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Abstract

In correctly predicting that selection efficiency is positively correlated with the effective population size (Ne), the nearly
neutral theory provides a coherent understanding of between-species variation in numerous genomic parameters, in-
cluding heritable error (germline mutation) rates. Does the same theory also explain variation in phenotypic error rates
and in abundance of error mitigation mechanisms? Translational read-through provides a model to investigate both
issues as it is common, mostly nonadaptive, and has good proxy for rate (TAA being the least leaky stop codon) and
potential error mitigation via “fail-safe” 30 additional stop codons (ASCs). Prior theory of translational read-through has
suggested that when population sizes are high, weak selection for local mitigation can be effective thus predicting a
positive correlation between ASC enrichment and Ne. Contra to prediction, we find that ASC enrichment is not corre-
lated with Ne. ASC enrichment, although highly phylogenetically patchy, is, however, more common both in unicellular
species and in genes expressed in unicellular modes in multicellular species. By contrast, Ne does positively correlate with
TAA enrichment. These results imply that local phenotypic error rates, not local mitigation rates, are consistent with a
drift barrier/nearly neutral model.

Key words: nearly neutral theory, molecular evolution, translational read-through, additional stop codons, pheno-
typic error, error mitigation.

Introduction
Genomes vary in multiple parameters that typically covary.
Some genomes, like ours for example, are “bloated” in the
sense that they have large introns, many introns (per bp of
coding sequence), large intergene distances, and a high load of
transposable elements (TEs) (Lynch and Conery 2003). As a
consequence, we have an especially low density of exon to
immature transcript size (Warnecke et al. 2008) and a low
gene density (Lynch and Conery 2003). Other eukaryotic
genomes, such as that of yeast (Saccharomyces cerevisiae),
are by contrast lithe: Introns are rare and small, intergene
distance is low, TE load is relatively light, and gene density
is thus high (Lynch and Conery 2003).

How are we to understand not just the variation between
genomes in such parameters but also the tendency for mul-
tiple measures of genomic “economy” to positively correlate
one with the other? Lynch (2007) has forcefully argued that
the nearly neutral theory (Ohta 1992) can explain both prob-
lems. This proposes that when the effective population size
(Ne) is large, selection is relatively efficient at removing dele-
terious mutations. By contrast when Ne is low, mutations,
such as TE insertions, that would be “seen” as deleterious in
species with large Ne are instead only weakly deleterious or
effectively neutral and hence able to be fixed owing to drift.
Consistent with this, the level of constraint on protein

sequence evolution is higher when Ne (or proxies to it) is
high (Keightley and Eyre-Walker 2000). More particularly, spe-
cies with low Ne are expected to accumulate uneconomical
sequence, leading to genome bloating. Consistent with this
model, intron density and size covary negatively with the
effective population size (Lynch and Conery 2003; Wu and
Hurst 2015).

The genome bloating concerns what generically might be
regarded as aspects of genomic anatomy. Can the same body
of theory also explain genomic behavior? Lynch et al. (2016)
have also argued that, although the mutation rate is under
selection to be as low as possible (Kimura 1967), low Ne forces
a drift barrier preventing especially low mutation rates in
species with small Ne. As a consequence, genomes of species
with low Ne have both bloated genomes and high mutation
rates (both per bp per generation and especially per genome)
(Sung et al. 2012; Lynch et al. 2016).

The mutations considered in these models are one class of
error, these being heritable errors. One can also ask about
selection on nonheritable (somatic) mutations and nonher-
itable nonmutational “phenotypic” errors (Burger et al. 2006;
Willensdorfer et al. 2007), such as accidental mistranslation,
frameshifts, stop-codon read-through, missplicing, misfolding,
and so on. Here, we consider between-species variation in
phenotypic errors. Errors like these are ubiquitous, occur at
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high rates, and are typically deleterious (Warnecke and Hurst
2011; Yang et al. 2017; Fu et al. 2018; Liu and Zhang 2018a,
2018b; Li and Zhang 2019).

To resolve these errors, genomes can employ “global” or
“local” solutions (Rajon and Masel 2011). Global solutions
involve strategies achieved by altering the molecular machin-
ery required for gene expression and hence moderate errors
at multiple sites. By contrast, local solutions are employed to
ameliorate error at a specific site, or gene. In turn, each class of
solution (global/local) can either affect the rate of error or
mitigate errors once they have occurred. The pathway to
detect and recycle misfolded proteins (Chen et al. 2011;
Jackson and Hewitt 2016) may be considered as a global error
mitigation device, preventing the buildup of potentially toxic
misfolded proteins, whereas employment of chaperones, to
direct the correct folding of proteins, may be considered part
of a system of global error rate modification, preventing mis-
folding in the first place. Other examples of global mitigation
solutions include improving the machinery required for
proofreading during transcription (Zenkin et al. 2006;
Gamba and Zenkin 2018) and nonsense-mediated decay
(NMD) to trap misspliced transcripts (Kawashima et al.
2009; Tabrez et al. 2017). Further, the genetic code appears
to be structured in a manner that reduces the impact of
mistranslation (Freeland and Hurst 1998) and, in addition,
misacylated tRNAs may tend to mismatch with codons
that code for the misloaded amino acids (Seligmann 2011),
both of which may be considered as global mitigation
strategies.

Here we focus on the problem of selection on local error
control devices, in particular to understand how selection on
local error rate and local error mitigation vary with Ne.
Although it has been suggested that selection for local mu-
tation rate modification (i.e., heritable errors) is too weak
(Hodgkinson and Eyre-Walker 2011; Chen and Zhang 2013),
even in species with large Ne (Chen and Zhang 2013), selec-
tion on local phenotypic error handling may be different as
the underlying rates are higher. As regards local rate modifiers,
examples include usage of strong splice sites or exonic splice
enhancers (ESEs) to increase splicing accuracy of a specific
exon or the use of optimal codons to modify rates of amino
acid misincorporation at one codon within a gene (Stoletzki
and Eyre-Walker 2007). Numerous local error mitigation
mechanisms have also been suggested. Codons mutationally
adjacent to stop codons (those one mutation away) are
avoided at the 30-end of human genes (Cusack et al. 2011)
where NMD cannot recognize premature stop codons
(Zhang et al. 1998). Although this will not affect the rate of
mistranscription, it will ensure that mistranscription costs are
reduced as especially harmful premature stops codons are less
likely to be a consequence of mistranscription. Out-of-frame
stop codons are thought to promote translation termination
following erroneous frameshift events (Seligmann and Pollock
2004) and have been found to be enriched downstream of
frameshift-prone codons (Seligmann 2019). Similarly, in
eukaryotes, the presence of in-frame stop codons in introns
implies selection to degrade by NMD erroneously spliced
mRNA in which introns are retained (Jaillon et al. 2008;

Sayani et al. 2008; Brogna and Wen 2009; Ramani et al.
2009; Behringer and Hall 2016). Intronic stop codons occur
earlier in the intron than expected by chance, consistent with
selection to minimize waste and trigger NMD as soon as
possible (Behringer and Hall 2016), although the presence
of an in-frame intronic stop codon is no guarantee of
NMD-mediated removal on intron retention (Sayani et al.
2008).

The distinction between local error rate and error mitiga-
tion control is not always unambiguous. As noted above,
selection on codon usage is suggested to alter the rate of
amino acid misincorporation (Stoletzki and Eyre-Walker
2007) or mitigate mistranscription events (Cusack et al.
2011). Comparably, in addition to global rate modification,
chaperones could in principle mitigate the misfolding effects
of mistranscription and mistranslation. Similarly, owing to
great enrichment of A at coding site þ4, the trinucleotide
TGA is greatly enriched at positions 2–4 in bacterial genes
(which start NTG) (Abrahams and Hurst 2017). As TGA is a
stop codon, this might possibly be to enable rapid frameshift
correction, that is, stopping a misaligned ribosome and put-
ting it back into frame by enabling a one base shuttle back-
ward, thereby reducing the net rate of out-of-frame initiation.
Alternatively, if the þ1-stop codon enables rapid release of
the ribosome, it acts to minimize the costs, rather than re-
ducing the rate. Logically it is possible that both occur.

Here we consider what may be a good exemplar for con-
sidering relative selection strength on local error rates and
local error mitigation, namely the rate and mitigation of
translational read-through. Read-through happens when
the primary stop codon of an expressed gene is not recog-
nized by its release factor (Roy et al. 2015; Beznoskova et al.
2016) leading to translation of the 30-untranslated region
(UTR) (Doronina and Brown 2006; Namy and Rousset
2010)—see Rodnina et al. (2020) for a recent review. There
are some hypothetical advantages of read-though, such as
increased proteome diversity (Dunn et al. 2013) and access
to additional C-terminal protein domains at low abundance
(well described in Pancrustacea [Jungreis et al. 2011], mam-
mals [Eswarappa et al. 2014], yeast [Namy et al. 2003], for
example). Read-through may also enable selection to purge
deleterious 30-UTR sequence (Giacomelli et al. 2007; Rajon
and Masel 2011; Kosinski and Masel 2020). However, the best
evidence suggests that it is typically nonadaptive and arises
due to molecular error (Li and Zhang 2019).

The costs of C-terminal extension via read-through have
multiple mechanisms. In the absence of a fail-safe stop codon,
we might expect degradation of both RNA and nascent pro-
tein when the translating ribosome reaches the polyA tail
(Dimitrova et al. 2009; Klauer and van Hoof 2012). Should
protein be produced following termination at a 30 fail-safe
stop codon there may yet be problems with protein localiza-
tion (Falini et al. 2005; Hollingsworth and Gross 2013), protein
aggregation (Vidal et al. 1999, 2000), and protein stability
(Clegg et al. 1971; Namy et al. 2002; Pang et al. 2002; Inada
and Aiba 2005; Shibata et al. 2015) causing reduced titer
(Arribere et al. 2016). Aside from these, even in a best-case
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scenario there is likely to be energetic wastage from unnec-
essary 30-UTR translation (Wagner 2005).

One reason read-through is a useful exemplar for broad-
scale pan taxon analysis is that, unlike the case of splicing
error, where different species employ different SR proteins
and ESEs and have different intron lengths and densities,
the molecular biology of termination is similar across eukar-
yotes (and to some degree within prokaryotes and archaea)
(Capecchi 1967; Grentzmann et al. 1994; Mikuni et al. 1994;
Stansfield et al. 1995; Zavialov et al. 2001; Salas-Marco and
Bedwell 2004; Alkalaeva et al. 2006; Gao et al. 2007; Dever and
Green 2012; Kobayashi et al. 2012).

Furthermore, from genomic analysis alone we can make
inferences concerning error rates. This is because both pro-
karyotes and eukaryotes preferentially use the least leaky stop
codon (Strigini and Brickman 1973; Geller and Rich 1980;
Parker 1989; Jorgensen et al. 1993; Meng et al. 1995;
Sanchez et al. 1998; Tate et al. 1999; Wei et al. 2016; Cridge
et al. 2018), TAA, to terminate translation, the preference
being strongest where the costs of erroneous read-through
would be highest, namely in highly expressed genes (HEGs)
(Korkmaz et al. 2014; Trotta 2016). We do not exclude the
possibility of other modes of selection acting in favor of TAA.
There may, for example, be selection for fast release of the
ribosome to prevent ribosomal traffic jams (Tuller et al. 2010).
Conserved TAA repeats at specific sites in tRNAs overlapping
mRNAs in mtDNA might imply utility beyond its function as
a stop codon (Faure and Barth�el�emy 2019). Furthermore,
TAA is robust to two mistranscription events (TAA->TGA,
TAG) whereas the two other stop codons are resilient to only
one (TGA->TAA, TAG->TAA). We can, however, discern
that at least some TAA selection relates to translational
read-through by examination of 30 flanking sequence known
to alter read-through rates (Bossi and Roth 1980; Wei and Xia
2017; Cridge et al. 2018). Enrichment of these flanking motifs
across genes, aligned with evidence for TAA preference in
HEGs, provides solid evidence that read-through is a signifi-
cant, although not necessarily unique, selection pressure.

A third reason that read-through is a good exemplar is
because there is prior evidence for an easy to define error
mitigation mechanism. Notably, 30 in-frame additional stop
codons (ASCs) may ameliorate translational error costs by
providing a second opportunity (a fail-safe mechanism) to
terminate translation (Nichols 1970; Major et al. 2002; Liang
et al. 2005; Adachi and Cavalcanti 2009; Fleming and
Cavalcanti 2019). ASCs have sometimes been referred to as
“tandem stops”; however, we prefer the “ASC” terminology to
avoid possible confusion relating to their proximity to the
primary stop. The term “tandem stop codon,” for example,
sometimes only refers to the immediately proximal in-frame
codon position. Similarly, we note that ASCs are distinct from
out-of-frame stop codons, these being stops that lie out-of-
frame in coding sequence, possibly to ameliorate frameshift
errors (Seligmann and Pollock 2004; Abrahams and Hurst
2017). One might expect that selection for ASCs might be
stronger the closer they are to the focal stop codon. For this
reason, and following prior evidence of enrichment specifi-
cally at sites very close to the focal stop (Liang et al. 2005;

Adachi and Cavalcanti 2009; Ho and Hurst 2019), we here
consider ASC enrichment in the following six in-frame
“codon” positions.

Theoretical expectations regarding Ne and the selection on
error rate control and error mitigation are not as simple as
stronger selection, and hence greater commonality of both,
when Ne is high (Rajon and Masel 2011; Meer et al. 2020). The
situation is especially complex as the global/local and rate/
mitigation distinctions provide four mutually dependent axes
for selection. Selection on mitigation and rate have the po-
tential to be negatively associated: If rates are low, mitigation
is unnecessary; if mitigation is effective, selection on rate re-
duction diminishes (Rajon and Masel 2011). Similarly, if global
error rates are low or global mitigation mechanisms effective,
selection for local effects will be weaker and vice versa. These
dynamics are even more complicated as correlations can be
accentuated by subsequent evolution. If, for example, error
read-through rates are low, then 30 downstream regions are
effectively shielded from selection so enabling accumulation
of mutations that render read-through more deleterious
should it happen, intensifying selection to reduce rates
(Rajon and Masel 2011; Meer et al. 2020). This sort of positive
feedback loop produces, it is argued, two attractors: mostly
deleterious consequences of read-through (no ASCs) coupled
with low read-through rates, and mostly benign read-through
(owing to ASCs and other devices) coupled with high read-
through rates (Rajon and Masel 2011; Meer et al. 2020).

The question then is how the occupancy of these two sol-
utions, assuming these to be the only two stable solutions, might
be affected by changes in Ne. Unlike global solutions, local sol-
utions must evolve multiple times in order to affect error han-
dling for multiple genes. Each event must have a low selection
coefficient associated with it (as opposed to global modifiers).
Considering the case of read-through errors in particular, it was
thus argued that a strategy of high error rate with common
mitigation is expected under high Ne (Rajon and Masel 2011;
Meer et al. 2020). Conversely as Ne declines, the solution could
shift to globally regulated low error rates (low read-through
rates) and absence of mitigation (reduced selection for ASCs).

In support of their model, especially as regards read-
through, Rajon and Masel (2011) argue that yeast has a large
population size, high read-through error rates with effective
local mitigation of read-through, citing previously observed
ASC enrichment (Liang et al. 2005). However, there was no
comparator from taxa with smaller or larger Ne. Our recent
demonstration (Ho and Hurst 2019) that in bacteria (that we
presume to mostly have even higher Ne) there is no evidence
for ASC enrichment would appear to contradict the predic-
tion of enrichment for local mitigation when Ne is high (see
also Korkmaz et al. [2014]). However, as bacterial and eukary-
otic termination mechanisms are not identical the compar-
ison may not be fair.

Meer et al. (2020) argue that the high mistranscription rate
in Escherichia coli compared with species such as S. cerevisiae
supports the view of higher error rates when Ne is also high.
Meer et al. (2020) also note, however, the possibility of local
selection to reduce error rates when Ne is high as 1) selection
is efficient and 2) intrinsic error rates are high. The recognition
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of the potential relevance of local selection on error rate ques-
tions in turn, the assumptions of the original model. The model
of Rajon and Masel (2011) assumes that error rate is a globally
regulated process associated with trade-offs in translational
velocity and growth rate, whereas mitigation is locally regulated
(e.g., by selection for ASCs). Local modulation of rate via change
in stop codon usage (leaky vs. nonleaky) is not considered. This
complicates matters as rate (stop codon choice) and mitiga-
tion (ASC selection) are both local variables. As such, both are
subject to low selective coefficients and so more likely to be
recognized by selection when Ne is high. In this regard, Rajon
and Masel (2011) make no prediction about TAA usage as a
function of Ne. However, just as Meer et al. (2020) predict, and
observe, lower mistranscription rates in HEGs than in lowly
expressed genes (LEGs) when both Ne and global mistranscrip-
tion rates are high (e.g., in E. coli), so too one can ask whether a
greater HEG/LEG TAA disparity is seen when Ne is high.

Rather than attempting to extend theory to consider the
balance between local rate and local mitigation (in a 2 � 2
framework), we shall instead attempt to provide a robust
empirical base for theory to address. We shall consider rates
of usage of TAA as a local rate reducing modifier and of ASCs
as local mitigators of errors. Aside from Ne, however, we also
ask about alternative possibly relevant parameters. For exam-
ple, often when considering error mitigation, a distinction
between unicellular and multicellular organisms may be rel-
evant. We presume that any given gene expression error is
more threatening to organismal survival in unicellular species
compared with multicellular ones. In multicellular species,
there are at least two mechanisms through which gene ex-
pression fitness effects could be ameliorated. Firstly, low fit-
ness cells generated by molecular error may be removed by
apoptosis and subsequently replaced through new cell pro-
liferation and differentiation (Bergmann and Steller 2010;
Brock et al. 2019). Secondly, in multicells the reduced pro-
ductivity of low fitness cells could be ameliorated by the
functional redundancy of its neighbors. These avenues are
not equally open to all cells within a multicellular species.
Indeed, for this sort of reason selection against erroneous
protein translation is thought to be more stringent in neu-
rons (Drummond and Wilke 2008). These same avenues for
compensation are probably less open to unicell species also.
Aside from cellularity, it may be important to consider ge-
nome anatomical features such as gene length, intergenic
distances, and GC content. As stop codons are GC-poor,
GC-rich genomes might be under stronger selection to pre-
serve TAA or ASCs whereas AT-rich genomes have a higher
probability of an in-frame ASC by chance. The costs of pro-
ducing potentially deleterious read-through transcripts might
also vary in terms of the proportion of the sequence added or
in terms of the absolute length added.

Results

Evidence for Selection against Translational Read-
through in Eukaryotes
We first sought to strengthen prior evidence (Li and Zhang
2019) that translational read-through is indeed opposed by

natural selection in eukaryotes. Given that nucleotides in
close downstream proximity to the stop are implicated in
stop codon recognition (Bossi and Roth 1980; Cridge et al.
2018; Tate et al. 2018) and hence are under selection to mod-
ify translational read-through, we ask 1) whether there is ev-
idence for selective constraint in the vicinity of the stop
codon, 2) whether overrepresented motifs reflect selection
for read-through suppression specifically, and 3) whether
TAA is overrepresented in HEGs. We note that analysis of
preferences 50 of the focal stop codon is complicated by se-
lection on amino acid content that need have little or nothing
to do with stop codon recognition. This notion is supported
in yeast, 50 codon usage being uncorrelated with known
effects on translation termination (Williams et al. 2004).
Indeed, amino acid choice has recently been shown to ma-
jorly impact protein expression and decay (Weber et al. 2020).
For these reasons, we focus attention on 30 effects but present
50 effects for context.

Constraint on Substitution Rate Surrounding Stop Codons Is

Most Acute Near the Stop Codon
In bacteria, substitution rate gradually increases with the 30

distance from the stop codon (Belinky et al. 2018). We here
apply the same species triplet method to consider substitu-
tion rates surrounding the stop codon in several eukaryotic
species (see Materials and Methods). Consistent with the
bacterial observations, we find substitution rate to be
constrained in close proximity to the primary stop codon
in TAA-, TGA-, and TAG-terminating genes across all of
our eukaryotic groups (fig. 1). Although the shape of the
downstream substitution rate curve is variable between
groups, substitution rate is always lowest in close proximity
to the stop codon, this being most evident in Caenorhabditis,
Drosophila, and Arabidopsis (fig. 1).

Preference for Motifs That Decrease Read-through Rates in

the Immediate Vicinity of the Stop Codon Is Commonplace in

Eukaryotes
Constraint on substitution rate alone, however, need not be
evidence for selection against translational read-through.
Stop codon recognition is not the sole function of the 30-
UTR sequence, these sequences also containing regulatory
motifs, binding sites for translational regulators, and so on
(Kuersten and Goodwin 2003; Mayr 2019). To ascertain
whether substitution constraint was attributable to selection
for read-through modifying motifs, we assessed the sequence
surrounding stop codons in HEGs for significant nucleotide
enrichments and depletions (compared with global levels;
fig. 2) and ask whether they relate to known read-through
modulators (Cridge et al. 2018). Looking for enrichment in
HEGs (compared with all genes) allows us to focus our anal-
ysis on identifying motifs that may decrease read-through,
under the assumption that these genes are where the costs
of aberrant stop recognition are the most extreme.

We find that certain site-specific nucleotide enrichments
(P< 0.05) are consistent (>3 genomes; supplementary table
T1 for TAA-terminating genes, supplementary table T2 for

Effective Population Size and Phenotypic Error . doi:10.1093/molbev/msaa210 MBE

247



−30 −20 −10 0 10 20 30

0.
00

0.
02

0.
04

Primates

Codon position

S
ub

st
itu

tio
n 

fr
eq

. TAA
TGA
TAG

−30 −20 −10 0 10 20 30

0.
0

0.
4

0.
8

Caenorhabditis

Codon position

S
ub

st
itu

tio
n 

fr
eq

. TAA
TGA
TAG

−30 −20 −10 0 10 20 30

0.
00

0.
04

0.
08

Aspergillus

Codon position

S
ub

st
itu

tio
n 

fr
eq

. TAA
TGA
TAG

−30 −20 −10 0 10 20 30

0.
0

0.
1

0.
2

0.
3

0.
4

Drosophila

Codon position
S

ub
st

itu
tio

n 
fr

eq
. TAA

TGA
TAG

−30 −20 −10 0 10 20 30

0.
00

0.
10

0.
20

Arabidopsis

Codon position

S
ub

st
itu

tio
n 

fr
eq

. TAA
TGA
TAG

FIG. 1. Substitution frequencies of TAA-, TGA-, and TAG-terminating genes at nucleotide positions surrounding the primary stop codon in five
eukaryotic groups. Though the profile of change in substitution rate downstream to the stop codon is different between groups, constraint on
substitution rate is relieved with increased 30 distance in TAA-, TGA-, and TAG-terminating genes across all of groups. The black line represents a
fitted polynomial line of the average substitution rate across all stop variants.

FIG. 2. Heat map showing significant nucleotide enrichments and depletions at positions surrounding (a) TAA, (b) TGA, and (c) TAG stop codons
in highly expressed human genes. Significant enrichments and depletions in HEGs were determined by chi-square tests (P< 0.05) relative to a null
expectation from all genes (regardless of expression level).
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TGA-terminating genes, supplementary table T3 for TAG-
terminating genes, Supplementary Material online) among
eukaryotes. The observed trends are also consistent with se-
lection to mitigate read-through. Notably, many of these
common nucleotide preferences (e.g.,þ4G orþ5C following
TAA) have previously been experimentally determined to
decrease read-through rate (Cridge et al. 2018). We hence
conclude that translational read-though is indeed a significant
error in gene expression that triggers local error rate selection
on 30 sequence in response.

TAA Stop Codons Are More Strongly Preferred in Highly

Expressed Eukaryotic Genes
Having established that read-though is a significant selection
pressure, we next assess whether TAA enrichment is a com-
mon evolutionary response. The assumption that TAA is the
least leaky stop predicts that TAA stops should be the most
common across all genomes, all else being equal. However, all
else is not equal, the most common stop for any given ge-
nome being well predicted by GC content which is highly
variable between species (supplementary fig. S1,
Supplementary Material online). As expected if there is
some form of GC pressure, the relative usage of TAA is neg-
atively correlated with GC content (P¼ 3.2� 10�6,
rho¼�0.803; Spearman’s rank), with TGA (P¼ 0.00083,
rho¼ 0.636; Spearman’s rank) and TAG (P¼ 0.00012,
rho¼ 0.705; Spearman’s rank) positively correlated. Similar
to the trends observed in bacteria previously (Korkmaz
et al. 2014), TAG is universally unfavored despite its identical
nucleotide composition to TGA.

Given the above, rather than simply considering raw TAA
usage between genomes, a fairer way to address whether
there might be selection favoring TAA is to ask whether
TAA is preferred in HEGs compared with LEGs within the
same genome, expression level being a key modifier in the
evolutionary dynamics of local error traps (Xiong et al. 2017).

Consistent with TAA selection, across a data set of 20 species
(15 multicellular and 5 unicellular) for which we have prote-
omic data we find 18/20 possess higher TAA usage in HEGs
(fig. 3). This significantly exceeds the simplest null expectation
of a 50:50 split of TAA preference between HEGs and LEGs
(P¼ 0.0002, one-tailed binomial test with null P¼ 0.5).
Moreover, in HEGs, the observed TAA stop frequencies across
our species are significantly higher than those of TGA
(P¼ 0.0047; Wilcoxon signed-rank test) and TAG
(P¼ 1.33� 10�8; Wilcoxon signed-rank test) in the same
species. This contrasts with what is seen in LEGs, where we
recover no significant difference between TAA and TGA fre-
quency across our data set (P¼ 0.29; Wilcoxon signed-rank
test). In LEGs, TAA frequencies are, however, higher than TAG
(P¼ 0.00029; Wilcoxon signed-rank test) possibly reflecting
the fact that TAG is the leakiest stop and least favored.

ASCs Are Enriched in HEGs Predominantly in
Genomes Where ASCs Are Globally Enriched
As with TAA stop codons we can also ask whether ASCs in
the first six in-frame codon positions are preferred in HEGs
(fig. 4), well-described ASC enrichment being previously wit-
nessed in such proximity to the focal stop (Nichols 1970;
Major et al. 2002; Liang et al. 2005; Adachi and Cavalcanti
2009; Fleming and Cavalcanti 2019; Ho and Hurst 2019).
Using the same data set, we find that only 7/20 genomes
possess an excess of ASCs in HEGs compared with LEGs
when considering genes that end in any stop. This is no dif-
ferent than expected under the 50:50 null (P¼ 0.26, two-
tailed binomial test with null P¼ 0.5). This might, however,
be complicated by the fact that TAA-ending genes are also
less leaky and highly expressed. However, we do not observe
any deviation from this null across any of the primary stop
groups either (7/20 genomes when considering TAA-
terminating genes, 7/20 considering TGA-terminating genes,

FIG. 3. Difference in the usage of (a) TAA, (b) TGA, and (c) TAG stop codons between HEGs and LEGs in 20 eukaryotic species. HEGs are the top
quartile of genes expressed according to experimentally derived protein abundance data. LEGs are defined as the bottom quartile of expressed
genes. The dotted line in each plot represents equal codon usage between HEGs and LEGs, hence points above the line represent overusage in HEGs
(colored purple) and points under the line represent overusage in LEGs (colored orange). In our sample, 18/20 genomes contain higher TAA
frequency in HEGs compared with LEGs. Numbered data points correspond to the following species: 1, Gallus gallus; 2, Bos taurus; 3, Homo sapiens;
4, Xenopus tropicalis; 5, Aspergillus niger; 6, Drosophila melanogaster; 7, Chlamydomonas reinhardtii; 8, Arabidopsis thaliana; 9, Schizosaccharomyces
pombe; 10, Dictyostelium discoideum; 11, Equus caballus; 12, Apis mellifera; 13, Rattus norvegicus; 14, Saccharomyces cerevisiae; 15, Plasmodium
falciparum; 16, Anopheles gambiae; 17, Caenorhabditis elegans; 18, Oryza sativa; 19, Trypanosoma brucei; 20, Danio rerio.
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9/20 considering TAG-terminating genes, all results P> 0.05,
two-tailed binomial tests with null P¼ 0.5).

Although prima facie the above suggests that no selection
is acting upon ASCs, we instead suggest that this owes to the
phylogenetic patchiness of ASC enrichment. Across verte-
brates, plants, fungi, and invertebrates we find some genomes
that have significant ASC enrichment, and others that do not
(supplementary fig. S2, Supplementary Material online), sug-
gesting that strong ASC selection is not common to all spe-
cies, but particular to a few. Specifically, we see no evidence
for such enrichment in vertebrates as a group, but more
species show enrichment in plants, fungi, and invertebrates
than expected by chance (supplementary fig. S2,
Supplementary Material online). If only some genomes, for
whatever reason, have selection for ASCs these should be
enriched for genomes showing an excess in HEGs compared

with LEGs. Indeed, of the seven genomes that possess an
excess of ASCs in HEGs compared with LEGs (considering
all genes), four contain significant ASC enrichment. By con-
trast, only one genome contains significant ASC enrichment
out of the 13 which have ASC excess in LEGs compared with
HEGs. These proportions are significantly different (P¼ 0.031,
Fisher’s exact test), suggesting that if ASCs are under selection
it is in HEGs that they are most common. However, the same
result also suggests that in many species ASCs are not under
strong selection.

Ne Predicts TAA Usage, but Not ASC Enrichment
As we reported previously (Ho and Hurst 2019), some but not
all unicellular eukaryotes show evidence of statistically signif-
icant ASC enrichment. As described above, this patchiness of
ASC enrichment is observed in multicellular eukaryotes too.

FIG. 4. Difference in ASC frequency between genes of high and low expression across (a) all genes, (b) TAA-terminating genes, (c) TGA-terminating
genes, and (d) TAG-terminating genes in 20 eukaryotic species. HEGs are the top quartile of genes expressed according to experimentally derived
protein abundance data. LEGs are defined as the bottom quartile of expressed genes. The dotted line in each plot represents equal ASC frequency
in HEGs and LEGs, hence points above the line represent overusage in HEGs (colored purple) and points under the line represent overusage in LEGs
(colored orange). In our sample, 7/20 genomes contain higher ASC frequency in HEGs compared with LEGs when considering all genes. Numbered
data points correspond to the following species: 1, Gallus gallus; 2, Bos taurus; 3, Homo sapiens; 4, Xenopus tropicalis; 5, Aspergillus niger; 6,
Drosophila melanogaster; 7, Chlamydomonas reinhardtii; 8, Arabidopsis thaliana; 9, Schizosaccharomyces pombe; 10, Dictyostelium discoideum; 11,
Equus caballus; 12, Apis mellifera; 13, Rattus norvegicus; 14, Saccharomyces cerevisiae; 15, Plasmodium falciparum; 16, Anopheles gambiae; 17,
Caenorhabditis elegans; 18, Oryza sativa; 19, Trypanosoma brucei; 20, Danio rerio.
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We note that in all multicellular groups we have analyzed,
ASC enrichment is rarer than seen in unicellular species (sup-
plementary fig. S3, Supplementary Material online). Similarly,
pooling all multicellular HEGs together and all unicell HEGs
together we find TAA usage in unicells (62.7%) to significantly
exceed that of multicells (43.7%) (P< 2.2� 10�16,
v2¼ 597.1, chi-square test 1 df). Such variation within groups,
and between unicells and multicells, could potentially be
explained by Ne or cellularity but our analysis has so far failed
to control for phylogeny.

To test for correlation between TAA enrichment and Ne,
we gather a sample of species for which we have an Ne esti-
mate. As this sample contained a few species pairs that are
especially phylogenetically close (and thus especially influen-
tial in the face of parameter estimation error), we pruned the
species sample (and phylogenetic tree) to remove closely re-
lated species pairs with low species divergence times, leaving
one of the two (e.g., human–chimp was resolved to human
alone) (supplementary fig. S4, Supplementary Material on-
line). For each genome in our reduced species list (n¼ 15),
we calculate a TAA enrichment score taking into account
background nucleotide usage (see Materials and Methods)
and compare this parameter with Ne in phylogenetically con-
trolled regression analyses (using phylogenetic generelized
least squares [PGLS] tests). We find robust evidence to sup-
port a positive relationship between Ne and TAA enrichment
(adjusted r2¼ 0.55, P¼ 0.00098, k¼ 0.0; PGLS).

To test the comparable prediction for ASC enrichment, we
calculated an ASC enrichment score for each genome.
Interestingly, although a phylogenetically uncontrolled anal-
ysis reports significance in the direction expected (supple-
mentary fig. S5, Supplementary Material online), a
significant relationship between ASC enrichment and Ne

was not recovered (adjusted r2¼�0.07, P¼ 0.85, k¼ 1.0;
PGLS). This is because ASC enrichment shows a high rate
of phylogenetic autocorrelation (P¼ 0.03 for k¼ 0.0,
P¼ 1.0 for k¼ 1.0), the high k value suggesting that the trait
is evolving as expected given the tree topology alone.

These results suggest that, although TAA enrichment and
ASC enrichment are both adaptations to translational read-
through, TAA usage is consistent with expectations from the
nearly neutral theory but ASC enrichment is not. Instead, its
distribution appears to be patchy.

No Significant Correlation between Ne and TAA HEG/
LEG Disparity
Meer et al. (2020) note that when Ne is high, there is a greater
disparity in mistranscriptional error rates between HEGs and
LEGs than there is when Ne is low. Here, we ask whether there
is similarly a greater HEG/LEG TAA disparity when Ne is high.
To test this, we employ protein abundance data to identify
HEGs and LEGs for the species in our tree (due to lack of
available data, we are reduced to n¼ 11). The variable to be
measured for association with Ne was TAA frequency in HEGs
divided by TAA frequency in LEGs (that we call TAA dispar-
ity). We find no significant relationship between TAA dispar-
ity and Ne in phylogenetic-controlled analysis (P> 0.05)
(adjusted r2¼ 0.19, P¼ 0.10, k¼ 0.0; PGLS). We note too

that the effect size measured by adjusted r2 at 0.19 is sub-
stantially lower than that observed for the TAA enrichment–
Ne effect (adjusted r2¼ 0.55). One possible caveat, however, is
that the sample size here is a little lower than in the Ne–TAA
enrichment correlation (n¼ 11 and n¼ 15) and k is low
indicating that phylogeny alone cannot explain all of the
data. However, using the same species as in the TAA analysis
(i.e., with n¼ 11), Ne remains strongly and significantly cor-
related with TAA enrichment (see above, and Materials and
Methods) (adjusted r2¼ 0.39, P¼ 0.024, k¼ 0.0; PGLS). This
suggests that we have enough statistical power to detect a
correlation between HEG/LEG TAA disparity and Ne, at least if
there was one of the same magnitude as seen with TAA
enrichment.

Cellularity Predicts ASC Enrichment but Not TAA
Usage
The results described so far suggest that high Ne genomes
favor the most effective stop codon, especially in HEGs.
However, Ne appears to have no ability to predict between-
species variation in ASCs, at least after phylogenetic control.
What might then explain such variation? We ask whether
cellularity may be a predictor as multicellularity may protect
against gene expression error by either cell redundancy or cell
replacement.

First, we ask whether cellularity (considered as a binary
trait in PGLS analysis using the same species tree) predicts
TAA and ASC enrichment. We find that it does not for TAA
enrichment (adjusted r2¼ 0.022, P¼ 0.27, k¼ 0.0; PGLS) but
does for ASC enrichment (table 1). This test, although sug-
gestive of a role for cellularity in prediction of ASCs, could be
criticized as it overlooks the possible interaction between the
TAA and ASCs, namely a gene with TAA may not require
ASCs, although in yeast ASCs are used most commonly when
associated with TAA (Liang et al. 2005). To consider this issue
we divide genes into TAA ending and non-TAA ending (ta-
ble 1). We find that the connection between cellularity and
ASC usage is unaffected. However, there emerges the possi-
bility of ASC enrichment in non-TAA-ending genes being
predicted by Ne, although this is sensitive to Bonferroni cor-
rection (at P< 0.05/3).

As cellularity and Ne are likely to covary, the further (and
possibly fairer) comparison is to consider the ASC and TAA
enrichment jointly by both cellularity and Ne (table 2). This
we do using a multiple regression model within PGLS. The
resulting model, using the ASC enrichment scores calculated
from all genes, has a significant fit to the data (adjusted
r2¼ 0.45, P¼ 0.011, k¼ 0.0; multiple regression PGLS) with
cellularity remaining a significant predictor (P¼ 0.015), unlike
Ne (P¼ 0.77). The presence of a significant relationship for
cellularity, but not Ne, with ASC enrichment is also evident
both when we restrict our gene sets to non-TAA- and TAA-
ending genes. Notably, the earlier observed weak correlation
between ASC enrichment and Ne when TAA genes are ex-
cluded is removed upon control for cellularity. The same
multiple regression method for TAA enrichment finds, as
before, that Ne is a significant predictor (P¼ 0.0018), unlike
cellularity (P¼ 0.37).
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These results suggest that Ne, but not cellularity, predicts
the usage of the least leaky stop codon, consistent with clas-
sical nearly neutral theory. By contrast, enrichment of ASCs is
predicted by cellularity and not by Ne, the latter being con-
trary to the predictions of Rajon and Masel (2011).

GC Content May Play a Minor Role in TAA
Enrichment
Aside from Ne and cellularity, it is possible that genome ar-
chitecture plays a role in both TAA and ASC selection. Might
such factors help explain the patchiness of ASC enrichment
across species of the same taxonomic group or cellular state?
For example, as stop codons are AT-rich, GC-rich genomes
contain fewer TAA stops and 30 ASCs by chance and hence
might be under higher selection pressure to preserve existing
ones. Additionally, shorter average gene size might modulate
the intensity of selection, possibly because the costs associ-
ated with the misprocessing of long genes are higher owing to
greater wastage. Larger average 30 intergenic distance may
also ensure that TAA primary stops and ASCs are under
stronger selection in order to minimize the amount of mis-
processing following stop codon read-through.

Considering all three variables in a multiple regression, we
find GC content to be the lone significant coefficient when
predicting TAA enrichment (P¼ 0.028) despite the overall
model having a near significant fit to the data (adjusted
r2¼ 0.30, P¼ 0.075, k¼ 0.0; PGLS). This relationship is posi-
tive, consistent with the view that TAA stops are increasingly
preserved in GC-rich genomes. Using the same methodology,
ASC enrichment is not predicted by GC content (P¼ 0.99),
median gene body length (P¼ 0.53) or median 30 intergenic
distance (P¼ 0.52), the overall model being a nonsignificant
fit to the data (adjusted r2¼�0.18, P¼ 0.83, k¼ 1.0; PGLS).

The above results suggest the most relevant model, at least
for TAA usage, may be one in which GC, cellularity, and Ne are
employed as predictors. In such a model, GC content does
not remain a significant predictor of TAA usage (overall
model: adjusted r2¼ 0.60, P¼ 0.0042, k¼ 0.0; Ne: P¼ 0.013;

cellularity: P¼ 0.97; GC: P¼ 0.13; PGLS). The same model still
finds that cellularity (P¼ 0.028), but neither Ne (P¼ 0.96) nor
GC (P¼ 0.69), is a predictor of ASC enrichment (overall
model: adjusted r2¼ 0.41, P¼ 0.031, k¼ 0.0; PGLS).

We conclude that GC content plays no more than a minor
role in TAA selection at the primary site and that genome
architecture is otherwise unimportant in the identification of
genome-wide TAA and ASC enrichment.

Marginal Evidence That Genes Associated with
Expression in Unicell Mode Contain More ASCs Than
Genes Associated with Multicellular Expression in the
Same Organism
The above analyses suggest a role for Ne alone in determining
the usage of error-preventing TAA, whereas impact mitigat-
ing ASCs were predicted by cellularity. The latter, being a
novel result, merits further consideration. Indeed, it would
be helpful to have a further means to test the cellularity
model controlling for Ne. We suggest that this could be
achieved by comparing genes expressed exclusively in the
unicell mode with those expressed exclusively in the multicell
mode in the same species. We consider two such compar-
isons: between pollen-specific genes and genes expressed
more often in the whole plant body (for brevity, pollen-
reduced genes) in Arabidopsis thaliana and between the uni-
cellular free-living amoeboid phase and the multicellular
phase in the cellular slime mold Dictyostelium discoideum.
Neither comparison is perfect but to some extent as a pair
they control for each other’s weaknesses. In A. thaliana we
are, for example, comparing common multicellular expres-
sion with rare single cell expression, whereas in D. discoideum
the unicell mode of expression is the common mode of gene
expression. However, in Arabidopsis we also have a difference
between haploid and diploid expression which is
uncontrolled.

Table 2. ASC Enrichment Scores Assessed for a Relationship with Ne or Cellularity by Including Both Parameters in Multiple Regression PGLS.

Dependent Variable Gene Set Ne Cellularity Adjusted r2

ASC enrichment All genes P 5 0.77 P 5 0.015 r2 5 0.45
Non-TAA-ending genes P 5 0.25 P 5 0.032 r2 5 0.50
TAA-ending genes P 5 0.12 P 5 0.0013 r2 5 0.54

NOTE.—ASC enrichment score was calculated for three different sets of genes for each eukaryotic genome in our data set: all genes, non-TAA-ending genes, TAA-ending genes.
The resultant scores were then assessed for a relationship with either Ne or cellularity in a phylogenetically controlled multiple regression. P-values are given for each coefficient
and the adjusted r2-value is reported for each overall model.

Table 1. ASC Enrichment Scores Assessed for a Relationship with Ne or Cellularity by Linear Regression Using PGLS.

Dependent Variable Gene Set Ne Cellularity

ASC enrichment All genes P 5 0.85, r2 5 –0.07 P 5 0.0021, r2 5 0.49
Non-TAA-ending genes P 5 0.041, r2 5 0.23 P 5 0.0024, r2 5 0.48

TAA-ending genes P 5 0.98, r2 5 –0.08 P 5 0.0026, r2 5 0.48

NOTE.—ASC enrichment score was calculated for three different sets of genes for each eukaryotic genome in our data set: all genes, non-TAA-ending genes, TAA-ending genes.
The resultant scores were then assessed for a relationship with either Ne or cellularity in a phylogenetically controlled manner. P-values and r2-values are given for each scenario.
r2-values given are the adjusted r2-values, hence why some are negative.
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Dictyostelium discoideum Unicell-Expressed Genes Have an

Excess of 1 ASCs
The cellularity hypothesis predicts ASCs to be enriched in
vegetative (single cell) expressed genes compared with soci-
ality (multicellular) genes. Considering all six 30 codon posi-
tions together this is observed (v2¼ 4.76, P¼ 0.029; chi-
square test with 1 df). Examined on a site-by-site basis,
ASCs are significantly enriched in vegetative genes compared
with sociality genes at position þ1 (P¼ 0.0035, chi-square
test with 1 df), but no other position within our chosen
UTR range (positions þ2 to þ6: P> 0.05). Although there
is no significant difference in ASC frequency between vege-
tative and social genes across positions þ2 to þ6, ASC fre-
quencies in vegetative stage expressed genes are nonetheless
strongly enriched (P< 0.001; chi-square tests with 1 df; fig. 5)
across all positions compared with dinucleotide-controlled
null. ASCs in sociality genes are also enriched beyond dinu-
cleotide expectations at positions þ2 to þ4 (P< 0.001; chi-
square tests with 1 df), suggesting that these are the most
optimum locations for ASC enrichment within the species
within our chosen UTR range. The position þ1 difference
between vegetative and sociality genes can also be observed
when comparing genes against the Adachi and Cavalcanti
(2009) null (see Materials and Methods), vegetative gene
ASC frequency being nondeviant (P¼ 0.32; chi-square test
with 1 df) and sociality gene ASC frequency being significantly
lower than expected (P¼ 0.0089, chi-square test with 1 df).
This difference is not only consistent with our cellularity pre-
diction but also prima facie consistent with the possible pre-
diction of the fail-safe hypothesis that ASCs should be most
strongly selected immediately after the primary stop codon
to minimize the error made following read-through.

Might this effect alternatively be owing to a more general
thymine nucleotide preference (þ4T) following the primary
stop that affects position þ1 ASC frequency, as seen in bac-
teria (Major et al. 2002; Wei and Xia 2017)? Contra to this
possibility, we find T-starting codons (excluding TGA, TAA,
and TAG) to be significantly enriched in sociality genes rather
than vegetative genes at this site (P< 0.0001, chi-square test
with 1 df). This is the opposite to what would be expected if
þ4T enrichment were to explain the ASC difference observed
between vegetative and social genes.

Arabidopsis thaliana Unicell-Expressed Genes Have an

Excess of 1 ASCs
Per the cellularity hypothesis, we predict pollen-specific genes
to be more likely to contain ASCs than pollen-reduced genes,
in spite of them being less expressed. However, UTR-wide
ASC frequency (all positions þ1 to þ6) is not significantly
deviant between the two gene sets (v2¼ 1.33, P¼ 0.25; chi-
square test with 1 df). Considering each position in isolation,
we find that ASCs in pollen-specific genes are, however, sig-
nificantly enriched compared with pollen-reduced genes at
position þ1 (P¼ 0.015, chi-square test with 1 df), consistent
with prior evidence for ASC selection at this site in A. thaliana
(Kochetov et al. 2011). There is no significant difference at any
other position within our chosen 30-UTR range (pos þ2:
P¼ 0.39, pos þ3: P¼ 0.90, pos þ4: P¼ 0.56, pos þ5:
P¼ 0.87, pos þ6: P¼ 0.93). Again, we acknowledge the pos-
sibility that the position þ1 ASC difference occurs due to
nucleotide preference in proximity to the primary stop. We
reject this possibility, finding no significant difference in
T-starting codon (excluding TAA, TGA, and TAG) frequency

FIG. 5. Assessment of ASC enrichment against (a) the Adachi & Cavalcanti null and (b) dinucleotide-controlled simulations in the 30-UTRs of
sociality- and vegetative-growth associated genes in Dictyostelium discoideum. ASC frequencies in vegetative stage expressed genes are enriched
(P< 0.001; chi-square tests with 1 df) across all positions compared with the dinucleotide null. Against the same null ASCs in sociality genes are
enriched at positionsþ2 toþ4 (P< 0.001; chi-square tests with 1 df), suggesting that these are the most optimum locations for ASC enrichment
within D. discoideum within our chosen UTR range. Against the AþC null, vegetative gene ASC frequency is nondeviant (P¼ 0.32; chi-square test
with 1 df) whereas sociality gene ASC frequency is significantly lower than expected (P¼ 0.0089, chi-square test with 1 df).
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at position þ1 between pollen-specific and pollen-reduced
genes (v2¼ 1.7, P¼ 0.20; chi-square test with 1 df).

Does this result truly reflect a difference between unicell
and multicell expressed genes or might the signal observed
merely represent a difference between plant tissues, irrespec-
tive of cellularity? We can test this by comparing multicellular
tissues. Consistent with there being no difference between
tissues of the same state, UTR-wide ASC frequencies between
leaf-specific and non-leaf-specific genes are nondeviant
(v2¼ 0.24, P¼ 0.63; chi-square test with 1 df). Taking each
position in isolation, there are no differences anywhere be-
tween positions þ1 to þ6 (P> 0.05). Similarly, comparing
silique-specific genes to non-silique-specific genes also finds
no evidence to support deviant ASC frequencies (UTR-wide
and all positional results P> 0.05; chi-square tests with 1 df).

In our analysis of ASC enrichment in multicellular species
(supplementary fig. S1, Supplementary Material online), we
detected significant ASC enrichment at position þ1 in
A. thaliana. Is this still the case in pollen-reduced genes
that are rarely expressed in the unicell mode or might the
trend be predominantly owing to the pollen-expressed genes?
To assess this, pollen-specific and pollen-reduced genes were
compared with both dinucleotide-controlled and AþC null
at position þ1. Against dinucleotide-controlled simulations,
the ASC frequencies of both sets of genes are significantly
enriched at this position (pollen-specific genes: P¼ 0.0022,
pollen-reduced genes: P¼ 0.031, chi-square tests with 1 df;
fig. 6). However, when compared with the AþC null, there is
evidence of ASC enrichment at position þ1 (P¼ 0.0019,
chi-square test with 1 df) in pollen-specific but not pollen-
reduced genes (P¼ 0.23, chi-square test with 1 df). The pollen
case study hence concurs with our evidence that

unicellularity may play some role in determining selection
for error mitigation.

Weak Evidence for TAA Enrichment in Single-Cell Expressed

Genes
Above, we have considered ASC usage as a function of cellu-
larity within the same species. If the prior results comparing
between species hold, we do not expect to see much, if any,
evidence for TAA enrichment in the single-cell phase. In the
slime mold, TAA is found at a slightly higher frequency in
vegetative genes (89.5%) than multicell genes (87.7%)
(v2¼ 4.4, P¼ 0.036; chi-square test with 1 df). In
Arabidopsis, TAA usage is higher in absolute terms in
pollen-specific genes (40.1% of genes, compared with 36.0%
in pollen-reduced genes) but not significantly so (v2¼ 2.5,
P¼ 0.12; chi-square test with 1 df). We suggest that these
present weak support at best for a coupling between cellu-
larity and TAA usage.

Discussion
When considering the evolution of the rate of heritable errors
(i.e., mutations), the drift-barrier model for the evolution of
the mutation rate (Sung et al. 2012; Lynch et al. 2016) pro-
poses that heritable error rates will be higher when Ne is lower.
By contrast, Rajon and Masel (2011) suggest that in species of
large effective population size (Ne) there is more effective
selection favoring local error mitigation (i.e., more ASCs)
hence relaxing selection on global rate modification. We
find that the prediction of Rajon and Masel (2011) for ASC
enrichment to be higher when Ne is high to not be supported.
We also find that their further result of greater HEG/LEG

FIG. 6. Assessment of ASC enrichment against (a) the Adachi & Cavalcanti null and (b) dinucleotide-controlled simulations in the 30-UTRs of
pollen-specific and pollen-reduced genes in Arabidopsis thaliana. Against dinucleotide-controlled simulations, the ASC frequencies of both sets of
genes are significantly enriched at position þ1 (pollen-specific genes: P¼ 0.0022, pollen-reduced genes: P¼ 0.031, chi-square tests with 1 df).
Consistent with the cellularity hypothesis, significance is an order of magnitude weaker in the case of pollen-reduced genes. When compared with
the AþC null, there is evidence of ASC enrichment at positionþ1 (P¼ 0.0019, chi-square test with 1 df) in pollen-specific but not pollen-reduced
genes (P¼ 0.23, chi-square test with 1 df).
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disparity when Ne is high (Meer et al. 2020) is not replicated as
regards selection for TAA.

By contrast, we do find that TAA preference, and hence
local error rate, is predicted by Ne although whether absolute
global rates also vary with Ne we cannot address. This con-
clusion assumes that TAA, the preferred stop codon in HEGs
in nearly all of our species, because it is associated with lower
read-through rates. We showed both enrichment of motifs
associated with reduced read-through in HEGs and a general
preference for TAA in HEGs, both indicative of selection on
TAA to enable low read-through rates. It would be valuable to
empirically test this prediction across multiple eukaryotic spe-
cies, but it is promising that available experimental data are
consistent (Cridge et al. 2018). With this caveat, we suggest
therefore that our results provide prima facie support for the
drift-barrier model being applied to understand the fate of
mutations affecting the rate of local phenotypic errors.

Why Might the Prior Model Be Wrong?
Rajon and Masel (2011) predict higher ASC usage when Ne is
high. This we did not observe. Why might the model of Rajon
and Masel (2011) be wrong? We consider several possibilities.
Firstly, this may reflect the fact that selection on ASCs is but
one mode of locally selected mitigation on read-through. In
yeast, potential C-terminal extensions may become pre-
adapted for read-through events (evidenced by higher intrin-
sic structural disorder) (Kosinski and Masel 2020). In
mammalian cells, increased hydrophobicity in 30-UTR
encoded sequence has been linked to more efficient transla-
tion arrest when termination fails (Hashimoto et al. 2019).
However, unless the relative importance of ASCs as a mode of
local mitigation itself varies with Ne, there is no reason to
suppose that the prediction of Rajon and Masel (2011),
that they supported by reference to selection on ASCs specif-
ically, is incorrect.

Secondly, might our analysis be too conservative? That we
find Ne to predict ASC enrichment in phylogenetically uncon-
trolled tests is a provocative result given the use of phyloge-
netic control in similar studies has been contentious. For
example, the associations between genome complexity and
Ne described by Lynch and Conery (2003) were observed
without control for phylogeny and were subsequently found
to not be robust to phylogenetic control (Whitney and
Garland 2010). However, more recently, a relationship be-
tween Ne and intron size/number has been recovered using
PGLS, albeit with more data points and more recent Ne esti-
mates (Wu and Hurst 2015). On balance it seems that the
most stringent tests are those that are phylogenetically con-
trolled and hence, to err on the side of caution, we prefer the
argument that there is no link between Ne and ASCs.
However, given the findings of Wu and Hurst (2015), we
acknowledge the possibility that the lack of observed relation-
ship between these two variables may not be resilient to
improved sample size and improved Ne estimation. We
note too that Ne estimation makes an assumption that the
populations are at equilibrium which need not be true but
should just factor as a noise variable in the analysis.
Nevertheless, the association between Ne and ASC

enrichment must be, at the very least, weaker than that ob-
served between Ne and TAA enrichment given that we find a
significant relationship between these traits using the same
test with the same data.

Thirdly, the inability of this model to correctly predict the
data may stem from the fact that it is importantly incom-
plete. Rajon and Masel (2011) assume that the only local
selection is through the mitigation route (e.g., ASC selection),
rate being modified by global trade-offs between translational
fidelity and replication rate. As local selection is only available
to species with high Ne, they infer that mitigation (by assump-
tion the only mode of local selection) is favored when Ne is
high. However, they do not consider the case of local rate
modifiers (stop codon usage), which also should respond
most efficiently to selection when Ne is high. That ASC selec-
tion is not predicted by Ne but local rate modifiers are sug-
gests that their model is incomplete (in an important
manner). If so, this suggests caution in assuming veracity of
downstream inferences and suggests that it is important to
include local rate and mitigation (and global mitigation if this
too is relevant). That we could not substantiate their exten-
sion (Meer et al. 2020) which assumed higher absolute error
rates when Ne is high, causing greater TAA HEG-LEG disparity,
is similarly compatible with a problem with model
specification.

We suggest that extended models could quite easily ex-
plain our observations. Given that local error rates are lower
when Ne is high (higher TAA usage), we might expect the lack
of clear correlation with patterns of ASC enrichment (and
deviation from prior predictions regarding ASC usage): When
local error rates are low, selection for ASCs is low because
mistakes are rare, when error rates are high this is because
selection is too weak to reduce local error rate and hence
selection for ASCs must also be weak. We probably need
other variables, such as cellularity, to explain between-
species variation in ASC enrichment.

Remaining Conundrums
Why Might Selection Act More on Local Error Rates Than on

Local Error Mitigation
Above we suggest a synthesis in which Ne modulates the
efficiency of local selection such that error rates are lower
when Ne is high which in turn dislocates any mitigation se-
lection (ASCs). It leaves, however, several unanswered ques-
tions. Firstly, why might selection act more on local error rates
than on local error mitigation? The logic of the Rajon and
Masel (2011) model is that selection for local effects is asso-
ciated with small selective coefficients and so most relevant in
species with high Ne. This renders the apparent preference for
selection on rate over mitigation enigmatic. If an error, such a
read-through, has a mean cost c per event (energy lost
through translation of the 30-UTR, deleterious protein prod-
ucts, etc.) and a rate r (proportional to the number of trans-
lation events over time), then the net cost is c� r. A mutation
reducing the error rate by delta r (dr) should be associated
with positive selection of strength equal to c.dr. Similarly,
however, reducing the cost by dc has selection of strength
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dc.r. Given the symmetrical nature of these two, it is not at
first sight obvious why selection should be focused more on
the rate of error than on the cost per error. This might be
because mutations affecting rate are more common than
those affecting cost. This seems unlikely as rate-affecting
mutations must act at or near the stop codon whereas
cost can be reduced by any mutation in 30-UTR that enables
an earlier ASC.

Alternatively, the nature of the mutational effects may be
different such that c.dr > cd.r, that is, reducing error rate is
more visible to selection than reducing error cost. We suggest
that one possible reason, at least in our system, is that TAA is
so much more efficient than TGA that a TGA->TAA muta-
tion may have an order of magnitude effect on the error rate,
as evidenced in bacteria (Sambrook et al. 1967; Roth 1970;
Strigini and Brickman 1973; Ryden and Isaksson 1984), but an
ASC might save only a relatively small proportion of energy.
For example, in AT-rich genomes there might be a stop a
certain distance from the focal stop just by chance. An earlier
stop codon is likely to reduce costs but not by orders of
magnitude (indeed Rajon and Masel [2011] assume that
any ASC renders read-through effectively neutral). In addition,
ASCs may not be a perfect solution to reducing costs as they
may be less effective if not within a correct context (Major
et al. 2002). If so, c.dr� dc.r may hold and we expect selection
on local rate more than local mitigation of costs. That AT-rich
genomes likely have a fail-safe stop codon by accident may
also explain why we find TAA enrichment to be predicted by
GC content. In GC-rich species, the costs of read-through are
higher as the distance to the nearest downstream accidental
stop codon is longer. Hence, the selection for TAA is stronger
than when an incidental ASC is found.

If the above logic is correct, then the results derived here
need not be generalizable to other error-prone systems.
Although Rajon and Masel (2011) emphasize that the trans-
lational read-through system may be a generalizable exemplar
(as we too indeed assumed) of error control, if the above logic
is correct it would suggest that the preference for local error
rate selection is largely contingent on a peculiarity of the
system (high error rate variance between stops). For this rea-
son, and contra Rajon and Masel (2011), we caution against
generalizing.

If further caution against generalizing is needed, consider
the case of selection on splicing. Our model for stronger TAA
selection when Ne is high, and no correspondence with error
mitigation, might appear to be at odds with evidence for the
increased use of another local error rate modifier, ESEs, to
reduce the rate of error-prone splicing in low Ne species, these
having large and frequent introns (Wu and Hurst 2015). In
this case, however, it is proposed that not simply are error
rates higher with low Ne, but they are also subject to a
ratchet-like accumulation of insertions, each degrading splic-
ing levels that bit more. As a consequence, the accumulation
of many splice degrading insertions can enable selection for
one exonic mutation enabling increased splice rates (hence
increased ESE density, especially in proximity to large introns).
In the case of stop codons, there is only one stop codon per
gene so there is less possibility of an accumulation of stop

codon degrading mutations. We note that the possibility that
weakened local selection might itself increase error rates is
not permitted in the models of Rajon and Masel (2011) or
Meer et al. (2020).

Why Might Cellularity Matter for ASCs but Not for TAA?
A second enigma concerns the cellularity result. Although Ne

does not predict ASC enrichment, that is, local error mitiga-
tion, in phylogenetically controlled tests across species, even
controlling for Ne, single-celled status predicts ASC enrich-
ment. Comparison of unicell- and multicell-expressed genes
within the same species provides some further, albeit mar-
ginal, support for this possibility. In A. thaliana and
D. discoideum, ASC frequency immediately proximal to the
primary stop is significantly higher in unicell-associated genes
compared with multicell-associated genes.

We considered looking at cellularity as a variable as a priori
we thought that costs of read-through errors would be dif-
ferent in cellular and multicellular species. The cell replace-
ment argument, indeed, can be evoked to explain the
stronger purifying selection on brain-expressed genes
(Drummond and Wilke 2008), as neurons cannot be replaced
following the accumulation of improperly folded protein.
Why then does cellularity matter for error mitigation (ASC
usage) but not for error rate (TAA usage)? Were we to have
found that for TAA both Ne and cellularity matter, the logic
would have been easier to discern (although there is a weak
hint of this in the within-species analyses). The result is further
compounded by the observation that ASC enrichment in
yeasts is most pronounced in TAA-terminating genes
(Liang et al. 2005), suggesting that the two processes act
synergistically to safeguard HEGs.

We have no good answer to this enigma. It is possible that
cellularity does not matter per se, it just happens to covary
with some other variable. Indeed, across species we see a
strong trend, but the within-species trend is much less robust.
One possibility relates to a third parameter we have little or
no access to. For example, it is known that one consequence
of some prion states is greatly increased rates of translational
read-through (Wickner et al. 1995; Harrison 2019). If the dis-
tribution of this problem is phylogenetically patchy, but the
effect is also more acute in the unicell mode or more com-
monly seen in unicellular organisms, then this could go some
way to explain the phenomenon.

Some sort of enigmatic phylogenetic patchiness seems to
be required to explain our between-species ASC enrichment
data. Although we found evidence for variable ASC enrich-
ment among different eukaryote groups, there is also consid-
erable unexplained intragroup variability. Indeed, in all
phylogenetic groups (vertebrates, invertebrates, plants, fungi,
and unicell eukaryotes) we see that some, but not the ma-
jority, of the species present genome-wide ASC enrichment.
That the species with ASC enrichment in HEGs compared
with LEGs tend to be those with absolute ASC enrichment
underscores this enigmatic patchiness. It is possible that some
genomes simply do not value ASC error mitigation and in-
stead rely upon their efficient nonstop decay or other
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degradation mechanisms (Kosinski and Masel 2020). It is
hence important to note that all genomes likely employ a
wide range of error mitigation mechanisms (both local and
global) and these may not coevolve identically in all species.
Nevertheless, we considered three further possible predictors
(GC content, gene size, and 30 intergenic distance) but none
was strongly predictive at genome-wide level by PGLS tests.
This suggests that even allowing for cellularity and Ne there
remains some very patchy predictor of ASC enrichment that
we have been unable to discern.

We can support the notion of patchiness by reference to
what may be happening in prokaryotes. In some bacteria,
stalled ribosomes on mRNAs that do not contain a stop
codon (or have had their stop codon read-through) may be
rescued by alternative release factors such as ArfA (Keiler and
Feaga 2014). One might predict, then, that ArfA-containing
genomes have less propensity to select for fail-safe ASCs as
the impact of read-through is reduced. We indeed find prima
facie evidence to suggest that bacterial species with an anno-
tated ArfA gene possess significantly lower ASC frequencies
(supplementary fig. S6, Supplementary Material online).
Could it be that ASCs selection is dependent on an error
mitigation mechanism being missing from some eukaryotes?
Understanding such possibilities and access to pan-taxon,
high resolution measures of absolute read-through rates
would be invaluable.

Materials and Methods

General Methods
All data manipulation was performed using bespoke Python
3.6 scripts. Statistical analyses and data visualizations were
performed using R 3.3.3. All scripts required for replication
of the described analyses can be found at https://github.com/
ath32/eASCs. We acknowledge that stop codons function at
the mRNA level; however, here we analyze chromosomal
DNA sequences and therefore refer to the three stops as
TAA, TGA, and TAG.

Extraction and Filtering of 30-UTR Sequences
Whole-genome sequence and gene annotation data were
downloaded from Ensembl release 97 (https://www.
ensembl.org/info/about/species.html, last accessed
September 12, 2019) and EnsemblGenomes release 45
(http://ensemblgenomes.org, last accessed September 12,
2019). The main Ensembl set contains primarily vertebrate
genomes (n¼ 216), Ensembl Metazoa contains invertebrate
genomes (n¼ 77), Ensembl Plants contains plant genomes
(n¼ 62), Ensembl Fungi contains fungal genomes (n¼ 1,014),
and Ensembl Protists contains unicelled eukaryote genomes
(n¼ 236). For all sets, genomes were filtered to retain just one
genome per genus to reduce biases due to phylogenetic non-
independence that may occur due to oversampling. Species
sets for each group were then manually curated to move
incorrectly placed species. Caenorhabditis elegans and
S. cerevisiae were removed from the vertebrates set as they
are not vertebrates. Unicellular (algae) species in the plants
set were removed and added to the unicellular set if not

already present. Nondimorphic yeast species were removed
from the fungal set and added to the unicellular set if not
already present. Candida albicans was also added to the uni-
cell set via bespoke download (available from www.candida-
genome.org, last accessed September 12, 2019). This left a final
sample of 104 vertebrates, 41 invertebrates, 22 plants, 21
fungi, and 71 unicellular eukaryotes. A full species list for
each taxonomic group can be found in Source Data,
Supplementary Material online.

Similar to prior analyses (Adachi and Cavalcanti 2009; Ho
and Hurst 2019), for every gene in each genome a sequence
inclusive of the primary stop followed by 97 nucleotides of
the 30-UTR was extracted by reference to the annotated cod-
ing sequence coordinates. Only genes with 30 intergenic space
of >100 bp were considered. Resultant sequences were fil-
tered to retain only those 30 sequences made up exclusively of
A, T, G, and C, those from genes with one stop after the
initiating codon, and those from a gene body with a nucleo-
tide length that is a multiple of 3.

Inferring Substitution Rate
Lists of one-to-one orthologous genes were downloaded for a
diverse variety of species triplets from the appropriate
Ensembl Biomart repository: 1) primates; Homo sapiens,
Macaca mulatta, Pan troglodytes, 2) nematodes;
Caenorhabditis briggsae, Caenorhabditis remanei, and
Caenorhabditis elegans, 3) Aspergillus; Aspergillus flavus,
Aspergillus niger, Aspergillus oryzae, 4) Drosophila;
Drosophila melanogaster, Drosophila pseudoobscura,
Drosophila simulans, and 5) Arabidopsis; Arabidopsis halleri,
Arabidopsis lyrate, Arabidopsis thaliana. Orthologous genes
were extracted from the respective genomes and filtered to
retain genes with coding sequence of length 3, no premature
stop codons, and stop codons TAA, TGA, or TAG. Genes
from each species triplet that met our quality controls were
aligned using MAFFT with the -linsi algorithm (Katoh et al.
2005). Alignments with gaps <10 codons upstream or <10
“codons” downstream were discarded from further analysis.

Mutations in coding sequence or in the immediate 30-UTR
were reconstructed using a parsimony approach as previously
described (Rogozin et al. 2016; Belinky et al. 2018). As each
species triplet contains two ingroups and one clear outgroup,
ancestral nucleotides can be inferred for each position where
the outgroup nucleotide matches that of at least one ingroup.
For analysis of substitution rate, we infer mutations at all
nucleotide positions from ten codons upstream to ten
codons downstream of the stop for TAA-, TGA-, and TAG-
terminating genes (where all three orthologs agree on the
stop codon). Dividing these mutational counts by the num-
ber of valid TAA-, TGA-, and TAG-terminating genes allows
the calculation of mutational frequency per site.

Comparing Stop Codon Frequencies between HEGs
and LEGs
Experimentally derived protein abundance data were down-
loaded for all available eukaryotic genomes from PaxDb
(Wang et al. 2015). Corresponding whole-genome sequence
files were downloaded from the appropriate European
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Molecular Biology Laboratory (EMBL) database. A list of the
species included can be found in Source Data, Supplementary
Material online. PaxDb external IDs and EMBL locus tags were
extracted and matched to generate a sample of genomes and
genes for which both PaxDb and EMBL sequence data were
available for >400 genes. This filtering produced a sample of
20 eukaryotic genomes, 15 of which belong to multicellular
species and 5 belong to unicells. In these genomes, genes that
met our filtering criteria that feature in the top and bottom
quartiles of expression were defined as HEGs and LEGs, re-
spectively. The frequencies of each primary stop codon (TAA,
TGA, and TAG) at each expression level were then calculated
and compared. We calculate a standardized frequency differ-
ence (SFD) for each codon such that:

SFD ¼ HEG frequency� LEG frequency

LEG frequency
:

Determining Nucleotide Enrichment in HEGs
HEGs were identified and extracted as explained in the pre-
vious section. A, C, G, and T counts were counted at each site
within our chosen range surrounding the primary stop codon.
These counts were compared with a genome-wide null, these
being the frequency of each nucleotide at the same positions
in all genes regardless of expression level. Comparable “null”
counts were calculated as the genome-wide frequency mul-
tiplied by the number of genes in the highly expressed set,
allowing a comparison of the real observed HEG counts to the
null counts using chi-square tests. Significant nucleotide
enrichments or depletions were called if the chi-square tests
produced a P-value < 0.05 (before Bonferroni correction).

Recognition of ASC Enrichment in Multicellular
Eukaryotes
As found in previous studies (Liang et al. 2005; Adachi and
Cavalcanti 2009; Ho and Hurst 2019), ASC enrichment in
eukaryotes is unlikely to be universally specific to one partic-
ular 30 codon position. Hence, we repeat the methodology
previously published in our assessment of ASC enrichment in
unicellular eukaryotic genomes (Ho and Hurst 2019) in
counting the number of genomes in each taxonomic group-
ing (vertebrates, invertebrates, etc.) that possess ASC enrich-
ment (as determined by chi-square tests) at one or more site.
ASCs at a particular position were considered to be enriched
if they were found in raw excess to null expectation and their
comparison to null produced a chi-square P-value below
0.05/6 (Bonferroni-corrected, �0.0083). Our P-value thresh-
old dictates that the probability of a genome possessing no
significant ASC enrichment at one or more positions by
chance is (1 � 0.0083)6 (�0.951). Therefore, there is a 1 �
0.951 (�0.049) probability that a genome will contain signif-
icant enrichment at one or more positions by chance. We use
this probability in a series of binomial tests to consider
whether the number of genomes in our data set possessing
ASC enrichment was higher, lower, or as expected due to
chance. This methodology was repeated for two distinct
null models: i) dinucleotide-controlled simulations (Ho and

Hurst 2019) and ii) a degrading frequency null adapted from
that first proposed by Adachi and Cavalcanti (2009) and used
in our previous ASC analysis (Ho and Hurst 2019):

i. The dinucleotide-controlled null involves the simulation
of 10,000 bespoke null 30-UTR sequences for a particular
genome. Control for genome-specific dinucleotide pref-
erences is facilitated by the capture of nucleotide and
dinucleotide frequencies in a Markov-like decision pro-
cess that directs nucleotide selection in the creation of
each simulated sequence. ASC frequencies are calculated
in the simulants for comparison with the real genome.

ii. The adapted Adachi and Cavalcanti (2009) (AþC) null
considers only the first in-frame ASC of each UTR se-
quence. The null ASC frequency expectation at a given
position is considered as the probability of not finding a
stop at any position upstream multiplied by the proba-
bility of finding a stop at any position: First ASC proba-
bility¼ p[1 � p](n�1), where n is the focal codon
position and p is the ASC frequency at any in-frame
UTR position.

Calculating an ASC Enrichment Score
To assess the relationship of ASC enrichment with any vari-
able first requires the calculation of an enrichment score. To
do this, we first calculate a positional enrichment score (PES)
from positions þ1 to þ6 individually such that:

PES ¼ Observed� Expected

Expected
;

where “observed” is the raw ASC count in the genome at a
particular position and “expected” is the expected frequency
for that position under the Adachi and Cavalcanti (2009) null
hypothesis. The overall enrichment score for each genome
used for the correlation analysis was the mean positional
enrichment score across all positions. Scores were calculated
for 24 genomes for which an existing Ne estimate was avail-
able in the literature (Gossmann et al. 2012; Lynch et al. 2016)
or a bespoke Ne estimate was possible.

Calculating a TAA Stop Codon Enrichment Score
Similar to how an ASC enrichment score is required for cor-
relation analyses, we must calculate a variable to quantify the
extent to which TAA usage is increased in a given genome.
For this purpose, we calculate a TAA enrichment score such
that:

TAA enrichment score

¼ TAA usage at primary site�mean TAA usage downstream

mean TAA usage downstream
;

where mean TAA usage downstream is calculated from
downstream codon positions þ1 to þ6. “Usage” refers to
the relative frequency of TAA compared with the other
stop codons TGA and TAG at position n, such that:

Ho and Hurst . doi:10.1093/molbev/msaa210 MBE

258



TAA usage ¼ TAA freq:

TAA freq:þ TGA freq:þ TAG freq:
:

Estimation of Ne

New Ne estimations were calculated using previously pub-
lished species nucleotide diversity (p) and mutation rate
(m) such that:

Effective population size Neð Þ ¼
p

4l
:

All nucleotide diversity, mutation rate, and estimated ef-
fective population size values used in this study can be found
in Source Data, Supplementary Material online.

Derivation of GC, Gene Length, and 30 Intergenic
Distance
With Ne estimated as above and cellularity considered as a
binary trait (0 for multicells and 1 for unicells), we could
examine the relationship between enrichment score and
these two variables. In addition, GC content was calculated
from all of the extracted UTR sequences of a given genome.
Median gene body lengths and 30 intergenic distances were
calculated for each genome given Ensembl annotations
(Source Data, Supplementary Material online).

PGLS Analysis
Phylogenetically controlled tests were facilitated by PGLS us-
ing the caper package in R (https://CRAN.R-project.org/pack-
age¼caper), with lambda (k) predicted by maximum
likelihood. Pagel’s lambda statistic (between 0 and 1) reveals
the extent to which the phylogeny correctly predicts the co-
variance observed between species, such that k¼ 0 suggests
each data point is phylogenetically independent and k¼ 1
suggests traits are evolving as predicted by tree topology
alone. Note that adjusted r2-values reported by PGLS may
be negative if the fitted model performs worse than null. The
phylogenetic trees required for this analysis were generated
using TimeTree (Kumar et al. 2017) and are available at
https://github.com/ath32/eASCs in nexus format.

Intraspecies Comparisons of Unicell- and Multicell-
Expressed Genes
The comparison of genes associated with unicellular develop-
ment to those associated with multicellular development
within the same organism controls for Ne in assessing the
role of cellularity in error mitigation selection. Our cellularity
hypothesis predicts that unicellular-expressed genes contain
more ASCs than multicellular-expressed genes. We test this
prediction in two phylogenetically distinct organisms:
D. discoideum and A. thaliana.

In D. discoideum, we compare genes associated with veg-
etative (unicell) growth to social (multicell) growth using data
from de Oliveira et al. (2019). In their study, sociality genes
were defined as those expressed>90% of the time during the
sociality growth phase (>1 h following nutrient starvation).
We consider any genes not included in their social genes list

(available in the source data of their paper) to be associated
with vegetative growth.

In A. thaliana, we compare genes enriched in pollen (uni-
cell) with those depleted in pollen (multicell). To facilitate
this, we acquired a list of pollen-specific and pollen-reduced
genes from supplementary table 1 of Pina et al. (2005). Pollen-
specific genes are those called present in pollen but absent in
seedlings, leaves, siliques, and roots. Pollen-reduced genes are
those expressed less often in pollen compared with other
tissues.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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