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Abstract. Linkage group XIX (also known as the UNI 
linkage group) in the green alga, Chlamydomonas 
reinhardtii, exhibits a number of unusual properties 
that have lead to the suggestion that it represents a 
basal body-associated chromosome. To begin a molec- 
ular analysis of this linkage group, we have identified 
DNA sequences from it and used them to determine 
the copy number of linkage group XIX within the cell. 

We find that linkage group XIX is present in the same 
copy number per cell as nuclear linkage groups in 
both haploid and diploid strains. We also find that the 
copy number of linkage group XIX is unchanged in 
mutants lacking basal bodies. We conclude that there 
is no convincing evidence that linkage group XIX 
localizes to the basal bodies of Chlamydomonas rein- 
hardtii cells. 

C 
ENTRIOLES are cylindrical organelles composed of 
triplet arrays of microtubules. They are found at the 
mitotic poles of dividing cells or adjacent to the nu- 

cleus in interphase cells. They can also be found at the prox- 
imal ends of flagella as basal bodies, where they are required 
for flagellar assembly. Apart from this, both their function 
and their mode of replication are unknown and the subject 
of some controversy (for reviews see Fulton, 1971; Vorobjev 
and Nadezhdina, 1987). 

The premise that basal bodies and centrioles are at least 
in part genetically autonomous organelles has been advanced 
almost since their discovery. The belief is based on two 
aspects of their behavior through the cell cycle. First, centri- 
oles and basal bodies usually exist in pairs, and new centri- 
oles appear to form adjacent to preexisting centrioles. Sec- 
ond, centrioles appear to duplicate just before nuclear 
division. These two properties suggested that centrioles con- 
trol their own duplication, and therefore, could be partially 
genetically autonomous as well. 

Conflicting views hold that there is no compelling evidence 
to regard centrioles as genetically independent organelles. 
Pickett-Heaps (1971) argued that their observed distribution 
simply reflects an efficient mechanism whereby the cell can 
partition centrioles at mitosis. In this model no genetic au- 
tonomy is necessary to explain centriolar replication. Con- 
sistent with this interpretation are the observations of de 
novo centriolar formation in many organisms. Naegleria, for 
example, lack centrioles during the amoeboid phase of their 
life cycle, but generate them during the transition to the 
flagellated phase (Fulton and Dingle, 1971). Similarly, no 
centrioles are detectable in early mouse embryos until the 
blastocyst stage (Calarco-Gillam et al., 1983). These exam- 
ples suggest that the genetic information necessary for cen- 
triole formation is extrinsic to the assembled organelle. 

The possibility that the centrioles, like mitochondria and 

chloroplasts, contain a distinct genetic entity has spurred 
numerous attempts to identify nucleic acids in centrioles and 
basal bodies. These studies have been at best inconclusive 
(reviewed by Fulton, 1971). Several workers report finding 
DNA or RNA, but such results have been difficult to evaluate 
because of problems with the purity of the preparations, the 
specificity of the signal observed, the sensitivity of the 
methods used, and the reproducibility of the studies (Hart- 
man et al., 1974; Heidemann et al., 1975; for additional 
references see Fulton, 1971). 

Recently, interest in the question of centriolar autonomy 
has risen anew, resulting from investigations of the single- 
celled, bi-flagellated green alga, Chlamydomonas reinhard- 
tii. Its basal bodies have been well described (Ringo, 1967; 
Johnson and Porter, 1968; Cavalier-Smith, 1974; Coss, 
1974; Treimer and Brown, 1974; Gould, 1975). Many muta- 
tions have been identified that affect flagellar assembly and 
function, and several of these appear to act at the level of the 
basal body (Huang et al., 1982; Dutcher, 1986). One of 
these, the bald2 mutation, results in the lack of any detect- 
able basal bodies in >98 % of mutant cells examined (Good- 
enough and St. Clair, 1975). Genetic analyses have led to the 
discovery of a linkage group, linkage group XIX or the UNI 
linkage group, with three unusual properties (Ramanis and 
Luck, 1986; Dutcher, 1986). First, genetic analysis of this 
linkage group generates a meiotically circular map. Second, 
nearly all loci mapping to this linkage group affect micro- 
tubule-based processes. Finally, recombination between loci 
on this linkage group, but not between loci on other linkage 
groups, has a temperature-sensitive period early in zygotic 
maturation. An attractive hypothesis is that this linkage group 
is localized within the basal body. 

Testing this hypothesis has required isolating DNA se- 
quences from the chromosome corresponding to this linkage 
group. Hall et al. (1989) have reported that DNA sequences 

© The Rockefeller University Press, 0021-9525/91/04/339/8 $2.00 
The Journal of Cell Biology, Volume 113, Number 2, April 1991 339-346 339 



from linkage group XIX identify a 6-9-megabase linear 
chromosome that localizes to each of the two basal bodies, 
but not to the nucleus, of Ch/amydomonas reinhardtii cells. 
We have independently begun a molecular analysis of link- 
age group XIX and have found that linkage group XIX is 
present in the same copy number as nuclear linkage groups. 
We argue that this contradicts the assignment of a basal body 
location for this linkage group. 

Materials and Methods 

Chlamydomonas Strains, Growth Conditions, 
and Genetics 
Chlamydomonas reinhardtii strains used included CC-125 (Harris, 1989), 
CC-1952 (Gross et al., 1988), and strains carrying the following mutations 
and associated phenotypes. The pflO mutation causes cells to pellet in low 
light (Randall and Starling, 1971; Dutcber et ai., 1988). fla/0 mutants are 
flagellated and motile at 21"C but aflagellated after 24 h at 32"C (Hnang 
et al., 1977; Adams et al., 1982). Mutations at the apm/locus confer resis- 
tance to a variety of microtubule inhibitors (James et ai., 1988). The apm/ 
allele used in this study, apml-lll, was isolated in a Chlaraydomonas rein- 
hardt/i strain CC-125 background (Lux and Dutcher, 1991), and was scored 
by testing for growth on 15 t~M oryzalin. The ba/d2 strain used in this study 
was an aitagellate segregant from a cross between the original bald2 isolate 
( ~ e n o u g h  and St. Clair, 1975) and CC-125. This cross was performed 
using the method of Pasquale and Goodenough (1987). Diploid strains were 
provided by F. Lux and had been constructed using complementing arginine 
markers by the method of Ebersold (1967). Diploid strain A was constructed 
from arg2 flalO-1 act2 mtP (plus A) and arg7 flalO-1 mtM (minus A) parents. 
Diploid strain B was constructed from arg7flalO-1 ratP (plus B) and arg2 
mtM (minus B) parents. 

Some Chlamydomonas reinhardtii strains were stored frozen at -70"C 
after growth to high density in liquid media, concentration to one-fifth to 
one-tenth their original volume, and din-_ethyl sulfoxide to 7% (vol/vol) 
added. Details of this procedure will be published elsewhere. Ch/amydo- 
monas reinhardtii cells were grown in medium I as described by Sager and 
Granick (1953) with the modification of Dutcher et al. (1988). Genetic tech- 
niques were carried out as described by Levine and Eversuld (I960). 
Genetic linkage was determined using the method of Perkins (1952). 

DNA Manipulations 
Isolation of Chlamydomonas reinhardtii DNA. Chlamydomonas rein- 
hardt/i DNA was isolated using modifications of a procedure provided by 
Dr. Curtis Wilkerson (Rockefeller University, New York). Cells were re- 
suspended in ddH20 and mixed with 4 vol of a solution containing 5 % 
SDS, 10 mM Tris-Cl pH 7.6, 20 mM EDTA, and 1 mg/ml pronase E (Sigma 
Chemical Co., St. Louis, MO). After overnight incubation at 500C, one- 
fifth volume 5 M ammonium acetate was added, the lysate was extracted 
with an equal volume of phenol/chloroform (50:50), and the aqueous phase 
was mixed with an equal volume of isopropanol. The precipitate was re- 
suspended in a solution containing 10 mM Tris-C1 pH 7.6, 10 mM EDTA, 
and 5/~g/ml RNase A and digested for a minimum of I h at 37"C. The DNA 
was then reextracted with phenol/chloroform (50:50), precipitated with 
isopropnnol, and resuspended in 10 mM Tris-Cl pH 8.0, 1 mM EDTA. 

Hybridization Conditions. Genomic DNA was digested with the restric- 
tion enzymes indicated in the text and then deetrophoresed through 0.8% 
agarose gels prepared in Tris-phosphate-EDTA buffer (Maniatis et al., 
1982). The DNA was then transferred to Zetaprobe (Bio-Rad Laboratories, 
Richmond, CA) membranes in 10× SSC (Ix SSC: 0.15 M NaCl, 0.15 M 
NaCitrate) following denaturation in 0.5 M NaOH-I.5 M NaCI. Filters 
were prehybridized in 2× SSPE (Ix SSPE: 0.18M NaCI, 10 mM sodium 
phosphate pH 7.6, 1 mM EDTA) 0.2% SDS, 0.5 mg/mi heparin (Singh and 
Jones, 1984), and 0.3 mg/ml denatured salmon sperm DNA. Hybridizations 
were carried out with oligo-nucleotide-labeled probes (Feinberg and Vogel- 
stein, 1984) for at least 16 h in 2× SSPE, 0.2% SDS, 0.5 mg/ml heparin 
and 5-10% dextran sulfate. After hybridization filters were washed once for 
5 min in 2x SSC, 0.1% SDS, and then for 90 rain in 0.2x SSC, 0.1% SDS 
at 65"C with three wash changes. Filters were exposed to Kodak XRP 
x ray film. 

Isolation of a DNA Hybridization Probe from the Gulliver H Element. 
A DNA probe for the Gulliver H element was isolated from the plasmid 
pGUllH, derived from the phage hTcL26 (obtained from Patrick Ferris, 
Washington University, St. Louis, MO). This phage contains the left end 
of the Gulliver dement copy H and ,v4.5 kb of flanking genomic sequences. 
A 2.5-kb fragment defined by an internal EcoRl site 700 bp from the termi- 
nus of the element and a HindllI site in the flanking genomic DNA was iso- 
lated and ligated to EcoRI-HindlH-digested pGEM7Z (Promega Biotec, 
Madison, WI). The resulting plasmid was named pGullH. A probe specific 
for Gulliver sequences was isolated by digesting pGullH with EcoRI and 
BglI, which cuts internally in the element 40 bp from the terminus, and 
isolating the relevant 600-bp fragment. 

AMBIS Quantitations 
Filters were scanned for 6-16 h on an AMBIS Radioanaiytic Imaging Sys- 
tem (AMBIS Systems, San Diego, CA). Individual lanes were then traced, 
and peaks corresponding to each band identified and quantified. The base 
of each peak was omitted using the multilevel background procedure recom- 
mended by the manufacturer. 

Results 

Identification of DNA Sequences from 
Linkage Group XIX 
We identified DNA sequences that map to linkage group 
XIX by comparing restriction fragment length polymor- 
phism patterns among three types of Chlamydomonas rein- 
hardtii strains: CC-125, CC-1952, and the 18000 series of 
congenic strains. The first two strains are highly polymor- 
phic in nucleotide sequence (Gross et al., 1988). The 18000 
series carry small regions of CC-125 DNA in genetic back- 
grounds that are otherwise composed mainly of CC-1952 
DNA; we refer to these as congenic strains (Ruvkun et al., 
1989). The congenic strains were constructed by crossing 
CC-125 strains carrying mutations in two linkage group XIX 
genes to CC-1952 (Fig. 1). Progeny that retained the linkage 
group X.IX markers were identified and crossed again to CC- 
1952. In addition to the regions on linkage group XIX, two 
other regions of the CC-125 strain were unavoidably retained 
inthe congenic strains. First, the CC-1952 strain carries the 
mating-type minus allele. Because mating requires opposite 
mating-types, the mating-type plus allele from the CC-125 
parent was selected in each generation. Second, the CC-1952 
isolate contains a recessive meiotic mutation that we have 
designated ger2. Diploid zygotes homozygous for this muta- 
tion fail to germinate, Therefore, germinating zygotes must 
carry the CC-125 GER2 allele as well as the CC-125 mating- 
type plus allele. These CC-125 genes and surrounding DNA 
will be present in one-half of the resulting progeny after each 
cross. 

After four rounds of crosses to the CC-1952 parent, ap- 
proximately 15/16 of the nonselected genome in the congenic 
strain was, on average, derived from the CC-1952 parent. 
The 1/16 of the nonselected genome remaining from the CC- 
125 parent was predicted to be present at random locations, 
which should differ in independently derived congenic 
strains. CC-125 DNA sequences should be present near CC- 
125 markers retained in the construction of the congenic 
strains. Therefore, a DNA sequence identifying a CC-125 
RFLP in several independent congenic strains is likely to be 
linked to a selected marker. Establishing congenic strains 
enables one to identify quickly RFLPS linked to loci of in- 
terest, especially when independent congenic strains are 
generated. For example, the chance of seeing a CC-125 
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Figure 1. Construction of congenic lines. Congenic strains were 
constructed following the schematic procedure outlined above. 
Thick and thin lines represent linkage groups from the CC-125 and 
CC-1952 parents, respectively. In this example, congenic strains 
were constructed with the apml andfla/0 mutant alleles. Repeated 
crosses of spores with the mating-type plus, GER2, and CC-125 
linkage group XIX mutant alleles to CC-1952 led to the replace- 
ment of CC-125 DNA sequences with CC-1952 sequences in re- 
gions not closely linked to the selected markers. In-this map the 
region of the map between the apml andflalO loci is shown as being 
derived from the CC-125 parent. For this region to contain CC-1952 
DNA, a double exchange would have had to occur between the 
selected CC-125 loci. This is unlikely, because the ape1 andflalO 
loci are sufficiently close to each other that double exchange events 
are unlikely to occur (Dutcher, 1986; James et al., 1988). Congenic 
strains were also established by repeatedly selecting for either the 
apml and pflO mutant alleles, or thefla/0 and pflO mutant alleles. 

RFLP pattern from a region unlinked to the selected markers 
in three independently derived fourth generation congenic 
strains is ((1/2)4) 3, or 1 in 4,096. 

We examined the congenic strains for copies of two previ- 
ously described Chlamydomonas reinhardtii transposons, 
TOC1 (Day et al., 1988) and Gulliver (Ferris, 1989). Both 
elements are present in multiple copies in CC-125. In CC- 
1952, TOC1 is present in low copy number and Gulliver is 
absent. Only one congenic strain out of four independent 
strains examined contained a TOC1 element from the CC- 
125 parent (data not shown). We did, however, find several 
copies of the Gulliver sequence in fourth and fifth generation 
congenic strains. A representative hybridization pattern of 
Gulliver probes to DNA isolated from the CCA25 strain and 
congenic strains is shown in Fig. 2. The congenic strains 
shown are 18200, which carries the apml andpflO mutations; 
18303, a fourth generation congenic strain which carries 
apml and flalO mutations; and 18475, a fourth generation 
strain, which carries the pflO and fla/0 mutations. Gulliver 

bTgure 2. Hybridization pattern 
of Gulliver elements in con- 
genie lines. DNA was isolated 
from the CC-125 parent and 
three congenic strains, and di- 
gested with HindIIl. Alter elec- 
trophoresis through a 0.8% age- 
rose gel, the DNA was trans- 
ferred to a nylon membrane 
and hybridized to a 700-bp 
EcoRI-BglI fragment from the 
Gulliver element H. The result- 
ing autoradiogram is shown. 
Bands G through N are la- 
beled as described by Ferris 
(1989), while bands of higher 
molecular weight than this may 
correspond to different bands. 

elements C and K were found in 3 and 5 of 13 independent 
congenic strains examined, respectively. The Gulliver ele- 
ment G was found in three congenic strains carrying the 
apml and pflO mutations and in two strains carrying the 
apml and flalO mutations. The five strains had been sepa- 
rated from each other for a total of 19 generations; therefore, 
the chance of element G residing in a nonselected CC-125 
region of the congenic strains is (1/2) 19. Similarly, Gulliver 
element H was found in two strains carrying the flalO and 
apml mutations, and in eight strains carrying the pflO and 
flalO mutations. The chance of obtaining this pattern in these 
10 strains for an unlinked CC-125 sequence is (112) 31 . ThUS,  

copies of Gulliver elements C, G, H, and K are linked to loci 
on linkage group XIX or to another selected CC-125 region 
in the congenic strains. 

To determine which selected regions from CC-125 contain 
the Gulliver elements, the Gulliver elements were scored as 
genetic markers in crosses between CC-125 strains carrying 
mutations from linkage group XIX and the CC-1952 strain. 
The resulting tetrad analysis is shown in Table 1. We found 
that elements C and K are unlinked to linkage group XIX 
markers. They are linked to the GER2 locus. In 20 out of 22 
random spores the Gulliver element K cosegregated with the 
GER2 allele (data not shown). The remaining two elements, 
G and H, map to linkage group XIX (Table I). Gulliver ele- 

Table L Tetrad Mapping of DNA Sequences to Linkage 
Group XIX 

apml flalO pflO Gulliver G Gulliver H 

Gu l l i ve r  G 11:0:3 3 :0 :20  0 : 0 : 1 4  - 5 :0 :20  
Gu l l i ve r  H 2 :0 :14  21 :0 :15  18:0:8 - - 

Linkage of Gulliver element G, and Gulliver element H to linkage group XIX 
loci ape1, pflO, and flalO was determined by assessing the segregation of 
these loci in crosses of CC-125 strains carrying two linkage group XIX muta- 
tions to CC-1952 strains. CC-125 parents in the crosses carried either the ape1 
and flalO mutations, the flalO and pflO mutations, or the pflO and ape1 muta- 
tions. The number of parental ditype (PD), nonparental ditype (NPD), and 
tetratype (T) tetrads is shown (PD:NPD:T). Gulliver elements C and K were 
found to be unlinked to linkage group XIX markers (element C to ape1 : 0:3:7, 
and element K to ape1 : 0:3:6). By X2 tests, Gulliver element G and Gulliver 
element H show linkage to at least one other locus on linkage group XIX 
(P  = 0.01). 
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linkage groups were compared within the same DNA sample 
using the same probe. The choice of the appropriate probe 
in this experiment is crucial because it is possible to underes- 
timate the copy number of linkage group XIX if Gulliver ele- 
ments from linkage group XIX do not hybridize to the probe 
sequence as well as Gulliver elements that reside on other 
linkage groups. To avoid this problem, we used a probe de- 
rived from the Gulliver H element, which maps to linkage 
group XIX. The use of a probe from this element ensured 
that hybridization to at least one of the elements on linkage 
group XIX was not underestimated if sequences in the probe 
have diverged from other Gulliver elements. 

We first established that a twofold difference in hybridiza- 
tion intensity between Gulliver elements could be detected. 
To determine whether our conditions were sufficiently sensi- 
tive, we compared the signal intensities of Gulliver elements 

Figure 3. Hybridization pattern of Gulliver elements in haploid and 
diploid strains. DNA was isolated from two diploid strains, diploid 
A and diploid B, and from the haploid strains used to construct 
them (plus A and minus A, and plus B and minus B, respectively). 
The Gulliver hybridization pattern was then determined as de- 
scribed in the legend to Fig. 2. The resulting autoradiogram is 
shown. The minus A parent lacks Gulliver elements M and N, 
while the plus A parent lacks Gulliver element F. The minus B par- 
ent lacks elements N and F, and the plus B parent lacks element 
M. Gulliver elements G and H map to linkage group XIX. 

ment G maps 11 centiMorgans from the apml locus, and 
Gulliver element H maps 15 centiMorgans from the pflO 
locus. 

Linkage Group XIX Is Present in the Same Copy 
Number as Nuclear Linkage Groups 

Hall et al. (1989) have proposed that linkage group XIX is 
located within the basal bodies themselves and acts as a basal 
body-associated genome. A simple test for establishing 
whether linkage group XIX represents a basal body chromo- 
some is to determine its copy number in the cell relative to 
nuclear linkage groups. If  each basal body contains a copy 
of linkage group XIX, then haploid cells will contain at least 
two copies of DNA from this linkage group. Alternatively, 
if linkage group XIX DNA resides in the nucleus, then its 
copy number should be the same as other nuclear linkage 
groups in both haploid and diploid strains. To distinguish be- 
tween these hypotheses requires an assay that is sensitive 
enough to distinguish a twofold difference in copy number 
between DNA sequences on different chromosomes. 

The presence of Gulliver elements on linkage group XIX, 
as well as on other linkage groups in strain CC-125 (Ferris, 
1989), makes this analysis straightforward. By comparing 
the relative hybridization intensity of Gulliver elements on 
linkage group XIX to the hybridization intensity of Gulliver 
elements that reside on other linkage groups, we could deter- 
mine directly the copy number of linkage group XIX. In this 
way, the relative amounts of DNA sequences from different 
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Figure 4. AMBIS scanning profiles of Gulliver hybridization pat- 
terns in haploid and diploid strains. To determine the relative hy- 
bridization intensity of each Gulliver band, the filter that generated 
the autoradiogram in Fig. 3 was scanned with an AMBIS Radioana- 
lytic Imaging System. Representative scans of the filter containing 
DNA from the diploid B strain and its two haploid parents are 
shown. The arrows indicate the peaks that correspond to each Gul- 
liver band. 
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Table II. Relative Intensities of Representative Gulliver Elements 

Set A Set B 
Elements 
compared Minus A Plus A Diploid A Minus B Plus B Diploid B 

G/E ND 0.86 + 0.1 ND 0.98 + 0.2 ND ND 
H/J 0.86 + 0.1 1.05 + 0.2 1.08 + 0.1 1.10 + 0.2 1.06 + 0.2 1.06 + 0.03 
M/L ND 0.92 + 0.3 0.40 + 0.1 0.88 + 0.3 ND 0.46 + 0.1 
N/L ND 0.80 + 0.2 0.23 + 0.1 ND 0.93 + 0.2 0.43 + 0.1 

The number of counts corresponding to the indicated Gulliver elements was determined using an AMBIS Redioanalytic Imaging System, and the relative signal 
of different elements is expressed as a ratio. The ratio represents the mean from four trials. The error represents one standard deviation from the mean. The ratio 
of Gulliver element G to element E was only determined in strains lacking element F, which comigrates with element E. The ratio of Gulliver element M to L 
and of Gulliver element N to L could not be determined in the haploid strains lacking M or N. 

M or N to Gulliver element L in two different diploid strains 
and in the haploid strains used for their construction. In 
these strains, elements M and N were present in only one of 
the haploid parents, while element L was present in all 
haploid parents. Thus, the ratio of M to L, and of N to L, 
in a diploid strain should be one-half that observed in a 
haploid strain. The relatively lower hybridization intensity 
of Gulliver element M and N in diploid strains is evident 
from the autoradiogram (Fig. 3). 

To confirm independently that a twofold difference in hy- 
bridization intensity could be detected, the experiment 
shown in Fig. 3 was repeated three additional times. For each 
trial, the filter was scanned with an AMBIS Radioanalytic 
Imaging System and the signal corresponding to each Gul- 
liver element quantified. A profile of the gel in Fig. 3 that 
contains the diploid B strain and its two parents is shown in 
Fig. 4. The areas of the peaks corresponding to elements M 
or N, compared to the peak for element L, are markedly 
lower in the diploid strain compared to the same peaks in 
haploid parents. The twofold drop in hybridization intensity 
is further illustrated in Table II. For the diploid A strain, the 
ratio of Gulliver element M signal to that of element L was 
0.40 + 0.1, while the M to L ratio in the mating-type plus 
A parent was 0.92 + 0.3. A similar twofold drop was ob- 
served in the M to L ratio in the diploid B strain relative to 
the haploid mating-type minus B parent. The signal ratio 
corresponding to element N relative to that of element L also 
decreased by one-half in both diploid strains relative to their 
mating-type plus parents. We concluded that our conditions 
were sensitive enough to detect a twofold difference in rela- 
tive hybridization intensity. 

The relative copy number of linkage group XIX was then 
determined by comparing the hybridization of Gulliver ele- 
ments from linkage group XIX to Gulliver elements from 
other linkage groups that exhibited similar gel mobilities. 
We compared the relative signal intensity of element H, 
which maps to linkage group XIX, to element J, which maps 
to linkage group VI (Ferris, 1989). Similarly, we compared 
the relative hybridization intensity of element G to element 
E in the mating-type plus A parent and in the mating-type 
minus B parent. These strains lack element F, which comi- 
grates with element E (Fig. 3). The hybridization signal ob- 
served to elements G and H was no stronger than that ob- 
served to Gulliver elements E and J, respectively (Fig. 3; 
Table 1I). For element G, the hybridization relative to ele- 
ment E was 0.86 + 0.1 in the mating-type plus A strain and 
0.98 + 0.2 for the mating-type minus B strain. Gulliver ele- 
ments H and J show nearly identical hybridization efficien- 

cies in all strains examined, including both haploid and 
diploid strains (Table II). We concluded that linkage group 
XIX is present in the same copy number per cell as other 
linkage groups in both haploid and diploid ceils. 

We also examined the relative copy number of Gulliver 
elements in strains with a mutation that affects basal body 
number. One such mutation is bald2, in which over 98% of 
cells lack any structures resembling basal bodies (Good- 
enough and St. Clair, 1975). We isolated DNA from the 
baM2 mutant strains and examined the Gulliver hybridiza- 
tion pattern (Fig. 5). In this experiment we included a lane 
containing DNA from the diploid A parent. The reduced hy- 

b~gure 5. Hybridization pattern 
of Gulliver elements in bald2 
strains. DNA was isolated from 
the diploid A parent and a 
strain carrying the bald2 mu- 
tation. The Gulliver hybridiza- 
tion patterns were determined 
as described in the Fig. 2 
legend. 
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bridization intensities of Gulliver elements M and N relative 
to Gulliver element L in the diploid A lane demonstrate that 
a twofold decrease in hybridization intensity would have 
been easily detectable under the conditions used. We found 
that the hybridization intensity of Gulliver elements G and 
H was the same in bald2 mutant strains as in wild-type 
strains. Therefore, we conclude that the copy number of link- 
age group XIX is unchanged in this mutant strain, despite 
the absence of basal bodies in >98 % of the cells. 

We also examined the relative copy number of linkage 
group XIX in strains that carry the vfl2 mutation. The vfl 
phenotype is characterized by cells carrying a variable num- 
ber of flageUa per cell. Therefore, these cells carry a variable 
number of basal bodies as well. Populations of cells that carry 
the vfl2 mutation carry from zero to six flagella per cell, al- 
though <15 % of the cells in a population carry more than two 
flagella (Kuchka and Jarvik, 1982). We found no change in 
the relative hybridization intensities of Gulliver elements G 
and H in DNA isolated from cells with the vfl2 mutation 
(data not shown). Because most cells in a population have 
zero, one, or two flagella, however, the average number of 
flagella per cell using the distributions reported by Kuchka 
and Jarvik (1982) is between one and two per cell. Thus, the 
result obtained with DNA isolated from cells carrying the 
vfl2 mutation do not distinguish between a basal body loca- 
tion for linkage group XIX or a nuclear location. 

Discussion 

To understand the physical basis for some of the unusual 
genetic properties of linkage group XIX in Chlamydomonas 
reinhardtii, we have initiated a molecular analysis of this 
chromosome. We report the isolation of DNA sequences 
from this linkage group and their use in determining its copy 
number in the cell. By carefully determining its copy number 
relative to nuclear linkage groups, we can make inferences 
about its cellular location. The simplest explanation for our 
data is that linkage group XIX corresponds to a nuclear 
chromosome. This is consistent with our finding that its copy 
number is the same as nuclear linkage groups in both haploid 
and diploid ceils. In addition, a nuclear location for this link- 
age group agrees with our observation that the copy number 
of linkage group XIX does not change in cells that lack basal 
bodies. 

An alternative model, which is not excluded by our data, 
is that linkage group XIX normally localizes to only one of 
the two basal bodies in haploid cells. In diploid cells, which 
also contain two basal bodies, our data do not distinguish be- 
tween a model in which two copies of linkage group XIX re- 
side in one basal body, or a model in which one copy of link- 
age group XIX would be found in each basal body. In cells 
lacking basal bodies, such as those carrying the baM2 muta- 
tion, linkage group XIX must localize elsewhere in the cell. 
In this model, the means by which linkage group XIX is 
segregated would be markedly different in haploid cells, 
diploid cells, and in cells carrying the baM2 mutation. 

We consider this model for localizing linkage group XIX 
to the basal bodies unsatisfactory for several reasons. First, 
there is no evidence that linkage group XIX localizes to only 
one of the basal bodies in either haploid or diploid cells. Sec- 
ond, if both copies reside in one basal body, then it is unclear 
how two copies of a chromosome of this size are packed in 

the volume available within one basal body. The difficulty in 
packing even one copy of a chromosome of this size into the 
interior of a basal body has been discussed previously (Hall 
et al., 1989; Johnson and Rosenbaum, 1990). Alternatively, 
if linkage group XIX is present in both basal bodies in 
diploid cells, then its properties must be much different in 
this cell type than in haploid cells, where only one of the two 
basal bodies could contain a copy. 

Our conclusion that linkage group XIX resides in the nu- 
cleus differs dramatically from that of Hall et al. (1989), who 
reported that linkage group XIX is a basal body chromosome 
present in two or more copies per haploid cell. They base 
their conclusion on two sets of experiments. First, they found 
that linkage group XIX was present in two or more copies 
per haploid cell based on the result of genomic Southern 
blots. Second, they observed labeling over both basal bodies 
in in situ hybridization experiments using DNA probes de- 
rived from linkage group XIX. For both experiments it is 
likely that inadequately controlled experimental conditions 
are responsible for their interpretations. 

In the determination of the copy number of linkage group 
XIX (called the ULG in their study), Hall et al. (1989) com- 
pared the signals obtained from a calculated amount of ge- 
nomic DNA equivalents to signals observed against dilutions 
of a calculated amount of a reference DNA. This method is 
clearly less accurate than the one used in the present study, 
in which hybridization signals were compared within the 
same lane using the same probe. The method of Hall et al. 
(1989) is unsatisfactory because errors could be made in cal- 
culating the absolute genome size, calculating the number of 
genome equivalents present in the reference DNA, or in sig- 
nal variation arising from comparisons of DNA samples in 
different lanes. These sources of error occur twice, because 
two different blots are analyzed, one with a probe from link- 
age group XIX and one with a probe from another linkage 
group. These errors could have combined to produce a two- 
fold error in their determination of linkage group XIX copy 
number. 

The in situ hybridization data of Hall et al. (1989) are more 
difficult to reconcile with our data. They observed labeling 
over each of the two basal bodies with probes that contain 
DNA sequences from linkage group XIX. We offer several 
possible explanations for why our data conflict. The simplest 
explanation for their in situ results is that the hybridization 
observed is due to artifactual staining and is not specific for 
DNA. This can be seen upon close inspection of a cell hy- 
bridized with a probe named M9 (Fig. 8, row C in Hall et 
al., 1989). Strong DAPI staining was observed in this cell 
to both the nucleus and the basal bodies. The results of an 
in situ hybridization experiment with the M9 probe to the 
same cell showed a signal only in the region of the basal bod- 
ies. The absence of hybridization to the nucleus is surpris- 
ing, because this probe contained repeated sequences dis- 
persed throughout the genome, and the DAPI image showed 
clearly that DNA was present in the nucleus. Given that this 
probe was unable to hybridize to nuclear sequences under 
conditions in which basal body hybridization was quite 
strong, it seems imprudent to conclude that the basal body 
signal represents hybridization to DNA. This interpretation 
is consistent with the results of Johnson and Rosenbaum 
(1990), who find no evidence for the presence of DNA in 
Chlamydomonas reinhardtii basal bodies. 
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An alternative explanation for the in situ hybridization 
results is that the repetitive sequences within the probes hy- 
bridized to a specific basal body-associated nucleic acid that 
does not correspond to linkage group XIX. Two of the three 
probes used in the in situ hybridization experiments con- 
tained repetitive DNA sequences. The one single copy se- 
quence used did not display a hybridization signal over the 
basal bodies. The repetitive sequences in the other probes 
may have hybridized to some as yet unidentified nucleic acid. 
We argue above, however, that such a nucleic acid is unlikely 
to be DNA. It is possible that this nucleic acid is RNA. 
Heidemann et al. (1975) have presented evidence that the 
ability of Chlamydomonas reinhardtii basal bodies to nucle- 
ate aster formation in unfertilized Xenopus eggs is sensitive 
to RNase. Hall and co-workers (1989), however, report that 
their in situ hybridization signals are insensitive to treat- 
ments with RNase A and RNaseH. If the signal represents 
hybridization to RNA, this RNA species must be resistant 
to these enzymes under their experimental conditions. 

A third way in which the in situ hybridization results could 
be reconciled with our data would be if the signals arose 
from nuclear DNA sequences collapsed around the basal 
bodies. A mechanism for this is suggested by the work of 
Salisbury et al. (1987). They observed that if Chlamydo- 
monas reinhardtii cells are subjected to mechanical shear, 
pH shock, or exposed to calcium, the nucleus contracts to 
the anterior end of the cell into the vicinity of the basal bod- 
ies. If the extremely harsh treatments used to obtain basal 
body staining in the work of Hall et al. resulted in a similar 
displacement of the nucleus towards the basal bodies, then 
it is possible that the hybridization observed over the basal 
bodies actually reflects hybridization to nuclear DNA. 

Properly performed in situ hybridization experiments will 
allow the location of linkage group XIX to be addressed 
directly. At the present time, however, this approach lacks 
the necessary sensitivity. Published procedures show it is 
possible to localize nuclear ribosomal RNA genes to the nu- 
cleus (Hall et al., 1989), but these genes occur in several 
hundred tandem copies per cell (Howell, 1972). Single copy 
nuclear sequences have not been localized in Chlamydo- 
monas reinhardtii. Until this positive control is performed, 
it is premature to rule out a nuclear location for linkage 
group XIX based on the inability to observe nuclear staining 
in in situ hybridization experiments. When those conditions 
are in hand, we predict that in situ hybridization experiments 
will demonstrate that linkage group XIX localizes to the nu- 
cleus. 

There are two additional ways to reconcile our results with 
the in situ hybridization data. First, one may imagine that 
haploid strains carry two copies of each nuclear linkage 
group. There is no evidence, however, to propose that cells 
that appear haploid by both genetic and cytological criteria 
are actually 2n. The observed mutation rates in Chlamydo- 
monas reinhardtii haploid strains are consistent with one copy 
of each chromosome in a cell (Luck et al., 1977; Dutcher 
and Gibbons, 1988). Cytological studies of Chlamydomonas 
reinhardtii chromosomes yield chromosome numbers ap- 
proximately equal to the number of linkage groups (Loppes 
et al., 1972; Storms and Hastings, 1977; Dutcher et al., 
1991). A final possibility is that the copy number of linkage 
group XIX is actually 1/2n, with each basal body carrying 
a single strand of DNA. We consider this idea untenable. No 

evidence exists for such a single-stranded DNA in Chlamy- 
domonas reinhardtii. The extremely gentle lysis procedures 
used in isolating intact chromosomal DNA for pulsed-field 
gel electrophoresis suggest linkage group XIX has the mobil- 
ity of a 6-9 megabase double-stranded DNA molecule (Hall 
et al., 1989). 

Linkage group XIX remains an enigmatic linkage group, 
but the results reported here suggest that in at least two 
respects it is similar to other linkage groups in Chtamydo- 
monas reinhardtii. First, we find linkage group XIX exists 
in the same copy number as other linkage groups in both 
haploid and diploid cells. Thus, no unusual models need be 
proposed to explain how a genetically haploid linkage group 
corresponds to a physically diploid chromosome, which 
would be the case if this chromosome resided in the basal 
bodies (Hall et al., 1989). Second, the presence of transpo- 
sons, along with other dispersed repetitive sequences (Hall 
et al., 1989), on linkage group XIX demonstrates that this 
linkage group contains sequences other than those affecting 
microtubule-based processes. Moreover, we have recently 
identified two loci affecting tryptophan metabolism that map 
to linkage group XIX (Galloway, R. E., and S. K. Dutcher, 
unpublished observations). These loci provide the first ex- 
amples of linkage group XIX mutations that do not affect 
microtubule function. Further work will determine if linkage 
group XIX is indeed significantly different from other link- 
age groups in Chlamydomonas reinhardtii. In any event, in 
the absence of any compelling evidence for a basal body lo- 
cation, its genetic properties should be evaluated in the con- 
text of a nuclear location. 
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