182	

types	(Fig	3A).		Most	of	the	cells	are	correctly	classified,	yielding	an	overall	accuracy	183	
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of	0.983	and	high	area	under	the	receiver-operator	curve	(AUC)	across	all	cell	types	184	

(Fig	3B,	C).	The	optimized	gene	panel	selected	with	considering	platform	effect	was	185	

also	more	successful	in	separating	the	12	cell	types	on	the	resulting	UMAP	186	

embedding	compared	to	the	gene	panel	selected	without	considering	platform	effect	187	

(Fig.	3D,	E).			188	

	189	

To	quantify	performance	of	different	methods	we	simulated	spatial	transcriptomics	190	

data	from	scRNA-seq,	separating	training	and	test	sets	(Methods).		Simulations	191	

were	performed	both	with	and	without	distortions	in	order	to	evaluate	how	taking	192	

platform	effects	into	account	impacts	gene	panel	performance.	We	also	compared	193	

gpsFISH	with	two	previously	published	classification-based	gene	selection	methods:	194	

RankCorr	and	scGenefit.	Both	methods	rely	on	the	scRNA-seq	expression	profiles	195	

without	considering	platform	effects.	RankCorr	is	a	rank-based	one-vs-all	feature	196	

selection	method	that	selects	marker	genes	for	each	cell	type	given	a	sparsity	197	

parameter,	which	controls	the	number	of	marker	genes	selected	per	cell	type.	We	198	

tuned	this	parameter	to	make	sure	the	panels	generated	using	RankCorr	have	the	199	

same	size	(200	genes).	scGenefit	selects	gene	markers	that	jointly	optimize	cell	label	200	

recovery	using	label-aware	compressive	classification	methods.	As	control,	we	201	

provided	a	naïve	way	to	simulate	spatial	transcriptomics	measurements	without	202	

platform	effects	(Methods).	In	addition,	we	also	generated	a	panel	of	randomly	203	

selected	genes	as	baseline.	204	

	205	

The	objective	of	gpsFISH	optimization	is	to	achieve	high	quality	cell	type	206	
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classification	on	the	spatial	transcriptomics	data.	This	entails	two	tasks:	(1)	207	

selecting	a	good	gene	panel,	and	(2)	using	the	gene	panel	for	accurate	cell	type	208	

classification.	In	practice,	while	the	design	of	an	initial	gene	panel	may	rely	on	the	209	

scRNA-seq	data,	optimization	of	subsequent	panels	can	take	advantage	of	the	probe-210	

specific	distortions	that	have	already	been	observed	in	earlier	measurements.	211	

Similarly,	as	more	and	more	spatial	transcriptomics	data	are	generated,	when	212	

classifying	cell	types	in	a	newly	generated	spatially-resolved	measurement,	it	is	213	

likely	that	some	partial	annotations	may	already	be	available	for	that	platform	214	

either	on	the	current	or	previously	acquired	datasets.	Regardless	of	the	cell	type	215	

granularity	of	partial	annotation,	it	contains	gene-specific	platform	effect	216	

information	of	genes	in	the	spatial	transcriptomics	data,	which	can	be	estimated	217	

using	our	Bayesian	model	to	improve	cell	type	classification.	Following	this	logic,	we	218	

used	two	benchmark	strategies,	which	evaluate	the	impact	of	platform	effects	on	the	219	

two	tasks	(Methods).	Both	strategies	share	the	same	general	framework	in	which	a	220	

classifier	is	trained	on	the	training	data	with	gene	expression	profiles	for	all	cell	221	

types,	and	then	applied	onto	the	testing	data	for	cell	type	classification.	The	222	

difference	is	how	the	two	strategies	incorporate	partial	annotation	into	the	training	223	

data	when	available.	Specifically,	for	the	first	strategy,	evaluation	with	platform	224	

effect	re-estimation	(Methods),	platform	effects	are	estimated	from	the	partial	225	

annotation	data	and	incorporated	into	the	training	data	for	all	gene	selection	226	

methods.	Since	under	this	strategy	the	gene	panels	from	all	methods	are	evaluated	227	

in	the	same	manner,	it	is	useful	in	evaluating	the	impact	of	platform	effect	on	the	228	

first	task,	i.e.,	selecting	a	good	gene	panel.	In	contrast,	under	the	second	evaluation	229	
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strategy,	evaluation	without	platform	effect	re-estimation	(Methods),	only	gpsFISH	230	

panels	are	evaluated	with	platform	effect	estimation	as	described	above	(Methods),	231	

illustrating	the	impact	of	platform	effects	on	both	tasks.			232	

	233	

Evaluation	with	platform	effect	re-estimation	on	the	Moffit	dataset	using	naïve	234	

Bayes	as	the	classifier	shows	gpsFISH	outperforms	the	control	with	naïve	simulation	235	

and	other	gene	selection	methods	(Fig.	4A),	indicating	that	taking	platform	effects	236	

into	consideration	leads	to	more	informative	gene	panels.	Similar	results	were	237	

observed	for	the	Zhang	and	Codeluppi	dataset	(Fig.	S3A	and	S3C)	and	using	random	238	

forest	as	classifier	(Fig.	S4A-C).	From	the	normalized	confusion	matrix	of	the	gene	239	

panel	selected	by	gpsFISH	with	hierarchical	tree	on	the	left	showing	the	relationship	240	

between	cell	types	(Fig.	4C)	we	can	see	that	most	of	the	misclassifications	are	241	

within	the	complex	subpopulations	of	inhibitory	and	excitatory	neurons.		242	

	243	

A	larger	performance	improvement	of	gpsFISH	over	other	gene	selection	methods	is	244	

observed	using	evaluation	without	platform	effect	re-estimation,	especially	when	245	

the	level	of	partial	annotation	is	low	(Fig.	4B,	Fig.	S3B	and	S3D,	Fig.	S4D-F),	246	

indicating	that	considering	platform	effects	can	lead	to	more	accurate	cell	type	247	

classification.	248	

	249	

Overall,	the	comparison	results	show	that	gpsFISH	outperforms	other	gene	selection	250	

methods	and	considering	platform	effects	can	result	in	more	informative	gene	251	

panels	and	better	cell	type	classification.		252	
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	253	

Redundancy	in	gene	space	across	independent	gene	panel	optimizations	254	

enables	incorporation	of	customized	preferences	255	

Independent	panel	optimizations	performed	multiple	times	(10)	for	each	of	the	256	

three	datasets	showed	high	level	of	redundancy	in	the	gene	space	(Fig.	5A).	257	

Specifically,	despite	similar	levels	of	overall	performance,	the	overlap	between	258	

independently	optimized	200-gene	panels	was	around	85,	65,	and	35	genes,	and	259	

more	than	20%,	30%,	and	45%	of	the	genes	showed	up	in	only	one	of	the	10	260	

optimized	gene	panels	for	the	Zhang,	Moffit,	and	Codeluppi	datasets,	respectively	261	

(Fig.	S5A-C).		We	observed	similar	level	of	redundancy	even	when	the	optimization	262	

was	performed	for	a	more	granular	“level	2”	cell	type	annotations	(46,	87,	and	47	263	

cell	types	for	Zhang,	Moffit,	and	Codeluppi	dataset,	Fig.	S5D).	The	ability	to	achieve	264	

similar	level	of	performance	with	different	gene	sets	suggests	that	the	panels	can	be	265	

further	optimized	to	accommodate	secondary	criteria,	such	as	inclusion	of	pre-266	

selected	genes,	emphasis	on	genes	with	specific	features	or	from	specific	pathways,	267	

etc.		268	

	269	

gpsFISH	allows	to	incorporate	secondary	preferences	during	gene	panel	270	

optimization,	by	specifying	custom	gene	weights.	To	illustrate	how	panel	271	

redundancy	can	be	used	to	incorporate	secondary	preferences	with	little	impact	on	272	

the	classification	performance,	we	evaluated	the	ability	to	increase	the	number	of	273	

technical	probes	per	gene.	Specifically,	many	ISH-based	assays,	including	DARTFISH,	274	

can	include	multiple	different	probes	to	enhance	detection	of	any	given	transcript.	275	
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The	number	of	probes	that	can	be	designed	to	target	each	gene	is	determined	by	276	

gene-specific	factors	like	gene	length.	Genes	with	more	probes	are	preferred,	as	they	277	

can	be	used	to	improve	robustness	and	sensitivity	of	detection.	To	generate	a	gene	278	

panel	with	high	number	of	potential	probes,	we	used	the	predicted	number	of	279	

probes	for	each	gene	in	the	DARTFISH	data	(Zhang	dataset)	(Methods)	as	gene	280	

weight	during	gene	panel	selection.	Of	note,	we	capped	the	probe	count	at	15	to	281	

avoid	bias	towards	a	small	portion	of	genes	with	extremely	high	number	of	probes	282	

(Fig.	S6A).	This	also	agrees	with	the	fact	that	sensitivity	will	saturate	when	we	have	283	

enough	probes	for	a	gene.		284	

	285	

Following	this	approach,	we	performed	10	optimizations	with	and	without	probe	286	

count	gene	weights	on	the	Zhang	dataset	using	“level	1”	cell	type	annotations.	As	287	

expected,	the	optimizations	with	gene	weight	had	slightly	lower	accuracy	(Fig.	5B)	288	

but	achieved	a	significantly	higher	number	of	total	probes	(Fig.	5C).	This	289	

demonstrates	that	the	redundancy	of	gene	spaces	allows	one	to	incorporate	290	

additional	customized	constraints/preferences	based	on	orthogonal	information	to	291	

design	gene	panels	with	preferred	features	without	sacrificing	the	overall	cell	type	292	

classification	performance.			293	

	294	

Hierarchical	gene	selection	based	on	cell	type	hierarchy	295	

Cell	types	are	organized	in	a	hierarchical	manner	with	broad	cell	types	divided	into	296	

more	detailed	subpopulations.	This	hierarchical	relationship	can	be	considered	297	

when	evaluating	cell	classification	errors.	For	example,	failure	to	distinguish	two	298	
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closely	related	subtypes,	such	as	Th1	and	Th17,	of	cells	is	likely	to	be	considered	299	

less	severe	than	mis-annotation	of	a	Th	cell	into	a	different	major	cell	type	such	as	B	300	

cells.		301	

	302	

In	addition	to	the	default	“flat”	cell	type	evaluation,	gpsFISH	therefore,	implements	a	303	

hierarchical	classification	option	(Fig.	6A,	Methods),	in	which	correct	classifications	304	

or	misclassification	between	different	cell	types	will	receive	different	credit/penalty	305	

specified	by	a	weighted	penalty	matrix	according	to	cell	type	hierarchy.	Using	this	306	

hierarchical	classification	framework,	gpsFISH	provides	flexibility	to	customize	307	

optimization	based	on	desired	level	of	cell	type	granularity.	308	

	309	

To	evaluate	the	effect	of	the	hierarchical	classification	for	gene	selection,	we	310	

performed	hierarchical	gene	selection	at	level	2	cell	annotation	of	all	three	datasets.	311	

Under	a	hierarchical	penalty	scheme,	misclassifications	of	cells	between	different	312	

level	1	categories	incur	a	fixed	penalty,	whereas	misclassifications	within	the	same	313	

level	1	category	were	given	partial	credit,	proportional	to	the	expression	similarity	314	

between	the	called	and	true	subtypes	(Methods,	Fig.	6B).	To	quantify	to	what	315	

extent	this	hierarchical	classification	framework	reduces	misclassifications	across	316	

broad	cell	types	at	level	1,	we	calculated	the	percentage	of	across	broad	cell	type	317	

mistakes	over	all	mistakes	(Methods).	We	observed	that	the	optimized	gene	panels	318	

using	hierarchical	classification	tend	to	make	significantly	fewer	misclassifications	319	

across	broad	cell	types	at	level	1	compared	to	flat	classification	(Fig.	6C-E),	320	
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indicating	that	cell	type	granularity	can	be	controlled	through	the	hierarchical	321	

classification	framework.		322	

	323	

Discussion	and	conclusions	324	

Accurate	cell	type	classification	is	crucial	for	understanding	the	spatial	relationship	325	

of	cells	in	complex	tissues.	We	implemented	gpsFISH,	a	method	for	gene	panel	326	

design	of	targeted	spatial	transcriptomics.	By	accounting	for	platform	effects	327	

between	scRNA-seq	and	targeted	spatial	transcriptomics	technologies,	gpsFISH	is	328	

able	to	find	more	robust	and	informative	gene	panels	and	achieve	better	cell	type	329	

classification.			330	

	331	

Different	technology	has	different	patterns	of	platform	effects.	Specifically,	we	332	

decomposed	platform	effects	into	two	components:	multiplicative	and	additive	333	

platform	effects.	While	the	multiplicative	effect	has	been	considered	in	334	

deconvolution	contexts	(e.g.,	RCTD	[47]),	neither	type	of	platform-specific	335	

distortions	have	been	considered	by	other	gene	selection	methods.	Among	other	336	

things,	the	additive	platform	effect	enables	gpsFISH	to	describe	situations	where	337	

specific	genes	show	no	expression	in	scRNA-seq	data,	but	is	detected	in	spatial	338	

transcriptomics	data	(dots	forming	the	vertical	line	in	Fig.	1A	and	1B).	This	339	

observation	is	common	for	osmFISH	(Codeluppi	dataset)	and	MERFISH	(Moffit	340	

dataset),	and	cannot	be	modelled	using	only	multiplicative	platform	effect.	341	

	342	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.02.03.527053doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.03.527053
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

Comparing	the	three	targeted	spatial	transcriptomics	platforms,	we	found	highest	343	

levels	of	additive	platform	effects	in	DARTFISH,	followed	by	osmFISH	and	MERFISH		344	

(Fig.	1G).	More	specifically,	DARTFISH	had	the	lowest	𝜇# ,	indicating	the	highest	level	345	

of	signal	reduction	compared	to	MERFISH	and	osmFISH	(Fig.	S2E).	Signal	reduction	346	

increases	the	possibility	of	good	marker	genes	from	scRNA-seq	losing	cell	type	347	

specificity	in	spatial	transcriptomics	data	(dots	forming	the	horizontal	line	in	Fig.	348	

1C),	which	is	a	main	scenario	where	platform	effects	affect	gene	panel	selection.	349	

Higher	level	of	signal	reduction	for	DARTFISH	agrees	with	our	result	that	the	350	

performance	improvement	of	gpsFISH	over	other	gene	selection	methods	is	the	351	

largest	in	the	Zhang	dataset	compared	to	the	other	two	datasets,	indicating	the	352	

necessity	to	account	for	additive	platform	effects,	especially	for	targeted	spatial	353	

transcriptomics	technologies	with	higher	level	of	signal	reduction.						354	

	355	

In	addition	to	additive	platform	effect,	multiplicative	platform	effect	also	contributes	356	

to	the	systematic	difference	of	transcripts	detection	rate	across	technologies,	posing	357	

a	challenge	when	transferring	cell	type	information	from	scRNA-seq	to	spatial	358	

transcriptomics	technologies.	Comparison	of	three	targeted	spatial	transcriptomics	359	

platforms	shows	osmFISH	has	the	highest	level	of	multiplicative	platform	effect,	360	

followed	by	MERFISH	and	then	DARTFISH	(Fig.	1F).	Higher	level	of	multiplicative	361	

platform	effect	leads	to	poorer	cell	type	classification	when	there	is	no	or	low	level	362	

of	partial	annotation	compared	to	high	level	of	partial	annotation	(Fig.	4A	and	4B,	363	

Fig.	S3	and	S4),	especially	for	evaluation	without	platform	effect	re-estimation	due	364	

to	distorted	expression	profiles	between	scRNA-seq	and	targeted	spatial	365	
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transcriptomics	technologies.		For	evaluation	with	platform	effect	re-estimation,	low	366	

level	of	partial	annotation	provided	limited	statistical	power	to	accurately	estimate	367	

gene	specific	platform	effects,	thus	not	able	to	increase	the	classification	368	

performance.	This	reduced	performance	is	gone	when	we	have	more	than	one	cell	369	

type	included	in	the	partial	annotation,	indicating	partial	annotation	of	a	few	cell	370	

types	is	enough	to	enhance	cell	type	classification	if	multiplicative	platform	effects	371	

are	accounted	for.		372	

	373	

Redundancy	across	independent	optimizations	allows	incorporation	of	customized	374	

preferences	into	gene	selection.	However,	gene	weight	needs	to	be	carefully	375	

specified	to	ensure	no	sacrifice	on	overall	gene	panel	performance.	For	the	result	in	376	

Fig.	5B	and	5C,	we	capped	the	number	of	probes	for	each	gene	at	15.	For	cutoffs	377	

lower	than	15,	gene	weight	difference	between	genes	are	small,	leading	to	gene	378	

panels	with	similar	performance	but	also	similar	total	number	of	probes.	However,	379	

for	cutoffs	higher	than	15,	the	optimization	will	bias	towards	a	small	group	of	genes	380	

with	high	probe	count,	resulting	in	local	minimum	during	optimization	(Fig.	S6B-C).	381	

This	does	achieve	panels	with	significantly	higher	total	number	of	probes,	but	the	382	

classification	accuracy	is	dropped.	This	emphasizes	the	need	to	test	different	ways	383	

for	gene	weight	specification	in	order	to	get	the	expected	result	without	sacrificing	384	

performance.	385	

	386	

Similarly,	in	our	test	of	hierarchical	gene	selection,	we	specified	the	weighted	387	

penalty	matrix	directly	from	cell	type	hierarchy.	Although	we	reduced	388	
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misclassifications	across	broad	cell	types,	the	overall	accuracy	is	slightly	lower	than	389	

flat	classification	(Fig.	S7).	This	shows	that	partial	credit	of	misclassifications	needs	390	

to	be	given	carefully,	especially	when	there	are	many	similar	subpopulations	within	391	

the	same	broad	cell	type	like	in	the	Moffit	dataset.	In	real	usage,	it	is	suggested	to	392	

prune	the	weighted	penalty	matrix	constructed	from	the	cell	type	hierarchy	to	393	

remove	unnecessary	partial	credit.	Gene	panel	selection	using	flat	classification	can	394	

be	run	first	to	help	adjust	the	weighted	penalty	matrix	constructed	using	cell	type	395	

hierarchy.	In	addition,	the	hierarchical	classification	provides	a	generic	framework	396	

to	fine	tune	emphasis	of	classification	on	certain	cell	types.	Here	we	showed	its	397	

usage	to	incorporate	cell	type	hierarchy,	but	it	is	not	restricted	to	cell	type	398	

hierarchy.	Customized	weighted	penalty	matrix	can	be	constructed	using	other	399	

information	that	provides	preferences	towards	different	classifications.		400	

	401	

A	major	goal	of	spatial	transcriptomics	is	to	understand	the	spatial	distribution	of	402	

cell	types	and	their	corresponding	cellular	environment.	gpsFISH	facilitates	this	by	403	

selecting	more	informative	and	robust	gene	panels	and	providing	ways	for	better	404	

cell	type	annotation.	We	also	provide	options	to	account	for	various	custom	405	

preferences.	As	more	targeted	spatial	transcriptomics	data	are	generated,	we	expect	406	

that	gpsFISH	can	facilitate	the	study	of	cellular	organization	of	complex	tissues	407	

under	different	biological	contexts.		408	

	409	

Methods	410	
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Datasets	411	

In	our	study,	we	used	three	datasets	that	have	both	scRNA-seq	and	targeted	spatial	412	

transcriptomics	data	from	the	same	tissue.	Information	regarding	the	three	datasets	413	

is	summarized	in	Table	S1.		Further	processing	details	are	discussed	below.		414	

	415	

Moffit	dataset	416	

scRNA-seq	data	was	downloaded	from	Gene	Expression	Omnibus	(GEO)	[63]	under	417	

accession	code	GSE113576.	MERFISH	data	was	downloaded	from	Dryad	[64].	Of	418	

note,	the	MERFISH	data	from	Dryad	is	normalized	and	batch	corrected.	We	undid	419	

the	volume	normalization	and	batch	correction	to	get	the	original	data.		420	

	421	

In	the	scRNA-seq	data,	we	first	filtered	out	cells	annotated	as	“Ambiguous”	and	422	

“Unstable”.	We	then	used	information	in	the	supplementary	Table	1	of	the	original	423	

study	to	assign	cell	types.	“Cell	class	(determined	from	clustering	of	all	cells)”	424	

column	was	used	as	level	1	cell	type	annotation.	“Neuronal	cluster	(determined	425	

from	clustering	of	inhibitory	or	excitatory	neurons)”	and	“Non-neuronal	cluster	426	

(determined	from	clustering	of	all	cells)”	were	used	as	level	2	cell	annotation.	427	

Normalization	was	performed	as	described	in	the	original	study.		428	

	429	

Only	MERFISH	data	from	naïve	mice	was	used	(to	match	scRNA-seq	data).	In	430	

addition,	we	also	filtered	out	cells	annotated	as	“Ambiguous”	and	“Unstable”.	Fos	431	

gene	and	five	blank	genes	were	filtered	out.	135	genes	imaged	in	the	combinatorial	432	

smFISH	imaging	were	kept.	Following	the	naming	of	cell	types	in	Fig.	3D	of	the	433	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.02.03.527053doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.03.527053
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 20	

original	study,	we	modified	the	cell	type	annotation	of	MERFISH	data	to	make	it	434	

consistent	with	the	scRNA-seq	data.	Specifically,	at	level	1	cell	type	annotation,	cells	435	

annotated	as	"Endothelial	1",	"Endothelial	2",	"Endothelial	3"	were	merged	into	436	

“Endothelial”.	“Astrocyte”	was	changed	to	“Astrocytes”.	"OD	Immature	1"	and	"OD	437	

Immature	2"	were	changed	to	“Immature_oligodendrocyte”.	"OD	Mature	1",	"OD	438	

Mature	2",	"OD	Mature	3",	and	"OD	Mature	4"	were	changed	to	439	

“Mature_oligodendrocyte”.	“Pericytes”	was	changed	to	“Mural”.	At	cell	type	level	2,	440	

“Endothelial	1”,	“Endothelial	2”,	and	“Endothelial	3”	were	changed	to	441	

“Endothelial_1”,	“Endothelial_2”,	and	“Endothelial_3”,	respectively.	“Ependymal”	was	442	

changed	to	“Ependymal_1”.	“OD	Immature	1”	and	“OD	Immature	2”	were	changed	to	443	

“Immature_oligodendrocyte_1”	and	“Immature_oligodendrocyte_2”,	respectively.	444	

“OD	Mature	1”,	“OD	Mature	2”,	“OD	Mature	3”,	and	“OD	Mature	4”	were	changed	to	445	

“Mature_oligodendrocyte_1”,	“Mature_oligodendrocyte_2”,	446	

“Mature_oligodendrocyte_3”,	and	“Mature_oligodendrocyte_4”,	respectively.		447	

	448	

After	the	processing	above,	additional	filters	were	applied	on	the	raw	and	449	

normalized	scRNA-seq	data	before	gene	panel	selection.	Genes	with	maximum	cell	450	

type	average	expression	lower	than	1	were	filtered	out.	In	addition,	long	non-coding	451	

RNAs	were	also	removed.	As	a	result,	2886	and	5100	genes	were	used	for	gene	452	

panel	selection	at	level	1	and	2,	respectively.	For	platform	effects	estimation,	the	453	

subset	of	the	raw	scRNA-seq	and	MERFISH	data	with	cells	from	overlapping	cell	454	

types	were	used.			455	

	456	
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Codeluppi	dataset	457	

scRNA-seq	data	was	downloaded	from	GEO	under	accession	code	GSE60361.	458	

Annotation	data	was	downloaded	from	[65].	osmFISH	and	corresponding	459	

annotation	data	was	downloaded	from	[66].		460	

	461	

For	scRNA-seq	data,	cell	labels	in	row	9	of	the	annotation	were	used	as	level	1	cell	462	

type	annotation,	and	row	11	were	used	as	level	2	cell	type	annotation.	However,	the	463	

level	1	cell	type	annotation	is	too	broad	(only	5	major	cell	types).	Therefore,	we	464	

regenerated	level	1	cell	type	annotation	by	merging	similar	cell	types	at	level	2	465	

following	descriptions	from	the	original	study.	Specifically,	in	generating	data	for	466	

gene	panel	selection	at	level	1,	"S1PyrDL",	"S1PyrL23",	"S1PyrL4",	"S1PyrL5",	467	

"S1PyrL5a",	"S1PyrL6",	S1PyrL6b",	"ClauPyr"	were	merged	into	"S1_Excitatory".	468	

“CA1Pyr1",	"CA1Pyr2",	"CA1PyrInt",	"CA2Pyr2",	"SubPyr”	were	merged	into	469	

"Hippocampus_Excitatory".	16	subclasses	of	interneurons	(“Int1”	to	“Int16”)	were	470	

merged	into	"Interneuron".	"Astro1"	and	"Astro2"	were	merged	into	"Astrocyte".	471	

"Mgl1"	and	"Mgl2"	were	merged	into	"Microglia".	"Pvm1"	and	"Pvm2"	were	merged	472	

into	"Pvm".	Six	subpopulations	of	oligodendrocytes	("Oligo1"	to	"Oligo6")	were	473	

merged	into	"Oligodendorcyte".	"Vend1"	and	"Vend2"	were	merged	into	474	

"Endothelial".	To	make	cell	type	labels	consistent	between	scRNA-seq	and	osmFISH,	475	

"Peric"	was	changed	to	"Pericyte".	"Choroid"	was	changed	to	"Ventricle".	"Epend"	476	

was	changed	to	"Ependymal".		477	

	478	

To	generate	the	data	for	platform	effect	estimation,	cell	type	labels	were	modified	479	
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slightly	differently	to	reflect	the	correspondence	between	cell	types	in	scRNA-seq	480	

and	osmFISH	as	shown	in	Fig.	2C	and	Fig.	2D	of	the	original	study.	Specifically,	three	481	

CA1	subclasses	(“CA1Pyr1”,	“CA1Pyr2”,	“CA1PyrInt”)	were	merged	into	482	

“Hippocampus_Excitatory”.	16	subclasses	of	interneurons	(“Int1”	to	“Int16”)	were	483	

merged	into	“Interneuron”.	Two	subclasses	of	microglia	(“Mgl1”	and	“Mgl2”)	were	484	

merged	into	“Microglia”.	Two	subclasses	of	perivascular	macrophages	(“Pvm1”	and	485	

“Pvm2”)	were	merged	into	“Pvm”.	Subclasses	of	S1	pyramidal	cells	were	also	486	

merged:	“S1PyrL4”	and	“S1PyrL5a”	were	merged	into	“S1_Excitatory_L45a”,	487	

“S1PyrL5”	and	“S1PyrL6b”	were	merged	into	“S1_Excitatory_L56b”.	In	addition,	to	488	

make	the	cell	type	labels	consistent	between	scRNA-seq	and	osmFISH,	we	changed	489	

“Astro1”	and	“Astro2”	to	“Astrocyte1”	and	“Astrocyte2”,	respectively.	We	changed	490	

“Oligo6”	to	“Oligo_Mature”,	“Oligo5”	to	“Oligo_MF”,	“Oligo1”,	to	“Oligo_COP”,	“Vend1”	491	

to	“Endothelial1”,	“Vend2”	to	“Endothelial2”,	“Peric”	to	“Pericyte”,	“Choroid”	to	492	

“Ventricle”,	“Epend”	to	“Ependymal”,	“S1PyrL23”	to	“S1_Excitatory_L23”,	and	493	

“S1PyrL6”	to	“S1_Excitatory_L6”.	Cell	types	with	fewer	than	50	cells	were	removed.		494	

	495	

For	osmFISH	data,	we	first	filtered	out	invalid	cells	based	on	the	“Valid”	column	of	496	

the	annotation	data.	Then,	similar	to	scRNA-seq	data,	we	modified	cell	type	labels	497	

according	to	Fig.	2C	and	Fig.2D	in	the	original	study,	which	shows	correspondence	498	

between	cell	types	in	scRNA-seq	and	osmFISH.	Specifically,	"Astrocyte	Gfap"	was	499	

changed	to	“Astrocyte1”.	“Astrocyte	Mfge8”	was	changed	to	“Astrocyte2”.	500	

“Hippocampus”	was	changed	to	“Hippocampus_Excitatory”.	“pyramidal	L4”	was	501	

changed	to	“S1_Excitatory_L45a”.	“Pyramidal	L5”	was	changed	to	502	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.02.03.527053doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.03.527053
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 23	

“S1_Excitatory_L56b”.	“Pyramidal	L6”	was	changed	to	“S1_Excitatory_L6”.	503	

“Perivascular	Macrophages”	was	changed	to	“Pvm”.	"Oligodendrocyte	COP"	was	504	

changed	to	“Oligo_COP”.	“"Oligodendrocyte	Mature"”	was	changed	to	505	

“Oligo_Mature”.	“Oligodendrocyte	MF”	was	changed	to	“Oligo_MF”.	“Endothelial	1”	506	

was	changed	to	“Endothelial1”,	and	“Endothelial”	was	changed	to	“Endothelial2”.	507	

“Pericytes”	was	changed	to	“Pericyte”.	“Vascular	Smooth	Muscle”	was	changed	to	508	

“Vsmc”,	“C.	Plexus”	was	changed	to	“Ventricle”.	"Pyramidal	L2-3"	and	"Pyramidal	L2-509	

3	L5"	were	merged	into	“S1_Excitatory_L23”.	"Inhibitory	Cnr1",	"Inhibitory	CP",	510	

"Inhibitory	Crhbp",	"Inhibitory	IC",	"Inhibitory	Kcnip2",	"Inhibitory	Pthlh",	and	511	

"Inhibitory	Vip"	were	merged	into	“Interneuron”.		512	

	513	

scRNA-seq	data	was	normalized	using	the	count_normalize	function	in	the	scran	514	

package.	Similar	to	the	Moffit	dataset,	the	raw	and	normalized	scRNA-seq	were	515	

further	filtered	before	gene	panel	selection	using	the	same	filters.		516	

6123	and	9052	genes	were	used	for	gene	panel	selection	at	level	1	and	2,	517	

respectively.	For	platform	effect	estimation,	the	subset	of	the	raw	scRNA-seq	and	518	

osmFISH	data	with	cells	from	overlapping	cell	types	were	used.	519	

	520	

Zhang	dataset	521	

Raw	and	normalized	scRNA-seq	data	from	kidney	were	obtained	from	[60].	They	522	

were	further	filtered	before	gene	panel	selection	using	the	same	filters.	2920	and	523	

3796	genes	were	used	for	gene	panel	selection	at	level	1	and	2,	respectively.		524	
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The	DARTFISH	data	is	unpublished.	It	can	be	found	in	Zenodo	[67].	We	annotated	525	

the	cells	in	the	DARTFISH	data	manually	using	curated	marker	genes	(Table	S2)	at	526	

subclass	level	(third	column).	For	platform	effect	estimation,	the	subset	of	the	raw	527	

scRNA-seq	and	DARTFISH	data	with	cells	from	overlapping	cell	types	were	used.	528	

	529	

Platform	effects	estimation	using	a	Bayesian	model	530	

We	assume	the	observed	number	of	molecules	𝑦!$	in	the	spatial	transcriptomics	531	

data	for	gene	𝑖	in	cell	𝑗	follows	a	zero-inflated	negative	bimonial	(ZINB)	distribution	532	

with:		533	

	534	

𝑦!$~𝑍𝐼𝑁𝐵.𝜇!$ , 𝜃!$ , 𝜋1													(1)	535	

	536	

where	𝜋	is	the	zero	inflation	parameter	which	is	assumed	to	be	constant	across	537	

genes	and	cells.	𝜇!$		is	the	mean	parameter	determined	by	a	global	intercept	𝛼,	true	538	

expression	level	of	gene	𝑖	in	cell	𝑗	denoted	as	𝜆!$ ,	and	the	cell	depth	(total	number	of	539	

molecules)	of	cell	𝑗	from	spatial	transcriptomics	data	as	𝐶𝐷$%&:	540	

	541	

ln.𝜇!$1 = 	𝛼 + ln.𝜆!$1 + ln	(𝐶𝐷$%&)												(2)	542	

	543	

To	account	for	platform	effects,	we	assume	the	true	expression	level	𝜆!$	is	a	random	544	

variable	defined	by:	545	

	546	
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logit.𝜆!$1 = 	𝛾! × B𝑥!$ + 𝑐!												(3)	547	

	548	

where	𝛾!	is	a	gene	specific	coefficient	representing	multiplicative	platform	effects,	549	

and	𝑐!	is	a	gene	specific	intercept	representing	additive	platform	effects.	𝑥!$		550	

represents	the	relative	expression	of	gene	𝑖	in	cell	𝑗	calculated	from	scRNA-seq	data:	551	

	552	

𝑥!$ =	
𝑐!$

∑ 𝑐!$'
!()

	553	

	554	

where	𝑐!$	is	the	number	of	count	for	gene	𝑖	in	cell	𝑗	from	the	scRNA-seq	data,	and	𝑁	555	

is	the	totol	number	of	genes.	When	fitting	the	Bayesian	model,	in	order	to	match	556	

measurement	between	scRNA-seq	data	and	targeted	spatial	transcriptomics	data,	557	

we	used	cell	type	average	relative	expression	to	replace	individual	cell	level	relative	558	

expression:	559	

	560	

𝑥!$,$⊂, = 𝑥!, =	
∑ 𝑐!$
-!
$()

∑ ∑ 𝑐!$
-!
$()

'
!()

	561	

	562	

where	𝑀,		is	the	number	of	cells	in	cell	type	𝑘.	563	

	564	

For	the	dispersion	parameter	𝜃!$	of	the	ZINB	distribution,	we	assume	it	is	also	565	

dependent	on		𝜆!$:	566	

	567	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.02.03.527053doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.03.527053
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 26	

ln.𝜃!$1 = 	𝛽 +	𝜆!$																	(4)	568	

	569	

where	𝛽	is	the	intercept.		570	

	571	

A	Beta	prior	distribution	is	assumed	for	𝜋.	For	𝛼,	𝛽,	and	𝑐! ,	we	assume	they	follow	572	

normal	distribution.	𝛾!		is	assumed	to	follow	a	log-normal	distribution:	573	

	574	

𝜋~Beta(1, 1)	575	

𝛼~Normal(0, 𝜎.)	576	

𝛽~Normal.0, 𝜎/1	577	

𝑐!~Normal(𝜇# , 𝜎#)	578	

𝛾!~LogNormal(𝜇", 𝜎")	579	

	580	

where	the	hyperparameters	are	assumed	to	follow	Cauchy	and	half	Cauchy	581	

distribution:	582	

	583	

𝜇# , 𝜇"	~	Cauchy(0, 5)	584	

𝜎., 𝜎/ , 𝜎# , 𝜎"	~	HalfCauchy(0, 5)			585	

	586	

scRNA-seq	and	targeted	spatial	transcriptomics	data	from	overlapping	genes	and	587	

overlapping	cell	types	were	used	as	input.	Additional	filters	were	applied	on	the	588	

MERFISH	data	to	reduce	the	totol	number	of	cells	for	more	efficient	estimation.	589	

Specifically,	cells	with	cell	depth	lower	than	100	were	filtered	out.	Cell	types	with	590	
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fewer	than	1000	cells	were	filtered	out.	Then	we	subsampled	each	cell	type	to	keep	591	

at	most	1000	cells	for	each	cell	type.	Variational	inference	in	Stan	was	used	for	592	

model	fitting.		593	

	594	

Simulation	of	spatial	transcriptomics	measurements	from	scRNA-seq	data	595	

with	platform	effects	596	

We	used	fitted	Bayesian	models	to	simulate	spatial	transcriptomics	measurements	597	

from	scRNA-seq	data.	Specifically,	𝛼, 𝛽, 𝜋, 𝜇# , 𝜎# , 𝜇", 𝜎"	were	randomly	sampled	from	598	

their	estimated	posterior	distribution.	𝑐! ,	and	𝛾!	were	randomly	sampled	from	their	599	

corresponding	normal	and	log	normal	distribution	for	each	new	gene	that	is	not	600	

observed	in	the	data	used	to	fit	the	Bayesian	model.	If	a	gene	is	already	seen	during	601	

fitting	the	Bayesian	model,	we	can	either	use	the	empirical	𝑐! ,	and	𝛾!	estimated	602	

during	model	fitting	(used	in	this	study)	or	randomly	sample	them	from	the	603	

corresponding	normal	and	log	norml	distribution.	𝐶𝐷$%&	was	randomly	sampled	604	

from	empirical	cell	depth	distribution	from	observed	targeted	spatial	605	

transcriptomics	data.	𝑥!$		was	calculated	from	scRNA-seq	data.	It	can	be	cell	type	606	

average	as	we	used	in	model	fitting	or	calculated	within	each	individual	cell.	In	our	607	

study,	the	latter	was	used	when	simulating	spatial	transcriptomics	measurements	to	608	

maintain	the	cell	level	heterogenity	in	scRNA-seq	data.	Finally,	the	generated	values	609	

were	plugged	into	equations	(1),	(2),	(3),	and	(4)	to	generate	spatial	transcriptomics	610	

measurements.		611	

	612	
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Simulation	of	spatial	transcriptomics	measurements	from	scRNA-seq	data	613	

without	platform	effects	(naïve	simulation)	614	

We	provided	a	naïve	way	to	simulate	spatial	transcriptomics	measurements	without	615	

platform	effects	as	control.	During	the	simulation	without	platform	effects,	cell	616	

depth	of	simulated	spatial	transcriptomics	cell	were	randomly	sampled	from	the	617	

empirical	cell	depth	distribution	of	observed	targeted	spatial	transcriptomics	data.	618	

Of	note,	the	empirical	cell	depth	distribution	was	adjusted	proportionally	based	on	619	

the	ratio	between	relative	expression	of	new	genes	for	simulation	and	relative	620	

expression	of	overlapping	genes	used	in	fitting	the	Bayesian	model.	After	having	the	621	

simulated	cell	depth	for	each	cell,	the	number	of	molecules	for	each	gene	within	622	

each	cell	was	sampled	from	a	multinomial	distribution	with	size	equal	to	the	623	

simulated	cell	depth	and	probability	equal	to	each	gene’s	relative	expression	in	that	624	

cell.	At	the	end,	genes	were	randomly	selected	given	the	probe	failure	rate.	Then,	625	

simulated	molecule	count	of	selected	genes	were	set	to	0	to	reflect	probe	failure.				626	

	627	

Genetic	algorithm	for	gene	panel	selection	628	

We	used	genetic	algorithm	as	the	framework	for	gene	panel	selection.	Each	629	

individual	in	a	population	is	one	candidate	gene	panel.	We	set	the	gene	panel	size	to	630	

200	genes.	Each	population	contains	200	individuals.		631	

	632	

The	first	step	of	genetic	algorithm	is	to	initialize	a	population	of	candidate	gene	633	

panels.	The	genes	can	be	either	randomly	selected	from	all	candidate	genes	or	634	

selected	based	on	their	differential	expression	between	cell	types.	In	this	study,	we	635	
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took	a	hybrid	approach.	95%	of	the	200	gene	panels	were	initiated	randomly	from	636	

all	candidate	genes	to	maintain	population	diversity.	The	rest	5%	were	initialized	637	

using	DEGs	for	each	cell	type.	DE	analysis	was	performed	using	Pagoda2.		Genes	638	

with	AUC	greater	than	0.7	were	considered	significant.		639	

	640	

The	second	step	is	to	evaluate	the	fitness	of	each	candidate	gene	panel	in	the	641	

population.	Here	we	define	fitness	as	the	average	classification	accuracy	over	5	642	

cross	validations.	Classification	was	performed	on	simulated	spatial	transcriptomics	643	

measurements	from	scRNA-seq	data.	Cell	type	annotation	from	scRNA-seq	data	was	644	

used	as	ground	truth.	The	accuracy	was	calculated	based	on	the	original	confusion	645	

matrix	for	flat	classification	and	weighted	confusion	matrix	for	hierarchical	646	

classification.	We	provided	two	classifiers,	random	forest	and	naïve	Bayes.	In	this	647	

study	we	used	naïve	Bayes	due	to	its	fast	speed	and	relatively	similar	level	of	648	

accuracy	compared	to	random	forest.	To	improve	the	efficiency,	scRNA-seq	data	was	649	

subsampled	to	reduce	the	number	of	cells	for	large	cell	types	and	resampled	to	650	

increase	the	number	of	cells	for	small	cell	types.	Specifically,	for	level	1	cell	type	651	

annotation,	cell	type	size	was	capped	at	1500	cells.	The	lower	bound	was	set	as	652	

1000	cells	for	Moffit	dataset	and	500	for	Zhang	and	Codeluppi	dataset.	For	level	2	653	

cell	type	annotation,	250	and	500	were	used	as	the	cell	type	size	range	for	Moffit	654	

dataset.	The	range	for	Zhang	and	Codeluppi	dataset	was	300	and	900.		655	

	656	

The	third	step	is	selection	and	mutation.	The	selection	strategy	we	used	is	657	

tournaments.	Specifically,	randomly	selected	candidate	gene	panels	face	each	other	658	
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1	vs.	1.	The	one	with	a	higher	fitness	value	was	used	as	parent.	In	addition,	659	

candidate	gene	panels	with	higher	fitness	values	were	more	likely	to	be	selected	in	660	

the	tournaments.	After	having	the	parent	gene	panels,	uniform	crossover	was	661	

performed	to	generate	the	offspring	gene	panels.	Duplicated	genes	after	uniform	662	

crossover	were	replaced	by	randomly	sampled	genes	in	the	parent	candidate	gene	663	

panels	but	not	in	the	offspring	gene	panel.	Mutation	was	then	performed	to	maintain	664	

gene	diversity	and	prevent	premature	convergence.	We	set	the	mutation	rate	to	1%.	665	

When	gene	weight	was	provided,	genes	with	higher	weight	were	(1)	more	likely	to	666	

be	selected	during	crossover,	(2)	less	likely	to	be	mutated	if	it	is	already	in	the	667	

population,	(3)	and	more	likely	to	be	introduced	into	the	population	through	668	

mutation	if	it	is	not	in	the	current	population.			669	

	670	

Finally,	the	same	process	was	repeated	for	the	offspring	population.	The	candidate	671	

gene	panel	with	the	highest	fitness	value	for	one	iteration	was	considered	as	the	672	

optimal	gene	panel.	If	the	iteration	after	it	has	a	candidate	gene	panel	with	higher	673	

fitness	value,	the	optimal	panel	will	be	replaced	by	this	new	candidate	gene	panel.	674	

Otherwise,	the	optimal	panel	will	stay	the	same.	The	iterative	process	will	end	either	675	

when	it	reaches	a	given	number	of	iterations,	or	the	accuracy	doesn’t	improve	more	676	

than	a	threshold	for	a	given	number	of	iterations.	In	our	study,	we	ran	all	the	677	

optimizations	for	at	least	500	iterations	to	ensure	convergence	although	in	all	cases	678	

the	optimization	converged	a	lot	earlier.		679	

	680	
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If	a	list	of	pre-selected	genes,	e.g.,	canonical	marker	genes	based	on	previous	681	

knowledge,	is	provided,	genes	in	the	list	will	be	included	in	each	candidate	gene	682	

panel	as	well	as	the	final	optimal	gene	panel.		683	

	684	

Hierarchical	classification	using	cell	type	hierarchy	685	

During	genetic	algorithm	optimization,	a	weighted	penalty	matrix	can	be	provided	686	

to	assign	partial	credit	or	extra	penalty	to	classification	between	certain	cell	types.	687	

The	weighted	penalty	matrix	is	a	square	matrix	with	each	row	and	each	column	688	

representing	one	cell	type.	For	each	value	𝑝!$	(𝑖 ≠ 𝑗)	in	the	weighted	penalty	matrix,	689	

if	𝑝!$ > 1,	an	extra	penalty	is	given	to	misclassifying	cells	from	cell	type	𝑗	to	cell	type	690	

𝑖.	If	𝑝!$ < 1,	a	partial	credit	is	given	to	misclassifying	cells	from	cell	type	𝑗	to	cell	type	691	

𝑖.	𝑝!$ = 1	means	no	penalty	or	partial	credit.	In	hierarchical	classification,	the	692	

weighted	penalty	matrix	was	incorporated	to	the	confusion	matrix	by	element-wise	693	

multiplication	to	provide	a	weighted	confusion	matrix.	The	accuracy	of	the	weighted	694	

confusion	matrix	was	used	to	evaluate	the	fitness	of	candidate	gene	panels.		695	

	696	

Essentially,	the	weighted	penalty	matrix	can	be	constructed	arbitrarily	by	user’s	697	

preference.	In	this	study,	we	constructed	the	weighted	penalty	matrix	from	cell	type	698	

hierarchy.	First,	pairwise	distance	between	cell	types	was	calculated.	Specifically,	699	

average	expression	profile	of	each	cell	type	was	calculated	using	normalized	count	700	

by	taking	average	expression	of	all	cells	in	each	cell	type.	Top	1000	genes	with	701	

highest	standard	deviation	were	used	to	calculate	pairwise	Pearson	correlation	702	

coefficient.	One	minus	the	pairwise	Pearson	correlation	coefficient	was	used	as	703	
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pairwise	distance	between	cell	types.	Second,	the	pairwise	distance	matrix	was	704	

normalized	by	the	largest	distance	so	the	values	range	from	0	to	1.	Third,	the	705	

pairwise	distance	matrix	was	then	adjusted	based	on	cell	type	hierarchy.	706	

Specifically,	a	level	of	cell	type	annotation	was	selected	as	reference.	For	cell	types	707	

below	the	reference	level	that	are	from	the	same	cell	type	at	the	reference	level,	the	708	

pairwise	distance	(between	0	and	1)	between	them	was	kept	unchanged	to	reflect	709	

partial	credit	to	wrong	classifications	among	them.	For	cell	types	below	the	710	

reference	level	that	are	from	different	cell	types	at	the	reference	level,	the	pairwise	711	

distance	between	them	was	changed	to	a	user	defined	value	where	1	means	no	extra	712	

penalty	and	greater	than	1	means	extra	penalty.	In	this	study,	we	used	1	for	no	extra	713	

penalty	and	level	1	cell	type	annotation	was	used	as	reference.	Finally,	the	diagonal	714	

value	was	changed	to	1	to	reflect	no	extra	credit	to	correct	classifications.	This	715	

weighted	penalty	matrix	was	used	for	hierarchical	classification	in	our	study.					716	

	717	

Calculating	the	percentage	of	across	broad	cell	type	mistakes	over	all	mistakes	718	

We	performed	5	optimizations	with	flat	classification	and	hierarchical	classification	719	

for	all	three	datasets,	respectively.	Average	confusion	matrix	over	5	optimizations	720	

for	each	data	was	calculated.	After	that,	for	each	cell	type,	we	counted	the	total	721	

number	of	misclassifications	and	among	all	the	misclassifications,	what	proportion	722	

of	them	misclassifies	cells	to	cell	types	at	level	2	that	don’t	belong	to	the	same	cell	723	

type	at	level	1.	724	

	725	

Gene	panel	selection	using	RankCorr	and	scGeneFit	726	
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The	same	scRNA-seq	data	from	the	three	datasets	after	filtering	were	used	as	input.	727	

For	RankCorr,	raw	scRNA-seq	data	before	normalization	was	used	as	suggested.	The	728	

lamb	parameter	was	tuned	to	make	sure	the	output	marker	gene	list	has	200	genes.	729	

For	scGeneFit,	normalized	scRNA-seq	data	was	used	by	following	the	examples	on	730	

its	GitHub	page.	Panel	size	was	set	to	200.		731	

	732	

Evaluation	of	optimized	gene	panel	733	

To	evaluate	optimized	gene	panels,	we	first	simulated	spatial	transcriptomics	734	

measurements	with	platform	effects	based	on	the	gene	panel’s	expression	profile	in	735	

scRNA-seq	data.	Then	this	simulated	spatial	transcriptomics	data	was	split	into	736	

training	and	testing	data.	The	training	data	contains	cells	from	a	subset	of	cell	types	737	

whose	cell	type	labels	are	known.		This	was	used	as	the	partial	annotation	of	the	738	

simulated	spatial	transcriptomics	data.	The	testing	data	contains	cells	from	all	cell	739	

types	(excluding	cells	in	the	training	data),	which	is	considered	as	part	of	the	740	

simulated	spatial	transcriptomics	data	that	hasn’t	been	annotated	yet.	We	varied	the	741	

number	of	cell	types	in	the	training	data	from	zero	to	all	the	cell	types	to	reflect	742	

different	levels	of	partial	annotation.	When	there	was	no	partial	annotation,	scRNA-743	

seq	data	was	used	as	the	final	training	data	for	classifier	training.	When	there	was	744	

partial	annotation,	information	in	the	partial	annotation	was	included	in	the	final	745	

training	data.	After	that,	a	classifier	(naïve	Bayes	or	random	forest)	was	trained	746	

using	the	final	training	data	and	applied	on	the	testing	data	for	cell	type	747	

classification	evaluation.	Since	the	testing	data	was	simulated	from	scRNA-seq	data,	748	

the	cell	type	labels	in	scRNA-seq	data	were	used	as	ground	truth.	Classification	749	
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accuracy	was	used	as	the	metric	to	evaluate	a	gene	panel.	At	each	level	of	partial	750	

annotation,	we	repeated	the	same	calculation	10	times.		To	separately	evaluate	the	751	

impact	of	platform	effects	on	gene	panel	selection	and	cell	type	classification,	within	752	

the	same	framework	described	here,	we	designed	two	different	strategies	to	753	

evaluate	a	gene	panel	by	varying	whether	platform	effect	distortions	that	can	be	754	

learned	from	partial	annotation	examples	are	used	to	produce	more	realistic	755	

training	data	for	cell	type	classification.		756	

	757	

Evaluation	with	platform	effect	re-estimation	758	

This	evaluation	strategy	was	designed	to	focus	on	the	performance	of	the	optimized	759	

gene	panels,	and	not	on	the	differences	in	the	cell	type	classification	(evaluation)	760	

stage.	In	this	strategy,	partial	annotation	was	first	used	to	estimate	gene	specific	761	

platform	effects	using	the	Bayesian	model.	We	then	used	these	estimated	gene	762	

specific	platform	effects	to	simulate	an	updated	spatial	transcriptomics	training	763	

data,	which	will	be	combined	with	the	partially	annotated	spatial	transcriptomics	764	

data	and	then	used	for	training	cell	type	classifiers	for	all	the	methods	being	765	

evaluated.		Only	cell	types	not	already	available	in	the	partially	annotated	spatial	766	

transcriptomics	data	were	simulated.	When	partial	annotation	was	available	for	5	or	767	

fewer	cell	types,	the	final	training	data	combined	the	partially	annotated	and	768	

simulated	spatial	transcriptomics	training	data	with	scRNA-seq	data.	When	more	769	

than	5	cell	types	were	available,	training	was	performed	on	the	partially	annotated	770	

and	simulated	spatial	transcriptomics	training	data	only.	The	final	training	data	and	771	

testing	data	were	normalized	by	the	total	number	of	transcripts	within	each	cell	and	772	
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scaled	by	10000.	It	was	then	log	transformed	after	adding	1	pseudocount.	This	773	

normalized	training	and	testing	data	were	used	for	classifier	training	and	testing.		774	

	775	

Evaluation	without	platform	effect	re-estimation	776	

In	this	evaluation	strategy,	only	gpsFISH	is	able	to	make	use	of	the	platform	effects	777	

information	in	the	partial	annotation	(as	described	above).	All	the	other	methods	778	

used	the	partial	annotation	according	to	their	own	method	design.	Specifically,	for	779	

the	control	which	used	naïve	simulation	during	gene	panel	selection,	the	empirical	780	

cell	depth	distribution	of	the	complete	testing	data	was	used	to	simulate	a	spatial	781	

transcriptomics	training	data	without	platform	effect.	This	simulated	spatial	782	

transcriptomics	training	data	was	used	in	the	same	way	as	described	above	to	get	783	

the	final	training	data.	For	RankCorr,	scGeneFit,	and	the	random	panel,	since	the	784	

gene	selection	was	solely	based	on	scRNA-seq	data,	cells	in	the	partial	annotation	785	

were	directly	combined	with	the	scRNA-seq	data	of	cell	types	not	already	available	786	

in	the	partial	annotation.	The	combined	data	were	used	as	the	final	training	data.	787	

Same	normalization	was	performed	on	the	final	training	data	and	testing	data	788	

before	classifier	training	and	testing.		789	

	790	

Calculate	the	number	of	probes	for	each	gene	for	the	DARTFISH	data	791	

During	the	generation	of	the	DARTFISH	data,	ppDesigner	[68]	was	used	to	calculate	792	

the	number	of	probes	that	can	be	designed	to	target	each	gene.	793	

	794	
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Figure	1	Platform	effect	between	scRNA-seq	and	targeted	spatial	transcriptomics	
technologies.	
A-C:	
Scatter	plot	showing	the	log	transformed	relative	expression	of	genes	measured	by	
both	scRNA-seq	and	targeted	spatial	transcriptomics	across	three	datasets,	Moffit	
(A),	Codeluppi	(B),	and	Zhang	(C),	respectively.	A	small	value	is	added	to	avoid	
negative	infinity	after	log	transformation.	Each	dot	represents	the	relative	
expression	of	one	gene	in	one	cell	type.	Denominator	for	relative	expression	
calculation	is	from	all	genes	measured	by	both	technologies.	Color	indicates	density	
of	dots.	Dots	should	fall	on	the	diagonal	when	there	is	no	platform	effect.	
D:	
Density	plot	of	Deming	regression	coefficient	for	each	dataset.	Deming	regression	is	
fitted	for	each	gene	using	relative	expression	measured	by	scRNA-seq	and	spatial	
transcriptomics	data	with	intercept	fixed	to	0.	
E:	
Posterior	predictive	check	of	the	Bayesian	models	fitted	using	each	of	the	three	
datasets.	QQ	plot	showing	the	distribution	of	simulated	vs.	observed	spatial	
transcriptomics	measurements.		
F-G:	
Density	plot	showing	the	estimated	posterior	distribution	of	𝜎!	(F)	and	𝜎" 	(G).	
	
Figure	2:	Schematic	overview	of	gpsFISH.	
Upper	left,	an	scRNA-seq	dataset	with	cell	type	annotation	is	used	as	input.	Bottom,	
a	genetic	algorithm	framework	is	used	for	gene	panel	selection.	Platform	effects	are	
accounted	for	using	a	Bayesian	model.	Cell	type	hierarchy	can	also	be	incorporated.	
Upper	right,	output	includes	optimized	gene	panel	with	classification	statistics.			
	
Figure	3:	Gene	panel	selection	using	gpsFISH.	
A:	
UMAP	of	cells	based	on	the	mouse	hypothalamic	scRNA-seq	data	from	Moffit	dataset	
at	level	1	cell	type	annotation.	
B:	
Normalized	confusion	matrix	of	the	optimized	gene	panel	for	Moffit	dataset	at	level	
1	cell	type	annotation.		
C:	
AUC	for	each	cell	type	of	the	same	gene	panel.	
D-E:		
UMAP	of	cells	based	on	simulated	spatial	transcriptomics	measurements	with	
platform	effect	of	the	optimized	gene	panel	selected	with	(D)	and	without	
(E)considering	platform	effect	at	level	1	cell	type	annotation.		
	
Figure	4:	Comparison	between	gpsFISH	and	other	gene	selection	methods.	
A-B:	
Box	plot	showing	classification	accuracy	distribution	of	gene	panels	selected	by	5	
gene	panel	selection	methods	at	different	levels	of	partial	annotation.	The	result	is	
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based	on	the	Moffit	dataset	using	evaluation	with	(A)	and	without	(B)	platform	
effect	re-estimation.	Naïve	Bayes	is	used	as	classifier.	
C:		
Normalized	confusion	matrix	of	the	optimized	gene	panel	for	Moffit	dataset	at	level	
2	cell	type	annotation	with	dendrogram	showing	the	cell	type	hierarchy.	Diagonal	
values	of	the	confusion	matrix	are	removed	for	better	visualization	of	
misclassifications.			
	
Figure	5:	Redundancy	in	gene	space	across	independent	gene	panel	optimizations	
enables	incorporation	of	customized	preferences.	
A:		
Distribution	of	overlap	of	independent	gene	panels	across	10	optimizations	within	
each	platform	at	level	1	cell	type	annotation.		
B:	
Accuracy	of	optimized	gene	panels	without	vs.	with	gene	weight	across	10	
optimizations.		
C:	
Total	number	of	probes	of	optimized	gene	panels	without	vs.	with	gene	weight	
across	10	optimizations.		
	
Figure	6:	Gene	panel	selection	with	cell	type	hierarchy.	
A:	
Schematic	of	hierarchical	gene	selection	using	cell	type	hierarchy.	A	weighted	
penalty	matrix	is	constructed	using	cell	type	hierarchy	information	quantified	by	
pairwise	distance	between	cell	types.	Additional	penalty	can	be	specified	according	
to	the	cell	type	hierarchy.	The	weighted	penalty	matrix	is	then	multiplied	element-
wise	with	the	original	confusion	matrix	to	get	the	weighted	confusion	matrix	for	
fitness	evaluation.	
B:	
Original	(left)	vs.	weighted	(right)	confusion	matrix	of	the	same	optimized	gene	
panel	from	Moffit	dataset	at	level	2	cell	type	annotation	with	dendrogram	showing	
the	cell	type	hierarchy.	Diagonal	values	of	the	confusion	matrix	are	removed	for	
better	visualization	of	misclassifications.		
C-E:	
Percentage	of	across	broad	cell	type	(level	1)	misclassifications	over	all	
misclassifications	for	flat	vs.	hierarchical	classification	on	the	Moffit	(C),	Codeluppi	
(D),	and	Zhang	(E)	dataset.	Each	dot	represents	one	cell	type	with	dots	representing	
the	same	cell	type	connected.	Wilcoxon	paired	test	is	performed	between	the	
percentages	from	flat	vs.	hierarchical	classification	and	the	p	value	is	shown.	
	
Figure	S1:	Schematic	of	the	Bayesian	model	for	platform	effect	estimation.		
Circles	in	gray	represent	observed	variables.	Circles	in	green	correspond	to	platform	
effect	related	variables	to	be	estimated.		
	
Figure	S2:	Bayesian	model	captures	platform	effect	between	scRNA-seq	and	
targeted	spatial	transcriptomics	technologies.	
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A-C:	
Scatter	plot	showing	the	log	transformed	relative	expression	of	genes	measured	by	
scRNA-seq	vs.	simulated	spatial	transcriptomics	data	using	fitted	Bayesian	model	
for	Moffit	(A),	Codeluppi	(B),	and	Zhang	(C),	respectively.	
D-E:		
Density	plot	showing	the	estimated	posterior	distribution	of	𝜇!	(D)	and	𝜇" .	(E).	
	
Figure	S3:	Comparison	between	gpsFISH	and	other	gene	selection	methods	on	the	
Zhang	and	Codeluppi	dataset.		
Box	plot	showing	classification	accuracy	distribution	of	gene	panels	selected	by	5	
gene	panel	selection	methods	at	different	levels	of	partial	annotation.	(A)	Zhang	
dataset	using	evaluation	with	platform	effect	re-estimation.	(B)	Zhang	dataset	using	
evaluation	without	platform	effect	re-estimation.	(C)	Codeluppi	dataset	using	
evaluation	with	platform	effect	re-estimation.	(D)	Codeluppi	dataset	using	
evaluation	without	platform	effect	re-estimation.	Naïve	Bayes	is	used	as	classifier.		
	
Figure	S4:	Comparison	between	gpsFISH	and	other	gene	selection	methods	using	
random	forest	as	classifier.	
Box	plot	showing	classification	accuracy	distribution	of	gene	panels	selected	by	5	
gene	panel	selection	methods	at	different	levels	of	partial	annotation	for	the	three	
datasets	using	evaluation	with	(A-C)	and	without	(D-E)	platform	effect	re-
estimation.	Random	forest	is	used	as	classifier.	
	
Figure	S5:	High	redundancy	across	optimizations	using	gpsFISH.	
A-C:		
Bar	plot	showing	among	all	the	genes	selected	in	10	optimizations,	the	percentage	of	
them	that	are	included	in	1	to	10	optimized	panels	for	Moffit	(A),	Codeluppi	(B),	and	
Zhang	(C)	dataset	at	level	1	cell	type	annotation.		
D:		
Distribution	of	overlap	of	independent	gene	panels	across	10	optimizations	within	
each	platform	at	level	2	cell	type	annotation.		
	
Figure	S6:	Weighted	gene	panel	selection	based	on	probe	count	per	gene.		
A:		
Distribution	of	probe	count	per	gene	for	the	Zhang	dataset.		
B-C:		
Distribution	of	accuracy	(B)	and	total	number	of	probes	(C)	of	optimized	gene	
panels	from	optimization	without	and	with	gene	weight.	Optimization	without	gene	
weight	is	performed	10	times.	Optimization	with	gene	weight	is	performed	6	times,	
each	time	with	a	different	probe	count	cutoff	(no	cutoff,	5,	10,	15,	20,	30).		
	
Figure	S7:	Accuracy	of	optimized	gene	panels	using	flat	vs.	hierarchical	gene	
selection.	
A-C:		
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Distribution	of	accuracy	of	optimized	gene	panels	using	flat	vs.	hierarchical	gene	
selection	for	Moffit	(A),	Codeluppi	(B),	and	Zhang	(C),	respectively.	Both	flat	and	
hierarchical	gene	selection	are	performed	5	times.		
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Information of the Moffit, Codeluppi, and Zhang dataset

Dataset Moffit Codeluppi Zhang

Single-cell RNA sequencing platform

10X Genomics 
Chromium v2 & 
Illumina NextSeq500 Illumina HiSeq 2000

10X Genomics 
Chromium v3 & 
Illumina NovaSeq

Spatially resolved transcriptomics platform MERFISH osmFISH DARTFISH
Number of cell types in scRNA-seq at level 1 for 
gene panel selection 12 12 16
Number of cells in scRNA-seq at level 1 for gene 
panel selection 30370 2816 64693
Number of cell types in scRNA-seq at level 2 for 
gene panel selection 87 47 46
Number of cells in scRNA-seq at level 2 for gene 
panel selection 30370 2816 64693
Number of overlapping cell types at level 1 for 
platform effect estimation 9 11 7
Number of cells in scRNA-seq at level 1 for platform 
effect estimation 29760 2139 43261
Number of cells in spatial transcriptomics data at 
level 1 for platform effect estimation 417026 3127 1341
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Curated marker genes for the Zhang dataset
Curated

Subclass (Full Name)
Subclass 
Level 3

Subclass 
Level 1

Class Substructure Positive Markers Negative Markers
Degenerative State 
Upregulated

Degenerative 
Downregulated

Adaptive State Cycling State

Podocyte POD POD epithelial cells glomerulus
NPHS1, NPHS2, PTPRQ, 
CLIC5, NTNG1 CDKN1C, SPOCK2 PTPRQ

Parietal Epithelial Cell PEC PEC epithelial cells glomerulus CLDN1, VCAM1, CFH

Proximal Tubule Cell PT epithelial cells proximal tubules LRP2, CUBN, AQP1
CST3, HAVCR1, CLU, 
APOE, S100A6, B2M

ITGB8, CDH6, 
DCDC2, 
VCAM1, 
DLGAP1, 
HAVCR1, 
PLSCR1 MKI67, TOP2A

Proximal Tubule Epithelial Cell 
Segment 1 PT-S1 PT epithelial cells proximal tubules

SLC5A12, SLC22A6,SLC22A8, 
SLC5A2

Proximal Tubule Epithelial Cell 
Segment 2 PT-S2 PT epithelial cells proximal tubules SLC34A1, SLC22A7

Proximal Tubule Epithelial Cell 
Segment 3 PT-S3 PT epithelial cells proximal tubules

SLC5A11, MOGAT1, SLC22A7, 
SLC22A24, SLC7A13

Thin Limb Cell TL epithelial cells intermediate tubules CRYAB, TACSTD2, AKR1B1
Descending Thin Limb Cell Type 2 DTL2 DTL epithelial cells intermediate tubules AQP1, UNC5D CLDN10
Descending Thin Limb Cell Type 1 DTL1 DTL epithelial cells intermediate tubules ADGRL3, ID1 CLDN10, AQP1

Descending Thin Limb Cell Type 3 DTL3 DTL epithelial cells intermediate tubules
CLDN1, SH3GL3, SLC14A2, 
SMOC2 CLDN10, AQP2

Ascending Thin Limb Cell ATL ATL epithelial cells intermediate tubules
CLDN1, SH3GL3, CLDN10, 
PROX1

Thick Ascending Limb Cell TAL epithelial cells Distal tubules SLC12A1, CASR, UMOD, EGF UMOD, EGF

ITGB6, 
PROM1, CCL2, 
PLSCR1, 
DCDC2

Medullary Thick Ascending Limb 
Cell M-TAL TAL epithelial cells Distal tubules PROX1
Cortical Thick Ascending Limb Cell C-TAL TAL epithelial cells Distal tubules
Macula Densa Cell MD TAL epithelial cells Distal tubules NOS1, ROBO2 UMOD
Distal Convoluted Tubule Cell DCT epithelial cells Distal tubules Distal tubules

Distal Convoluted Tubule Cell Type 
1 DCT1 DCT epithelial cells Distal tubules

Distal Convoluted Tubule Cell Type 
2 DCT2 DCT epithelial cells Distal tubules SLC8A1
Connecting Tubule CNT epithelial cells Collecting tubules SLC8A1, HSD11B2, CALB1
Connecting Tubule Cell CNT CNT epithelial cells Collecting tubules
Connecting Tubule Principal Cell CNT-PC CNT epithelial cells Collecting tubules SCNN1G, SCNN1B
Principal Cell PC epithelial cells Collecting tubules AQP2, AQP3

Cortical Collecting Duct Principal 
Cell CCD-PC PC epithelial cells Collecting tubules SCNN1G, SCNN1B

Outer Medullary Collecting Duct 
Principal Cell OMCD-PC PC epithelial cells Collecting tubules SCNN1G, SCNN1B

Inner Medullary Collecting Duct Cell IMCD PC epithelial cells Collecting tubules SLC14A2, HS3ST5
Papillary Epithelial Cells PapE PC epithelial cells Collecting tubules TP63, KRT5
Intercalated Cell IC epithelial cells Collecting tubules ATP6V0D2

Cortical Collecting Duct 
Intercalated Cell Type A CCD-IC-A IC epithelial cells Collecting tubules SLC26A7, SLC4A1

Connecting Tubule Intercalated Cell 
Type A CNT-IC-A IC epithelial cells Collecting tubules SLC26A7, SLC4A1, SLC8A1

Outer Medullary Collecting Duct 
Intercalated Cell Type A

OMCD-IC-
A IC epithelial cells Collecting tubules SLC26A7, SLC4A1, KIT

Intercalated Beta Cell IC-B IC epithelial cells Collecting tubules SLC26A4, SLC4A9

Endothelial Cell EC endothelial cells vessels PECAM1, CD34

Glomerular Capillary Endothelial 
Cell EC-GC EC endothelial cells glomerulus EMCN, HECW2, PLAT, EHD3

Afferent / Efferent Arteriole 
Endothelial Cell EC-AEA EC endothelial cells vessels

BTNL9, PALMD, TM4SF1, 
SERPINE2, AQP1

Descending Vasa Recta Endothelial 
Cell EC-DVR EC endothelial cells vessels

BTNL9, PALMD, TM4SF1, 
SERPINE2, AQP1, SLC14A1

Peritubular Capilary Endothelial 
Cell EC-PTC EC endothelial cells vessels DNASE1L3, PLVAP

Ascending Vasa Recta Endothelial 
Cell EC-AVR EC endothelial cells vessels DNASE1L3, PLVAP, TLL1

PALMD, BTNL9, 
SLC14A1

Lymphatic Cell EC-LYM EC endothelial cells vessels PROX1, MMRN1

Vascular Smooth Muscle Cell and 
Pericyte VSM/P stroma cells interstitium PDGFRB, NOTCH3 TAGLN, ACTA2
Mesangial Cell MC VSM/P stroma cells glomerulus POSTN, PIEZO2, ITGA8

Renin-positive Juxtaglomerular 
Granular Cell REN VSM/P stroma cells interstitium REN
Vascular Smooth Muscle Cell VSMC VSM/P stroma cells interstitium MYH11, MCAM

Vascular Smooth Muscle Cell / 
Pericyte VSMC/P VSM/P stroma cells interstitium

Fibroblast FIB stroma cells interstitium C7, DCN, COL1A1, PDGFRA
FLRT2, FGF14, 
IGF1

Fibroblast FIB FIB stroma cells stroma cells MEG3, LAMA2
Medullary Fibroblast M-FIB FIB stroma cells interstitium SYT1, TNC

Myofibroblast MyoF FIB stroma cells interstitium
FAP, ACTA2, TAGLN, POSTN, 
GLI2, COL5A1

Immune Cells IMM immune cells interstitium PTPRC
B Cell B IMM immune cells interstitium MS4A1, BANK1
Plasma Cell PL IMM immune cells interstitium IGKC, MZB1
T Cell T IMM immune cells interstitium CD3E, CD4
Natural Killer T Cell NKT IMM immune cells intrrstitium NKG7, GNLY, CD96, RUNX3
Mast Cell MAST IMM immune cells interstitium MS4A2, CPA3, KIT IL3RA
M2 Macrophage MAC-M2 IMM immune cells interstitium CD163, F13A1, MRC1, CD14
Classical Dendritic Cell cDC IMM immune cells interstitium ITGAX, FLT3 CD14
Plasmacytoid Dendritic Cell pDC IMM immune cells interstitium IL3RA, FLT3 CD14
Non-Classical Monocyte ncMON IMM immune cells interstitium FCN1, HLA-DRA, FCGR3A

Neutrophil NC IMM immune cells interstitium
S100A8, S100A9, IFITM2, 
FCGR3B

Schwann Cell / Neural SC/NEU NEU neural like cells interstitium CDH19, NRXN1, PLP1, S100B
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