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Abstract

A role for glial cells in brain circuits controlling feeding has begun to be identified

with hypothalamic astrocyte signaling implicated in regulating energy homeostasis.

The nucleus of the solitary tract (NTS), within the brainstem dorsal vagal complex

(DVC), integrates vagal afferent information from the viscera and plays a role in regu-

lating food intake. We hypothesized that astrocytes in this nucleus respond to, and

influence, food intake. Mice fed high-fat chow for 12 hr during the dark phase

showed NTS astrocyte activation, reflected in an increase in the number (65%) and

morphological complexity of glial-fibrillary acidic protein (GFAP)-immunoreactive

cells adjacent to the area postrema (AP), compared to control chow fed mice. To

measure the impact of astrocyte activation on food intake, we delivered designer

receptors exclusively activated by designer drugs (DREADDs) to DVC astrocytes

(encompassing NTS, AP, and dorsal motor nucleus of the vagus) using an adeno-

associated viral (AAV) vector (AAV-GFAP-hM3Dq_mCherry). Chemogenetic activa-

tion with clozapine-N-oxide (0.3 mg/kg) produced in greater morphological complex-

ity in astrocytes and reduced dark-phase feeding by 84% at 4 hr postinjection

compared with vehicle treatment. hM3Dq-activation of DVC astrocytes also reduced

refeeding after an overnight fast (71% lower, 4 hr postinjection) when compared to

AAV-GFAP-mCherry expressing control mice. DREADD-mediated astrocyte activa-

tion did not impact locomotion. hM3Dq activation of DVC astrocytes induced c-FOS

in neighboring neuronal feeding circuits (including in the parabrachial nucleus). This

indicates that NTS astrocytes respond to acute nutritional excess, are involved in the

integration of peripheral satiety signals, and can reduce food intake when activated.

K E YWORD S
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1 | INTRODUCTION

Food intake is controlled by the coordinated action of numerous brain

regions but a complete understanding remains elusive (Andermann &

Lowell, 2017). The brainstem dorsal vagal complex (DVC) is the first

site for integration of visceral synaptic and hormonal cues that act to

inhibit food intake (Grill & Hayes, 2012). The DVC consists of three

nuclei: the nucleus of the solitary tract (NTS), area postrema (AP), and
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dorsal motor nucleus of the vagus. Neurons of the sensory branch of

the vagus nerve make glutamatergic synapses onto NTS neurons to

relay information from the periphery, including the stomach and upper

intestine (Doyle & Andresen, 2001; Williams et al., 2016). Targeted

chemogenetic activation of appetite-responsive NTS neuronal

populations causes short term decreases in food intake (Cerritelli,

Hirschberg, Hill, Balthasar, & Pickering, 2016; D'Agostino et al., 2016;

Gaykema et al., 2017; Roman, Derkach, & Palmiter, 2016; Zhan

et al., 2013).

Astrocytes provide metabolic and structural support to neurons

and play an active role in modulating neurotransmission

(Verkhratsky & Nedergaard, 2018). Selective manipulation of astro-

cyte populations, including chemogenetic modulation, has revealed

diverse roles of these cells in many physiological and behavioral

responses including autonomic control (Agulhon et al., 2013;

Sciolino et al., 2016), addiction (Bull et al., 2014; Scofield et al.,

2015), fear conditioning (Martin-Fernandez et al., 2017), and

hippocampus-dependent learning (Adamsky et al., 2018). Astrocytes

within the hypothalamic arcuate nucleus (ARC) are regulated by

both positive and negative energy balance as shown by increased

expression of glial-fibrillary acidic protein (GFAP), morphological

plasticity (increased branching and complexity of astrocyte pro-

cesses) and altered expression of astrocyte-specific neurotransmit-

ter and glucose transporters (Buckman et al., 2015; Chen et al.,

2016; Fuente-Martín et al., 2012; Zhang, Reichel, Han, Zuniga-

Hertz, & Cai, 2017). Optogenetic and chemogenetic activation of

ARC astrocytes alters food intake by manipulating the firing of

hunger-driving agouti-related peptide (AgRP) neurons (Chen et al.,

2016; Sweeney, Qi, Xu, & Yang, 2016; Yang, Qi, & Yang, 2015).

Hypothalamic astrocytes also express receptors for hormones that

influence satiety and hunger, suggesting that this population of cells

is directly sensitive to energy state (Cheunsuang & Morris, 2005;

Fuente-Martín et al., 2016; García-Cáceres et al., 2016; Kim

et al., 2014).

Given the similarities between the NTS and the ARC, namely that

both nuclei contain neurons that exert powerful effects on feeding

behavior and are adjacent to circumventricular organs, we hypothe-

sized that NTS astrocytes may be involved in mediating satiety. In

support of this hypothesis NTS astrocytes sense synaptic input from

the vagus nerve, which drives intracellular Ca2+ increases in ex vivo

brain slices (McDougal, Hermann, & Rogers, 2011). Furthermore, NTS

astrocytes are implicated in the appetite suppressing effects of the

glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 (Reiner

et al., 2016). However, what remains unknown is whether NTS astro-

cytes respond to physiological perturbations in energy homeostasis.

Furthermore, there has not been a causal demonstration of the impact

of NTS astrocyte activation on physiological feeding behavior. To

address these key questions, we used a 12-hr high-fat feeding para-

digm to trigger a feeding binge and examined morphological changes

in NTS astrocytes. We then targeted the expression of excitatory

designer receptors exclusively activated by designer drugs

(DREADDs) to DVC astrocytes to allow specific chemogenetic activa-

tion of these cells and determined the impact on feeding behavior

in mice.

2 | METHODS

2.1 | Mice

All animal studies were conducted in accordance with the UK Animals

in Scientific Procedures Act 1986 (ASPA) and study plans were

approved by the institutional Animal Welfare and Ethical Review Body

at the University of Bristol and/or Exeter. Adult male C57BL6/J mice

(Charles River, UK) were used for all experiments. Unless stated other-

wise, mice were group housed on a 12:12 light–dark cycle at 22

± 2�C, with unlimited access to standard laboratory rodent diet

(EURodent diet [5LF2], LabDiet, UK) and water.

2.2 | Dark-phase high-fat feeding studies and
histology

Two independent cohorts of mice (aged 16 weeks) were individually

housed for 4–5 days. At lights-off on the test day, in the experimen-

tal group, standard diet was substituted for high-fat chow (D12492,

TestDiet) while control mice remained on standard chow (EURodent

diet). Then, 12–14 hr later mice were euthanized (with sodium pen-

tobarbital) and transcardially perfused with heparinized 0.9% saline

then 4% paraformaldehyde. Brains were postfixed in 4% paraformal-

dehyde for 4–6 hr before being transferred to 30% sucrose in phos-

phate buffered saline (PBS). Then, 30 μm coronal sections of the

brainstem were taken with a freezing sledge microtome (Bright

instruments, UK) in four series. One series was stained with mouse

anti-GFAP (MAB360; Millipore, UK) followed by donkey anti-mouse

Alexa Fluor 568 (A10037; Invitrogen, UK) which allowed for GFAP-

immunoreactivity to be visualized (Buckman, Thompson, Moreno, &

Ellacott, 2013). Omission of the primary antibody was used to con-

firm that the immunoreactivity seen was not due to nonspecific

binding of the secondary antibody to the tissue (Supplementary

Figure S1a). Stained sections were mounted onto glass slides and

coverslipped with fluoroshield mounting medium with DAPI

(ab104139; Abcam, UK). Images for cell counting were acquired at

10× magnification on a fluorescence microscope (DM 4000; Leica,

Germany). The NTS was subdivided (Figure 1e) as follows: ros-

tral = Bregma −7.08 to −7.2 mm, postremal = Bregma −7.32 to

−7.64 mm, caudal = Bregma −7.76 to −8 mm (Paxinos & Franklin,

2001). Images for morphological analysis were acquired at 20× mag-

nification on a confocal microscope (DMi8; Leica). Images were ana-

lyzed in FIJI (Schindelin et al., 2012) (National Institutes of Health)

using the cell counter, simple neurite tracer, and Sholl analysis plu-

gins (Ferriera et al., 2014). For tracing, five cells per z-stack from two
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z-stacks per mouse were randomly selected for tracing and morpho-

logical analysis. The investigator was blinded to the diet of the mice

during immunohistochemical staining, image acquisition, and

analysis.

2.3 | NTS viral vector injection

Mice (8–12 weeks) were injected with adeno-associated viral (AAV)

vectors in the NTS as described previously (Cerritelli et al., 2016). The

F IGURE 1 High-fat chow intake increased the number and morphological complexity of astrocytes in the nucleus of the solitary tract (NTS).
(a) Dark-phase energy intake of standard and high-fat chow fed mice (10.53 ± 0.51 vs. 18.37 ± 0.67 kcal, n = 9–10 mice/group, p < .0001,
unpaired t test). (b,c) Representative maximum projection confocal image of glial-fibrillary acidic protein (GFAP) immunostaining from a standard
(b) and high-fat (c) chow fed mouse, scale bar = 50 μm. (d) Mean number of GFAP positive cells from tissue sections of NTS from standard and
high-fat chow fed mice (43.09 ± 8.19 vs. 67.9 ± 7.47 cells, n = 9–10 mice/group, p = .038, unpaired t test). (e) Number of GFAP positive cells

within anatomical subdivisions of NTS from standard (open gray circle) and high-fat (closed orange circle) chow fed mice (n = 9–10 mice/group,
two-way analysis of variance [ANOVA], food, p = .0018, F(1,51) = 10.81; rostrocaudal position, p = .034, F(2,51) = 3.63; interaction, p = .7,
F(2,51) = 0.36; Sidak's post hoc test). (f) Mean Sholl profile of postremal NTS astrocytes of standard and high-fat chow fed mice (n = 35–50 cells
from 4–5 mice/group, two-way ANOVA, food, p < .0001, F(1,1,079) = 23.24; distance from soma, p < .0001, F(12,1,079) = 108.3; interaction, p = .04,
F(12,1,079) = 1.83; Sidak's post hoc test). (g) Number of processes of individual postremal NTS astrocytes from standard and high fat chow fed mice
(6.77 ± 0.41 vs. 8.62 ± 0.38 processes, n = 35–50 cells from 4–5 mice/group, p = .0017, unpaired t test). (h,i) Representative image and trace of a
GFAP+ astrocyte from a standard (h) and high-fat (i) chow fed mouse, scale bar = 25 μm. *p < .05, **p < .01. AP, area postrema; cc, central canal;
NTS, nucleus of the solitary tract. Data are expressed as mean ± SE of the mean [Color figure can be viewed at wileyonlinelibrary.com]
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vectors used were AAV5/2-hGFAP-hM3Dq_mCherry (v97-5, titer

≥7.5 × 1012 viral genomes/ml; University of Zurich Viral Vector Facility,

Switzerland) and AAV5/2-hGFAP-mCherry (custom preparation, titer

3.89 × 1013 viral genomes/ml; ViGene Biosciences) diluted 1:1 in sterile

PBS prior to injection. In brief, mice were deeply anaesthetized with an

intraperitoneal (i.p.) injection of ketamine (70 mg/kg) and medetomidine

(0.5 mg/kg) and placed in a stereotaxic frame (David Kopf Instruments)

with the nose angled down by 20�. An incision from the occiput to

the nape of the neck was made, the muscles were parted, and the

atlantooccipital membrane incised to expose the surface of

the brainstem. Injections were made from a pulled glass pipette

attached to an injection system (Neurostar, Germany) mounted on the

stereotaxic frame at an angle of 35� to the vertical, tip facing rostral.

The pipette was inserted 400 μm lateral to the midline at the level of

calamus scriptorius to a depth of 1 mm. Four AAV injections of 180 nl

were made bilaterally at angled depths of 1 mm, 750 μm, 500 μm, and

250 μm, respectively, at a rate of 100 nl/min. The pipette was left in

place for 1 min after each injection. A second, independent cohort of

mice underwent the same procedure but with a single 180 nl viral injec-

tion per side at 200 μm lateral to the midline at a depth of 500 μm

(Supplementary Figure S5). Mice had atipamezole (1 mg/kg i.p.) and

buprenorphine (0.1 mg/kg subcutaneous) for anesthetic reversal and

analgesia, respectively, and were transferred to a heated cage to

recover. Following surgery mice were individually housed for the dura-

tion of the experiment. The investigator was blinded to mouse group

allocations for all the subsequent experiments.

2.4 | Feeding assays

At 4–8 weeks following surgery, mice were acclimatized to experi-

menter handling and i.p. injections of 0.9% NaCl (saline) daily for

4 days. For dark-phase feeding studies, mice were given an

i.p. injection of saline 15–30 min prior to the beginning of the dark

phase. Food intake was manually measured by the investigator (under

red-light illumination where necessary) at 2, 4, 6, 12, and 24 hr after

lights-off. Body weight was measured 8 hr after lights-off. The follow-

ing day mice were given an injection of clozapine-N-oxide (CNO,

0.3 mg/kg i.p., Tocris, UK; diluted in saline) and food intake and body

weight were measured at the same time points. For fast-induced

refeeding experiments, food was removed from cages at the begin-

ning of the dark phase. Subsequently, 15–30 min prior to the onset of

light-phase (11.5–11.75 hr later), mice received an injection of CNO

(0.3 mg/kg i.p.). After injection, food was returned to cages at the

onset of the light phase and intake was measured 1, 2, 4, 6, 8, 12, and

24 hr after lights-on. Body weight was measured twice: once prior to

food being removed and once at 8 hr after the reintroduction of food.

2.5 | Conditioned place aversion assay

For conditioned place aversion (CPA) testing, an apparatus consisting

of two distinct chambers joined by a clear plastic external corridor

(see Figure 4b) was used. The left chamber had horizontal black and

white stripes on the walls and a perforated floor, and the right cham-

ber had vertical black and white stripes on the walls and a floor with

horizontal grating. A counterbalanced paradigm was used to test CPA

(see Figure 4a). On the first day, mice were given 20 min of free

access to explore the whole apparatus. This session was recorded

using a video camera and used to determine initial location prefer-

ences. On the second day (Conditioning 1), mice were assigned to

receive either CNO (0.3 mg/kg i.p.) or an equivalent volume of saline

15 min prior to being placed in either the left or right chamber for

45 min, with the access to the external corridor and second chamber

blocked. On the third day (Conditioning 2), mice received the opposite

treatment with their access restricted to the alternate chamber, com-

pared to the second day. On the fourth/final day, mice were given

free access to the whole apparatus for 30 min. Again, this session was

recorded and used to determine conditioned preference. Recorded

sessions were analyzed offline using Ethovision XT (Noldus, Nether-

lands) tracking software. An independent cohort of C57BL6/J mice

(n = 7) underwent the same conditioning protocol with the known

aversive agent lithium chloride (LiCl, 150 mg/kg i.p. diluted in saline)

replacing CNO as the experimental stimulus.

2.6 | Home cage food seeking

Individually housed mice were injected with CNO (0.3 mg/kg i.p.)

15 min prior to the beginning of the dark phase and their home cage

placed under a video camera with food removed from the hopper and

two pieces of food placed on the cage floor in the far corner from the

nest. The activity was then recorded for 3 hr and food intake at 3 hr

was measured. Recorded sessions were analyzed offline using

Ethovision XT tracking software with a 6 cm2 zone centered around

the pellets termed the “food zone.”

2.7 | Validation of DREADD transduction of
astrocytes and evaluation of DREADD-induced c-FOS
expression

Mice received CNO (0.3 mg/kg i.p.) during the first 4 hr of the light

phase and had food removed from the cage. After 2–3 hr, mice under-

went transcardial perfusion fixation as described above. Then, 30 μm

coronal sections were taken and stained with primary antibodies

against GFAP, mCherry, NeuN, and c-FOS (Table 1) followed by the

appropriate secondary antibodies: donkey anti-mouse Alexa Fluor488,

donkey anti-goat Alexa Fluor594, and donkey anti-rabbit Alexa

Fluor488 (Invitrogen). Omission of primary antibody was used to con-

firm that the immunoreactivity seen was not due to non-specific bind-

ing of the secondary antibody to the tissue (Supplementary

Figure S1b,c). For double immunohistochemistry, mCherry staining

was performed first followed by either GFAP or NeuN. Images were

acquired on a confocal microscope (DMi8; Leica). For a subset of

DVC::GFAPhM3Dq mice (n = 4), the number of GFAP or NeuN cells
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expressing mCherry were counted and calculated as a percentage of

total GFAP or NeuN expressing cells. For c-FOS quantification, images

were analyzed in FIJI (Schindelin et al., 2012) (NIH) with the cell coun-

ter plugin. Sections containing paraventricular nucleus of the hypo-

thalamus (PVH; Bregma −0.94 mm), lateral parabrachial nucleus

(lPBN; Bregma −5.02 mm) and NTS/AP (Bregma −7.56 mm) were

analyzed. Morphological analysis of astrocytes from CNO-treated

mice (Supplementary Figure S3) was performed as described above

(Section 2.2, histology). The distribution of mCherry transduction of

cells (Supplementary Figure S2) was mapped relative to corresponding

sections in a reference atlas (Paxinos & Franklin, 2001) and area of

transduction quantified using Fiji. The investigator was blinded to the

group of the mice during immunohistochemical staining, image acqui-

sition, cell counting, and morphological analysis.

2.8 | Statistical analysis

Data are presented as mean ± standard error (SE) of the mean where

appropriate. Data for all experiments were analyzed in Prism 7 (Graph

Pad) and the appropriate statistical tests conducted. Graphs were gen-

erated in Prism and figures prepared in Inkscape (inkscape.org).

3 | RESULTS

3.1 | Dark-phase high-fat chow feeding induced
structural plasticity in NTS astrocytes

In order to examine whether NTS astrocytes respond to changes in

energy status, we induced short-term positive energy balance by all-

owing experimental mice to exclusively eat a high-fat chow for 12 hr

during the dark phase. Control mice were maintained on standard

chow. This paradigm induced a feeding binge in the high-fat fed mice,

with the animals eating 74% more calories when compared with stan-

dard chow-fed mice (Figure 1a). High-fat fed mice had a greater num-

ber of GFAP-immunoreactive astrocytes within the NTS (58% greater)

when compared with standard chow fed controls, with the changes

being most pronounced in the postremal NTS (Figure 1b–e). GFAP-

immunoreactive astrocytes in the postremal NTS of high-fat fed mice

had greater morphological complexity, as assessed by Sholl analysis

(Ferriera et al., 2014; Sholl, 1953), and a greater number of processes

than those of standard chow fed control mice (Figure 1f–i). These

findings suggest that NTS astrocytes show dynamic, reactive changes

to the acute nutritional excess caused by consumption of a high-

fat diet.

3.2 | Chemogenetic activation induced structural
changes in NTS astrocytes

It is established that Gq-coupled DREADDs can be used to selec-

tively activate astrocytes by driving increases in intracellular Ca2+

(Adamsky et al., 2018; Bonder & McCarthy, 2014; Chen et al., 2016;

Durkee et al., 2019; Martin-Fernandez et al., 2017). We bilaterally

injected AAV vectors containing hM3Dq_mCherry (DVC::

GFAPhM3Dq mice) or mCherry (DVC::GFAPmCherry mice) under the

control of the GFAP promoter (GFAP) into the dorsal portion of the

caudal brainstem with the goal of limiting expression to DVC astro-

cytes (Figure 2a,b). Examination of mCherry-immunoreactivity indi-

cated strong vector-mediated transduction of the DVC (Figure 2c,

Supplementary Figure S2a–c). Using double-fluorescence immuno-

histochemistry, the proportion of GFAP-immunoreactive astrocytes

in which mCherry immunoreactivity was detected was quantified.

Within the DVC, 91.49 ± 1.6% of GFAP expressing cells were

mCherry positive (Figure 2d; 242 of 265 cells from n = 4 mice). In

contrast, 0.2 ± 0.2% of DVC NeuN expressing cells were mCherry

positive (Figure 2e; 1 of 509 cells from n = 4 mice). This indicates

that within the DVC appropriate specificity of vector transduction of

glia was achieved.

After CNO injection (0.3 mg/kg i.p.), GFAP-expressing astrocytes

in the postremal NTS of DVC::GFAPhM3Dq mice had a greater mor-

phological complexity and number of processes than those of DVC::

GFAPmCherry mice (Supplementary Figure S3). This indicates that in

DVC::GFAPhM3Dq mice CNO treatment was sufficient to induce

changes in the structure of the DVC GFAP-immunoreactive astro-

cytes, indicative of activation.

3.3 | Chemogenetic activation of DVC astrocytes
reduced food intake

Mice typically eat most of their food during the dark-phase.

Chemogenetic activation of the transduced astrocytes in DVC::

GFAPhM3Dq mice (CNO; 0.3.mg/kg, i.p. 15–30 min prior to onset of

the dark-phase) produced an 84% reduction in food intake (4 hr after

injection) compared to food consumption by the same mice follow-

ing saline control treatment (Figure 3a). This anorectic effect lasted

for approximately 6 hr after which the rate of food intake returned

to that seen following saline treatment (Figure 3b). Body weight,

measured 8 hr after lights-off, was reduced by 4.4% on the day of

CNO injection compared with the day of saline injection (Figure 3c).

In DVC::GFAPmCherry mice, the same CNO injection protocol had no

effect on dark-phase food intake, feeding rate, or body weight

(Figure 3d–f ). Following injection of CNO (0.3 mg/kg i.p.), both food

TABLE 1 Antibodies used in the study

Antibody Dilution Identifier Manufacturer

Mouse anti-GFAP 1:5,000 MAB360 Merck, UK

Rabbit anti-NeuN 1:2,000 ab177487 Abcam, UK

Goat anti-mCherry 1:1,000 AB0040-200 SICGEN, Portugal

Rabbit anti-c-FOS 1:2,000 2250S Cell Signaling

Technologies, UK

Abbreviation: GFAP, glial-fibrillary acidic protein.

MACDONALD ET AL. 1245

http://inkscape.org


intake and food seeking behavior were lower in DVC::GFAPhM3Dq

mice compared with DVC::GFAPmCherry mice (Supplementary

Figure S4a–c). This suggests that the reduced food intake is a result

of suppressed drive to feed rather than reflecting a motor impair-

ment of feeding, such as could be anticipated as a result of activa-

tion of astrocytes in the hypoglossal nucleus (HGN) disrupting

tongue movement.

To evaluate whether chemogenetic activation of DVC astrocytes

was sufficient to reduce feeding when there was an increased drive to

eat, we utilized a fast-induced refeeding paradigm. CNO injection

(0.3 mg/kg i.p.) 15–30 min prior to reintroduction of food after a

12 hr fast lowered cumulative food intake during the refeeding phase

in DVC::GFAPhM3Dq mice compared with DVC::GFAPmCherry controls

(Figure 3g). During the first hour of refeeding, the rate of food intake

was 63% lower in DVC::GFAPhM3Dq mice, compared with DVC::

GFAPmCherry controls, indicating that chemogenetic activation of DVC

astrocytes was sufficient to acutely suppress the drive to eat induced

by fasting (Figure 3h). No compensatory/rebound hyperphagia was

observed in DVC::GFAPhM3Dq mice in the 24 hr following CNO injec-

tion (Figure 3g,h). In line with the differences in food intake, within

8 hr of food being reintroduced DVC::GFAPmCherry mice recovered

more of their body weight lost as a result of the fast than DVC::

GFAPhM3Dq mice (Figure 3i).

Following viral injection, although some glia were also transduced

in surrounding nuclei (Supplementary Figure S2a–c), linear regression

analysis revealed no relationship between the size of the transduced

area and the effect of CNO injection on food intake in the DVC::

GFAPhM3Dq mice (Supplementary Figure S2d). Since the DVC (Bregma

−7.48 mm) was transduced in all these mice this suggests that the

transduction of neighboring nuclei is unlikely to account for the effect

on food intake. Furthermore, the suppressive effect of CNO on both

dark-phase and fast-induced refeeding in DVC::GFAPhM3Dq mice

F IGURE 2 Expression of hM3Dq_mCherry in dorsal vagal complex (DVC) astrocytes. (a) adeno-associated viral (AAV) vectors containing
either hM3Dq_mCherry or mCherry under the hGFAP promoter. (b) Schematic of bilateral injection of the vector into the DVC. (c) Representative
image showing mCherry immunofluorescence in a DVC::GFAPhM3Dq mouse, scale bar = 500 μm. (d,e) Immunoreactivity for glial-fibrillary acidic
protein (GFAP) (d) or NeuN (e) and mCherry in a DVC::GFAPhM3Dq mouse. Closed arrow in (d) shows a GFAP-positive cell, open arrow shows a
GFAP-negative putative neuron while closed arrow in (e) shows a NeuN-positive neuron, open arrow shows a NeuN-negative putative astrocyte.
Scale bar = 25 μm. 91.5 ± 1.6% of GFAP+ cells had mCherry immunoreactivity (242 of 265 cells from n = 4 mice). Very few (0.2 ± 0.2%) NeuN
immunoreactive cells had mCherry immunoreactivity (1 of 509 cells from n = 4 mice). AP, area postrema; HGN, hypoglossal nucleus; NTS, nucleus
of the solitary tract; X, dorsal motor nucleus of the vagus. Data are expressed as mean ± SE of the mean [Color figure can be viewed at
wileyonlinelibrary.com]
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(compared DVC::GFAPmCherry mice) was replicated in a second cohort

of mice who had a more discrete vector injection: bilateral injections

at only one site in the DVC (Supplementary Figure S5). These findings

indicate that it is the glia within the DVC that mediate the suppression

of feeding.

3.4 | Chemogenetic activation of DVC astrocytes
did not alter locomotion

Reductions in food intake in mice can be indicative of malaise and/or

aversion (Maniscalco & Rinaman, 2018). To test whether DVC

F IGURE 3 Legend on next page.
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astrocyte activation was aversive, we used a CPA assay (Figure 4a).

During initial assessment, prior to conditioning, neither DVC::

GFAPhM3Dq nor DVC::GFAPmCherry mice showed a preference for either

chamber (Figure 4c,e). After conditioning (pairing each side of the appa-

ratus with either saline or CNO injection [0.3 mg/kg i.p.]), mice again

showed no preference or aversion (Figure 4b,c,e). However, following

the same conditioning protocol using LiCl (150 mg/kg i.p.), a known

aversive stimulus, an independent cohort of mice showed no avoidance

of the LiCl chamber (Figure 4g); as such, from our experiment, the

effect of DVC astrocyte activation on conditioned aversion is unclear.

The conditioning protocol did however allow measurement of loco-

motion following chemogenetic DVC astrocyte activation. There was

no statistically significant difference in the total distance travelled dur-

ing the 45 min conditioning trial following saline or CNO treatment the

DVC::GFAPhM3Dq or DVC::GFAPmCherry groups (Figure 4d,f). This sug-

gests that CNO-mediated DREADD activation did not impact locomo-

tion. This is in contrast to mice treated with LiCl which displayed a

statistically significant reduction in total distance travelled, when com-

pared with the saline conditioning trial (Figure 4h). This indicates that at

the dose used LiCl is sufficient to acutely attenuate locomotion in mice,

potentially indicative of malaise, while either chemogenetic activation

of DVC astrocytes or CNO treatment in DVC::GFAPmCherry mice is not.

3.5 | Chemogenetic activation of DVC astrocytes
induced c-FOS expression locally and in the lPBN

Immunoreactivity for the immediate early gene product c-FOS, as a

marker of cellular activation, was assessed to quantitate the extent of

DVC activation and to identify possible downstream neuronal circuit

engagement. DVC::GFAPhM3Dq and DVC::GFAPmCherry mice were

injected with CNO 2–3 hr prior to perfusion fixation followed by

immunohistochemistry for c-FOS.

Chemogenetic activation (CNO 0.3 mg/kg i.p.) of DVC astrocytes

increased c-FOS expression in the NTS and AP (Figure 5a–e), and the

lPBN, a downstream target of NTS neurons (Figure 5f–i) in DVC::

GFAPhM3Dq mice compared with DVC::GFAPmCherry control mice.

However, in the PVH, another projection target of satiety signaling

NTS neurons (D'Agostino et al., 2016; Roman, Sloat, & Palmiter,

2017), there was no difference in the number of c-FOS expressing

cells between groups (Figure 5j–m). This is consistent with DVC astro-

cyte activation signaling to neuronal circuitry implicated in regulation

of energy homeostasis (Atasoy, Betley, Su, & Sternson, 2012; Carter,

Soden, Zweifel, & Palmiter, 2013).

4 | DISCUSSION

In this study, we have shown for the first time that astrocytes in the

NTS react dynamically to excess intake of an energy dense food by

upregulating GFAP expression and showing morphological plasticity.

Furthermore, DREADD-mediated activation of astrocytes in the DVC

caused a potent but reversible decrease in food intake, associated

changes in NTS astrocyte morphology, and activation of local and dis-

tal neuronal circuits. This evidence supports the hypothesis that DVC

astrocytes are involved in a homeostatic or allostatic response to

nutritional excess, and their activation may serve to drive a counter-

acting decrease in food intake to restore energy balance.

Astrocytes of the ARC have previously been implicated in the reg-

ulation of food intake (Buckman et al., 2015). In the hypothalamus,

these glia are responsive to short-term energy imbalance, both fasting

and acute high-fat feeding (Buckman et al., 2015; Fuente-Martín

et al., 2012), and direct manipulation of their activity using DREADDs

alters food intake (Chen et al., 2016; Yang et al., 2015). Both studies

using activating DREADDs in ARC astrocytes show a modest increase

in food intake during the light phase, when mice are not typically eat-

ing (Chen et al., 2016; Yang et al., 2015). In contrast, it appears from

our observations that chemogenetic DVC astrocyte activation has

more pronounced effects on feeding with respect to the magnitude,

direction, and onset/duration of the response. The less pronounced

impact of chemogenetic modulation of ARC astrocytes on feeding

behavior in mice may be due, in part, to the fact that the ARC contains

at least two neurochemically unique neuronal populations: AgRP and

proopiomelanocortin (POMC) neurons; the activation of which drives

and inhibits feeding behavior, respectively (Aponte, Atasoy, &

Sternson, 2011; Krashes et al., 2011). As the two neuronal

F IGURE 3 Chemogenetic activation dorsal vagal complex (DVC) astrocytes reduced food intake. (a–c) DVC::GFAPhM3Dq mice (n = 6) were
injected with saline or clozapine-N-oxide (CNO) 15–30 min prior to the beginning of the dark phase. (a) Cumulative food intake (two-way
repeated measure [RM] analysis of variance [ANOVA], CNO, p = .0007, F(1,5) = 55.7; time, p < .0001, F(5,25) = 331.3; interaction, p < .0001,
F(5,25) = 15.64, Sidak's post hoc test). (b) Rate of food intake (two-way RM ANOVA, CNO, p = .0009, F(1,5) = 49.15; time, p = .0001, F(4,20) = 9.94;
interaction, p < .0001, F(4,20) = 11.07, Sidak's post hoc test). (c) Body weight 8 hr after lights-off (28.89 ± 0.69 vs. 27.93 ± 0.55 g, p = .016, paired
t test). (d–f) DVC::GFAPmCherry mice (n = 6) were injected with saline or CNO 30 min prior to the beginning of the dark phase. (d) Cumulative food
intake (two-way RM ANOVA, CNO, p = .33, F(1,5) = 1.15; time, p < .0001, F(5,25) = 506.7; interaction, p = .18, F(5,25) = 1.65, Sidak's post hoc test).
(e) Rate of food intake (two-way RM ANOVA, CNO, p = .76, F(1,5) = .10; time, p < .0001, F(4,20) = 29.57; interaction, p = .07, F(4,20) = 2.56, Sidak's

post hoc test). (f) Body weight 8 hr after lights-off (29.59 ± 0.43 vs. 29.83 ± 0.47 g, p = .29, paired t test). (g–i) DVC::GFAPmCherry and DVC::
GFAPhM3Dq mice (n = 6/group) were fasted for 12 hr during the dark phase then injected with CNO 30 min prior to reintroduction of food at the
onset of the light phase. (g) Cumulative food intake (two-way ANOVA, DREADD, p = .01, F(1,10) = 10.03; time, p < .0001, F(7,70) = 310.5;
interaction, p = .0053, F(7,70) = 3.20, Sidak's post hoc test). (h) Rate of food intake (two-way ANOVA, DREADD, p = .007, F(1,10) = 11.4; time,
p < .0001, F(6,60) = 18.55; interaction, p < .0001, F(6,60) = 8.35, Sidak's post hoc test). (i) Body weight (% of prefasting weight) 8 hr after refeeding
(99.51 ± 0.65 vs. 95.24 ± 1.47%, p = .024 unpaired t test). *p < .05, **p < .01, ****p < .0001. Data are expressed as mean ± SE of the mean
[Color figure can be viewed at wileyonlinelibrary.com]
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populations are anatomically interspersed yet functionally opposite,

chemogenetic activation of ARC astrocytes may result in modulation

of the activity of both neuronal populations making interpretation of

the physiological impact on feeding complex. With respect to feeding,

to date, neurons of the NTS have principally been implicated in satiety

rather than hunger (Grill & Hayes, 2012), which may account for the

more pronounced physiological effect consequent on local astrocytic

activation.

Our study builds upon evidence showing that astrocytes of the

NTS sense hormonal satiety signals (Reiner et al., 2016) and are

involved in integration of vagal neurotransmission (McDougal et al.,

2011), but importantly extends these studies by using direct, specific,

and inducible activation of these cells to study behavior in freely mov-

ing animals. What remains unclear are the mechanisms by which

astrocytes are activated in the state of caloric excess. Likely candi-

dates include vagal-derived glutamate (McDougal et al., 2011), GLP-1

F IGURE 4 Injection with clozapine-N-
oxide (CNO) did not affect locomotion in
DVC::GFAPhM3Dq or DVC::GFAPmCherry

mice. (a) Schematic of the conditioning
protocol. (b) Representative tracks of a
DVC::GFAPhM3Dq (top, blue) and a DVC::
GFAPmCherry (bottom, red) mouse during
the final trial. (c) Percentage of the trial
spent in the saline- and CNO-paired

chamber before (initial) and after (final)
conditioning sessions in DVC::GFAPhM3Dq

mice (n = 6 mice, two-way repeated
measure [RM] analysis of variance
[ANOVA], CNO, p = .32, F(1,10) = 1.09;
conditioning, p = .96, F(1,10) = 0.002;
interaction, p = .57, F(1,10) = 0.35).
(d) Distance travelled during conditioning
sessions for DVC::GFAPhM3Dq mice (n = 6
mice; 10,260 ± 1,101 vs. 7,501
± 1,183 cm; n = 6 mice; p = .18, paired
t test). (e) Percentage of the trial spent in
the saline- and CNO-paired chamber
before and after conditioning sessions in
DVC::GFAPmCherry mice (n = 4 mice, two-
way RM ANOVA, CNO, p = .76,
F(1,6) = 0.10; conditioning, p = .78,
F(1,6) = 0.08; interaction, p = .23,
F(1,6) = 1.81). (f) Distance travelled during
conditioning sessions for DVC::
GFAPmCherry mice (n = 5 mice; 9,773
± 991.1 vs. 9,870 ± 896.3 cm; n = 5 mice;
p = .94; paired t test). (g) Percentage of
the trial spent in the saline- and LiCl-
paired chamber before and after
conditioning sessions (n = 7 mice, two-
way RM ANOVA, LiCl, p = .48,
F(1,12) = 0.54; Conditioning, p = .8,
F(1,12) = 0.06; interaction, p = .38,
F(1,12) = 0.82). (h) Distance travelled during
conditioning sessions (6,316 ± 360.9
vs. 3,261 ± 343.4 cm; n = 7 mice;
p = .007; paired t test). Data are expressed
as mean ± SE of the mean [Color figure

can be viewed at wileyonlinelibrary.com]
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mediated signaling (Reiner et al., 2016), and/or local inflammation cau-

sed by circulating saturated fatty acids or neurogenic neu-

roinflammation (Xanthos & Sandkühler, 2014). These factors may act

in combination to promote changes in NTS astrocyte function in the

face of nutritional perturbation.

In this study, we used morphological complexity as a marker of

altered astrocyte signaling to demonstrate that NTS astrocytes were

responsive to both acute high-fat feeding and chemogenetic stimula-

tion. A higher baseline of GFAP expression was observed in animals

that had undergone AAV injection surgery. The morphological analysis

F IGURE 5 Chemogenetic astrocyte activation induced c-FOS-immunoreactivity in brainstem neural circuits in DVC::GFAPhM3Dq mice. DVC::
GFAPmCherry and DVC::GFAPhM3Dq mice (n = 6 mice/group) were injected with CNO 2–3 hr prior to perfusion-fixation. (a–c) Representative
images of c-FOS immunostaining from the dorsal vagal complex (DVC) of a DVC::GFAPmCherry mouse (b) and a DVC::GFAPhM3Dq mouse (c). (d,e)
Quantification of c-FOS immunoreactive cells in the nucleus of the solitary tract (NTS) (d) (29 ± 5.01 vs. 113.7 ± 19.62 cells, p = .002, unpaired
t test) and AP (e) (11.83 ± 3.2 vs. 63.17 ± 17.2 cells, p = .014, unpaired t test). (f–h) Representative images of c-FOS immunostaining from the
lateral parabrachial nucleus (lPBN) of a DVC::GFAPmCherry mouse (g) and a DVC::GFAPhM3Dq mouse (h). (i) Quantification of c-FOS
immunoreactive cells in lPBN (17.5 ± 4.49 vs. 89.33 ± 11.08 cells, p = .002, unpaired t test). (j–l) Representative images of c-FOS immunostaining
from the lPBN of a DVC::GFAPmCherry mouse (k) and a DVC::GFAPhM3Dq mouse (l). (m) Quantification of c-FOS immunoreactive cells in
paraventricular nucleus of the hypothalamus (PVH; 75.5 ± 12.05 vs. 77.33 ± 8.58 cells, p = .90, unpaired t test). For all images, scale bar = 50 μm.
AP, area postrema; lPBN, lateral parabrachial nucleus; NTS, nucleus of the solitary tract; PVH, paraventricular nucleus of the hypothalamus; scp,
superior cerebellar peduncle. Data are expressed as mean ± SE of the mean [Color figure can be viewed at wileyonlinelibrary.com]
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of NTS astrocytes presented in this study encompassed the proximal

processes of GFAP-expressing astrocytes. While this may represent

only a small percentage (~10%) of the total astrocyte surface area

(Shigetomi et al., 2013), there was a significant difference in the Sholl

profile and number of processes between groups supporting a reac-

tive change in astrocyte structure under these experimental condi-

tions. Other strategies which label a greater proportion of the

astrocyte cell volume (e.g., Golgi staining or membrane targeted green

fluorescent protein [lck-GFP]) could be used for future studies but

each has their own limitations: Golgi staining does not positively dif-

ferentiate between astrocytes and neurons and sparsely labels cells,

while lck-GFP (which labels the entire astrocyte surface area) yields a

“bushy” signal (Shigetomi et al., 2013), that is not resolvable by stan-

dard confocal microscopy.

We found that CNO treatment in DVC::GFAPhM3Dq mice

decreased food intake and induced c-FOS expression in neighboring

neurons; however, the underlying molecular mechanisms by which

this occurs remain to be resolved. Astrocytes can modulate the activ-

ity of neurons by mechanisms including altered glutamate transport

and also via release of neuroactive molecules (e.g., glutamate, ATP, D-

serine) (Araque et al., 2014; Gourine et al., 2010; Matott, Kline, &

Hasser, 2017; Panatier et al., 2006; Papouin, Dunphy, Tolman,

Dineley, & Haydon, 2017; Schwarz, Zhao, Kirchhoff, & Bruns, 2017).

Critically, glutamatergic signaling is the principal mechanism for com-

munication between the vagus and second-order NTS neurons

(Doyle & Andresen, 2001) and NTS astrocytes directly sense vagal

glutamate release via Ca2+-permeable AMPA receptors expressed on

the cell membrane (McDougal et al., 2011). In the NTS, synaptic clear-

ing of glutamate by astrocytes has been shown to restrain NTS neuro-

nal firing and vagal outflow to cardiorespiratory organs (Matott et al.,

2017). As such, astrocyte glutamate transport can manipulate the fir-

ing rates of NTS neurons and alter output from the NTS. In our study,

it is unclear how (and indeed if) astrocyte Gq-GPCR activation may be

linked to altered glutamate uptake; however, previous reports (Oliet,

Piet, & Poulain, 2001) have shown that altered morphology of

astrocytes results in corresponding changes in glutamate uptake and

neuronal excitability. An additional potential mechanism of communi-

cation that could be important in mediating the effects seen is active

gliotransmission (Araque et al., 2014). Activation of a GPCR expressed

on NTS astrocytes (protease-activated receptors) leads to increased

activation of neurons by glutamate, possibly exocytosed by astrocytes

(Vance, Rogers, & Hermann, 2015). Given that antagonism of NMDA

receptors in the NTS increases meal size (Treece, Covasa, Ritter, &

Burns, 1998), it is possible that activation of these receptors by

astrocyte-derived glutamate or D-serine would reduce food intake,

but further study would be required to specifically test this.

Our data support the conclusions of an earlier study which

showed that DVC astrocytes are critical for the appetite suppressive

effect of GLP-1 receptor (GLP-1R) activation. In rats, NTS astrocytes

take up exendin-4 (an agonist of the GLP-1R) and metabolic inhibition

of astrocytes in the DVC using fluorocitrate abolishes the anorexi-

genic actions of this compound. Together, this suggests that astro-

cytes contribute to the suppressive effect of activation of GLP1-R

signaling on feeding and supports their role in DVC-mediated satiety

signaling (Reiner et al., 2016). What remains unclear is whether this is

due to removal of GLP-1R-mediated astrocyte activation or alterna-

tively astrocyte inhibition causing disruption to glutamatergic signaling

stimulated by neuronal GLP-1R activation. While fluorocitrate has his-

torically been widely used to inhibit glial cell activity, it would be ben-

eficial to repeat these studies using genetically targeted approaches

to modulate astrocyte activity. Whether GLP-1R is expressed in astro-

cytes is also not clear as GFP expression was not apparent in DVC

astrocytes of GLP-1R-GFP mice (Cork et al., 2015). However, in vitro

and in ex vivo rat brainstem slices astrocytes increase intracellular Ca2+

in response to exendin-4 providing evidence that these cells are

directly sensitive to GLP-1R ligands (Marina et al., 2017; Reiner

et al., 2016).

It is likely that DVC astrocytes are important for integration of

hormonal and nutritional cues. Hypothalamic astrocytes express

receptors for ghrelin, insulin, and leptin (Fuente-Martín et al., 2016;

García-Cáceres et al., 2016; Kim et al., 2014). In common with the

ARC, the DVC contains a circumventricular site, the AP, making it

likely that DVC astrocytes also share the same hormone sensing capa-

bilities, although this remains to be conclusively demonstrated.

Reexpression of the glucose transporter GLUT2 in astrocytes is suffi-

cient to restore brainstem hypoglycemia detection in

GLUT2-knockout mice providing further evidence for a critical role of

these cells in energy homeostasis (Marty et al., 2005).

Of note, three studies that inhibit inflammatory nuclear factor

kappa b (NF-κB) signaling in all GFAP-expressing astrocytes (including

work from our group) report feeding phenotypes, namely, increased

initial intake of a high-fat diet following initial exposure, resistance to

the obesity phenotype when already on a high-fat diet and protection

from metabolic dysfunction and weight gain on a high fat diet

(Buckman et al., 2015; Douglass, Dorfman, Fasnacht, Shaffer, & Tha-

ler, 2017; Zhang et al., 2017). Although these studies attribute the

observed effects to astrocytes of the hypothalamus the contribution

of NTS astrocytes, identified here as responsive to high-fat diet

intake, cannot be ruled out.

The induction of c-FOS-immunoreactivity in a distal target,

namely, the lPBN, following CNO injection in DVC::GFAPhM3Dq mice

strongly suggests the recruitment of long-range neuronal circuitry fol-

lowing DVC astrocyte activation. Since there are a number of distinct

neuronal populations in the NTS whose activation induces a similar

reduction in feeding, namely, POMC (Cerritelli et al., 2016; Zhan et al.,

2013), cholecystokinin (CCK) (D'Agostino et al., 2016; Roman et al.,

2016), tyrosine hydroxylase (Roman et al., 2016), and preproglucagon

(Gaykema et al., 2017), it is likely that these are among the neurons

recruited by chemogenetic DVC astrocyte activation.

Given the reduction in food intake we observed, it was impor-

tant to evaluate whether induction of malaise and/or aversion could

be contributing to the effect seen, particularly as the DVC is impli-

cated in mediating these responses in addition to satiety

(Maniscalco & Rinaman, 2018). This particularly important in light of

the increased in c-FOS immunoreactivity observed in the lPBN of

DVC::GFAPhM3Dq mice after CNO treatment, which may indicate the
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activation of a NTS-lPBN pathway previously reported to reduce food

intake through aversion/negative salience (Roman et al., 2017). To do this,

we used a CPA assay utilizing a protocol previously used by our group to

indicate aversive responses/negative salience in response to

chemogenetic activation of prefrontal cortex-projecting locus coeruleus

neurons (LCPFC) in rats (Hirschberg, Li, Randall, Kremer, & Pickering,

2017). We found that after one conditioning session per agent CNO

treatment in DVC::GFAPhM3Dq or DVC::GFAPmCherry mice did not induce

CPA. However, since the known aversive LiCl agent was unable to induce

CPA in this paradigm it suggests our assay was likely not sufficiently sen-

sitive to detect/induce CPA in this context. As such, the affective proper-

ties of DREADD-mediated DVC astrocyte activation remain unclear. A

longer protocol may have revealed an effect since three or four condition-

ing sessions with LiCl does induce CPA in mice (Le Merrer et al., 2011;

Longoni, Spina, Vinci, & Acquas, 2011; Sanjakdar et al., 2015; Zhang et al.,

2019). We did, however, find that LiCl injection reduced locomotion dur-

ing the conditioning trial while CNO treatment did not. This suggests LiCl

acutely induces malaise; an effect that was not seen in the CNO-treated

mice. Evidence suggests that satiety and aversion exist on a continuum,

where in some cases aversion may be a manifestation of extreme satiety,

for example, associated with excessive gastrointestinal distention

(Maniscalco & Rinaman, 2018). As such, ability of an agent to induce CPA

or conditioned taste aversion does not necessarily indicate that an effect

is non-physiological. For example, exogenous CCK can induce satiety or

aversion dependent on dose (Moran, 2000; Swerdlow, van der Kooy,

Koob, & Wenger, 1983; West, Greenwood, Marshall, & Woods, 1987).

Our results suggest that that DREADD-mediated DVC astrocyte activa-

tion likely does not produce acute malaise, but its emotional salience

remains unclear and further studies would be required to explore this.

In conclusion, our experiments show that astrocytes may be a

previously overlooked element of DVC-mediated satiety and provide

the first causal link between their activity and the regulation of feed-

ing. We propose that NTS/DVC astrocytes are a key component in

satiety signaling that act to modulate the integration of vagal and hor-

monal inputs to the brainstem and as such could represent a potential

target for intervention in obesity.
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