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Parkinson’s disease (PD) is a progressive, chronic, and neurodegenerative disorder
that is primarily diagnosed by clinical examinations and magnetic resonance imaging
(MRI). In this study, we proposed a machine learning based radiomics method to
predict PD. Fifty healthy controls (HC) along with 70 PD patients underwent resting-
state magnetic resonance imaging (rs-fMRI). For all subjects, we extracted five types of
6664 features, including mean amplitude of low-frequency fluctuation (mALFF), mean
regional homogeneity (mReHo), resting-state functional connectivity (RSFC), voxel-
mirrored homotopic connectivity (VMHC) and gray matter (GM) volume. After conducting
dimension reduction utilizing Least absolute shrinkage and selection operator (LASSO),
fifty-three radiomic features including 46 RSFCs, 1 mALFF, 3 mReHos, 1 VMHC, 2 GM
volumes and 1 clinical factor were retained. The selected features also indicated the
most discriminative regions for PD. We further conducted model fitting procedure for
classifying subjects in the training set employing random forest and support volume
machine (SVM) to evaluate the performance of the two methods. After cross-validation,
both methods achieved 100% accuracy and area under curve (AUC) for distinguishing
between PD and HC in the training set. In the testing set, SVM performed better than
random forest with the accuracy, true positive rate (TPR) and AUC being 85%, 1 and
0.97, respectively. These findings demonstrate the radiomics technique has the potential
to support radiological diagnosis and to achieve high classification accuracy for clinical
diagnostic systems for patients with PD.

Keywords: Parkinson’s disease, radiomics, resting-state functional magnetic resonance imaging, structural
magnetic resonance imaging, machine learning

INTRODUCTION

Parkinson’s disease (PD) is a major neurodegenerative disease influenced by both genetic and
environmental factors (Halliday et al., 2014). As the second most common neurodegenerative
disorder, PD is characterized by the degeneration of dopamine-producing cells in the brain
resulting in motor symptoms and nonmotor features (Mhyre et al., 2012). Available diagnostic
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tools are better at detecting motor symptoms than nonmotor
symptoms. The neural and pathophysiologic mechanisms to
predict the progression of PD remain unclear and discovering
the psychobiological markers is the key research priority.
Understanding the inner working mechanisms of PD is one of
the most intriguing scientific questions. Studies in neuroscience
strongly suggest intervention during early therapeutic windows
(Vu et al., 2012; Tibar et al., 2018). Although positron emitted
topography/computed tomography is accurate (Meles et al.,
2017) the diagnosis of PD at present is mainly dependent on
clinical features and scores.

In recent years, neuroimaging has been increasingly employed
to aid the early diagnosis of PD. A variety of neuroimaging
technologies including functional magnetic resonance imaging
(fMRI), structure MRI (sMRI), positron emission tomography
(PET) and electroencephalography (EEG) have been widely
adopted. Among these, resting-state functional MR imaging (rs-
fMRI) is regarded as a promising technique for precisely locating
the abnormal spontaneous activities in neuropsychological
disease (Wang et al., 2019). Several rs-fMRI based methods
including regional homogeneity (ReHo), amplitude of low
frequency fluctuations (ALFF), and functional connectivity (FC)
provide a task-free approach to explore spontaneous brain
activity and connectivity among networks in different brain
regions of PD patients. Application of these techniques provides
new insights in prediction, early diagnosis and differential
diagnosis of PD. Previous rs-fMRI studies using ALFF found
specific frequency band of ALFF for PD (Li et al., 2016) and
detected significant alterations of ALFF in the prefrontal cortex
and subcortical regions in PD patients (Xiang et al., 2016).
Frequency domain analyses of ALFF revealed decreased ALFF
in the putamen, parieto-temporo-occipital cortex, thalamus,
cerebellum, and several occipital regions, while increased ALFF
values were detected in the caudate and several temporal regions
(Zhang et al., 2013). A large sample study of 109 PD patients
found distinguishing frequency bands and neural modulations in
the brainstem and striatum correlated with the dose of levodopa
and bradykinesia subscale scores (Hou et al., 2014).

Along with these distinctive changes of ALFF, spontaneous
ReHo analysis in rs-fMRI studies also achieved considerable
progress in examining early onset and late-onset PD (Wu et al.,
2009; Yang et al., 2013; Sheng et al., 2016). ReHo alteration in
the early phase of PD showed a low level of local coherence in
the right primary sensory and positive correlation with disease
duration (Choe et al., 2013). A 2-year longitudinal PD study
of multimodal MRI using ReHo and voxel-based-morphometry
(VBM) observed a progressive decrease of ReHo values in
the sensorimotor cortex, default-mode network (DMN), and
the left cerebellum, but increased ReHo in the supplementary
motor area (SMA), bilateral temporal gyrus, and hippocampus
(Zeng et al., 2017). A meta-analysis using ALFF and ReHo
found consistent decreased activity in the putamen for PD
patients that could serve as an independent validation of rs-
fMRI (Wang et al., 2018). Another ALFF and ReHo based study
demonstrated the disturbed DMN, SMA, basal ganglia (BG),
and posterior cerebellar lobule in cognitively normal PD as
compared with healthy controls (Harrington et al., 2017). These

multilevel characteristics of rs-fMRI could effectively improve the
discrimination accuracy of diagnosis.

Although previous rs-fMRI studies revealed widespread
abnormal intrinsic networks in line with the pathophysiology
of PD, these findings and biomarkers have not been extensively
used for diagnosis, prediction or prognosis of PD in daily clinical
practice. In recent years, a method called radiomics that extracts
large amount of features from radiographic medical images
into high-dimensional mineable data using data-characterization
algorithms has received considerable attention, particularly in
clinical oncology diagnosis (Valladares et al., 2020). Radiomics
analysis employs multimodality medical images and machine
learning techniques to extract many quantitative characteristics
as objective, sensitive biomarkers of disease stage to potentially
detect treatment effects (Liu et al., 2019). Applications of
radiomics approach in the neurodegenerative and mental
disorder disclosed the heterogeneity characteristics with a high
accuracy that facilitate individualized diagnosis in patients with
Alzheimer’s disease, autism spectrum disorder and schizophrenia
(Hofmann-Apitius et al., 2015; Salvatore et al., 2019; Wang et al.,
2019). The radiomics technology that integrated the advantages
of various models has been utilized to extract the characteristics
for automated diagnosis of early PD and quantifying PD severity.
These methods consist of voxel-based method (VBM), diffusion
tensor imaging (DTI), functional connectome and connectivity
measures among others (Shinde et al., 2019). A radiomics analysis
of longitudinal Single-photon Emission Computed Tomography
(PSECT) images demonstrated radiomic features significantly
increased the prediction accuracy and were proved to be effective
prognostic biomarkers of PD (Rahmim et al., 2017). More
recently, a radiomics of deep neural nets on neuromelanin-
sensitive MRI demonstrated a test accuracy of 85.7% and
revealed the substantia nigra pars compacta abnormalities in
PD discriminating from atypical PD (Shinde et al., 2019).
Another radiomics study of quantitative susceptibility mapping
were shown to assist the diagnosis of idiopathic PD (Cheng
et al., 2019). A classifier for early PD with an accuracy
of 86.96% was identified from SVM training by extracting
characteristics including ALFF, ReHo and RSFC from the gray
matter (GM), white matter (WM) and cerebrospinal fluid (CSF)
(Long et al., 2012).

Considering the above-mentioned radiomics approaches in
existing PD studies, we aimed to utilize both rs-fMRI and sMRI
to extract radiomic features including whole-brain functional
activity (i.e., ALFF and ReHo), connectivity (i.e., RSFC and
VMHC) and gray matter (GM). Our goal was to discover more
effective biomarkers and to eventually develop an automated
classification framework of early diagnosis for PD patients.

MATERIALS AND METHODS

Participates and Clinical Evaluation
This study was approved by the Medical Research Ethical
Committee of Nanjing Brain Hospital (Nanjing, China) in
accordance with the Declaration of Helsinki, and written
informed consent was obtained from all subjects. Seventy PD
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patients and fifty healthy controls (HC) were recruited. All the
demographic characteristics and clinical symptom ratings were
collected before MRI scanning and all patients were in the ON
state during the MRI scan.

All subjects underwent a complete neurological and
psychological status assess, and a review of medical history
records. Mini-mental state examination (MMSE) was used
to evaluate cognition. The severity of depression was
quantified using the Hamilton Depression Scale (HAMD).
The neurocognitive tests were administered to each participant
individually by a professional appraiser in the neuropsychological
research center. All HC participants were interviewed to rule out
the presence including current or past psychiatric illness, history
of psychiatric illness in first-degree relatives and/or current or
past significant medical or neurological illness.

The demographic and clinical data of patients with PD and
HC were compared using a Fisher’s exact test (for sex), analysis of
variance (ANOVA) (for age, education, MMSE and HAMD). The
level of significance was set at p < 0.05.

Image Data Acquisition
Image data were acquired using a Siemens 3.0-Tesla signal
scanner (Siemens, Verio, Germany) in the department of
radiology within Nanjing Brain Hospital. Functional imaging
data were collected transversely by using a gradient-recalled
echo-planar imaging (GRE-EPI) pulse sequence with the
following configurations: TR/TE = 200 ms/30 ms, flip
angle = 90◦, matrix = 64 × 64, FOV = 220 × 220 mm,
thickness/gap = 3.5/0.6 mm, in-plane resolution = 3.4× 3.4 mm,
slices = 31. For each subject, a total of 140 volumes were
obtained, resulting in a total scan time of 280 s. High resolution
anatomical images were acquired using a T1 fluid attenuated
inversion recovery (FLAIR) sequence (TR/TE = 2530/3.34 ms,
flip angle = 7◦, matrix = 256 × 192, FOV = 256 × 256 mm,
slice thickness/gap = 1.33/0.5 mm, 128 slices covered the whole
brain). The subjects were instructed to keep their eyes closed,
relax their minds and remain as motionless as possible during
the data acquisition. Rubber earplugs were used to reduce noise,
and foam cushioning was used to fix the head to reduce motion
artifacts. The MR images were retrieved from the archive by two
experienced neuroradiologists (QH and XW).

Data Preprocessing
Image preprocessing procedure was carried out Data Processing
Assistant for Resting-State fMRI1 based on Statistical Parametric
Mapping (SPM122) operated on the Matlab platform. The
following steps were applied to the image data. For each
subject, we first discarded the first five time points for signal
equilibrium when subject was still adapting to the scanning noise.
The remaining 135 images underwent slice-timing correction
using the middle slice as the reference frame and head motion
correction by regressing out 6 head motion signals (displacement
on x, y, and z direction and 3 angular motion). Four subjects
with more than 2.5 mm maximum displacement in any of

1http://rfmri.org/DPARSF
2http://www.fil.ion.ucl.ac.uk/spm/

the three dimensions or 2.5◦ of any angular motion were
removed. Next, T1-weighted structural images of each subject
were coregistrated to the resulting functional images followed by
images being segmented into gray matter (GM), white matter,
and cerebrospinal fluid using a new segment and DARTEL
segmentation algorithm. The functional images were spatially
normalized to the Montreal Neurological Institute (MNI) space
with 3 × 3 × 3 mm cubic voxels. After normalization,
images were spatially smoothed with a 4 mm full width
at half maximum (FWHM) Gaussian kernel and detrended
using linear, quadratic or higher order polynomial algorithms.
Note that when calculating Regional Homogeneity (ReHo),
the smoothing procedure was omitted for maintaining the
measuring accuracy. After smoothing and detrending, we further
regressed out nuisance covariates including the Friston 24 motion
parameters (Friston et al., 1996), white matter, global signals and
cerebrospinal fluid signals and applied temporal filter (0.01 Hz <
f < 0.08 Hz) to diminish high-frequency noise.

Image Feature Extraction
ReHo Analysis
The method of Regional Homogeneity (ReHo) (Zang et al., 2004)
was proposed to analyze characteristics of regional brain activity
and to reflect the temporal homogeneity of neural activity. It
has been pointed out that some preprocessing methods especially
spatial smoothing R-fMRI time series may significantly change
the ReHo magnitudes (Zuo et al., 2013). To get rid of this
potential issue, preprocessed rs-fMRI data without the spatial
smoothing step was used for calculating ReHo. All individual
ReHo maps were computed and then spatially smoothed with a
4 mm FWHM Gaussian kernel. In particular, we focused on the
mReHo maps obtained by dividing the mean ReHo of the whole
brain within each voxel in the ReHo map. We further segmented
the mReHo maps and extract all the 112 ROI signals based on the
Harvard-Oxford atlas (HOA) using the Resting-State fMRI Data
Analysis Toolkit, REST3.

ALFF and VHMC Extraction
Slow fluctuations in activity are fundamental features of the
resting brain for determining correlated activity between brain
regions and resting state networks. The relative magnitude of
these fluctuations can discriminate between brain regions and
subjects. Amplitude of Low Frequency Fluctuations (ALFF)
(Zang et al., 2007) are related measures that quantify the
amplitude of these low frequency oscillations. Leveraging the
preprocessed data within the frequency range between 0.01 and
0.1 Hz, we calculated individual ALFF maps and the mALFF
maps by dividing the mean ALFF of the whole brain within
each voxel in the ALFF maps. Using the HOA, we ended up
with 112 mALFF values after extracting the ROI signals based
on the mALFF maps.

Voxel-Mirrored Homotopic Connectivity (VMHC) quantifies
functional homotopy by providing a voxel-wise measure
of connectivity between hemispheres. VMHC calculates the
connectivity between each voxel in one hemisphere and

3http://restfmri.net/forum/index.php?q=rest
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its mirrored counterpart in the other (Zuo et al., 2010).
By segmenting the VMHC maps via HOA, we also got
112 VHMC values.

RSFC and GM Volume Extraction
Resting-state functional connectivity (rsFC) analysis is an
effective method for estimating spontaneous functional activity
and measuring the temporal correlation between spatially remote
neurophysiological events. The preprocessed rs-fMRI images
were segmented into 112 ROIs according to HOA. After
averaging the rs-fMRI time courses of all the voxels within each
ROI, the mean time series of each ROI were acquired. We
performed Pearson’s correlation analysis on each pair of ROI
time series (i.e., 112 × 111/2 = 6216 pairs in total). The 6216
correlation coefficients were then transformed into z-scores by
Fisher’s z transformation and retained as the RSFC metrics. Based
on the preprocessed structural images, we also extracted GM
volumes of these 112 ROIs using the HOA as masks.

Feature Selection and Model Validation
Our candidate features consist of all the aforementioned metrics
including ReHo, mALFF, VHMC, RSFC and GM volume along
with all the clinical characteristics. To build our model, we first
randomly split our dataset into training set and testing set while
maintaining the PD:HC ratio, where 93 subjects were used as
the primary cohort for feature selection and model training.
The remaining 23 subjects were treated as validation cohort for
examining the selected features. All steps of feature selection
and model training were only based on and performed in the
training dataset.

Note that our goal was to identify the most significant variables
that could discriminate PD patients from healthy controls.
However, as we had a total of 6669 features and a comparably
much smaller sample size, the dimension reduction was necessary
to improve the accuracy in the later step of building the machine
learning model for classification (Wang et al., 2019). Hence,
we first performed the nonparametric Mann-Whitney U test on
each feature between the PD patients and the healthy controls
and kept the variables with P-value larger than 0.1. Since the
Mann–Whitney U test does not require the data to be normally
distributed, we adopted the procedure as the first step to filter
the features. Next, to avoid the possible presence of Simpson’s
Paradox caused by multicollinearity, where a predictor appears
to be significant by itself, but this observation disappears or the
direction reverses when other predictors are added. Therefore,
whenever we spotted an absolute value of pairwise correlation
between two features that was larger than 0.5, we removed
the feature with larger average absolute correlation. Finally, to
further reduce the burden of high dimensionality imposed on
the model training, we used the least absolute shrinkage and
selection operator (Lasso) procedure that assigns a penalty to the
coefficients and eliminates variables with zero coefficient value.
We used 10-fold cross validation to obtain the optimal penalty
parameter for Lasso and retained the features with nonzero
regression coefficients.

The methods of supper vector machine (SVM) and random
forest were implemented for classifying subjects based on the

selected features. Given the relatively small sample size, we
used the linear kernel when fitting SVM, which was conducted
by specifying the type parameter to be “linear” in the svm
function. The tuning parameters for both methods were selected
via 10-fold cross-validation by using the trainControl function
with the method parameter being “repeatedcv” and the train
function with the method parameter specified as either “cforest”
or “svmLinear2” for random forest and SVM, respectively. The
performance of these two different machine learning methods
in the training and test sets were later compared and visualized
according to different metrics including accuracy, true positive
rate, false positive rate, receiver-operating characteristic (ROC)
curve and area under curve (AUC). The complete statistical
analysis was conducted in R 3.5.0. Specifically, packages “e1071,”
“randomForest”, “glmnet,” “caret” were employed for running the
SVM, random forest, Lasso and for cross validation, respectively.
The flowchart of this study is presented in Figure 1.

RESULTS

Clinical Characteristics
In Table 1, we provided the complete demographic and clinical
information for all subjects participated in this study. No
significant difference was observed with respect to the gender,
age, education and MMSE score between PD patients and HCs,
while significant difference was detected for HAMD between
these two groups. In particular, for PD patients, the HAMD
scores (11.0 ± 6.9) were significantly higher than those for HCs
(2.1± 2.3).

Feature Selection
After the first step of Mann–Whitney U test, 6669 features
containing metrics from rs-fMRI, sMRI and clinical information
reduced to 993 features. Next, the procedure of excluding
variables with absolute correlations larger than 0.5 removed 628
features with a total of 365 features remaining. Last, 54 features
including (46 RSFCs, HAMD, 1 mALFF, 3 mReHos, 1 VMHC
and 2 GM volumes) with nonzero coefficients obtained from the
logistic regression with Lasso penalty were retained as the final
metric set to be used for binary classification. In Table 2, we
listed these 46 RSFCs and the respective connected brain regions
indexed in the HOA template. The related brain regions of RSFCs
were primarily located in the executive control network (ECN),
default mode network (DMN), affective network (AN), visual
network (VIN) and sensorimotor network (SMN) (Figure 2).
The seven features were mALFF of the left superior temporal
gyrus, posterior division, mReHo of the left parahippocampal
gyrus, posterior division, mReHo of the right thalamus and left
pallidum, VMHC of the right temporal fusiform cortex, anterior
division, and the GM volume of the right inferior temporal gyrus,
anterior division and the right accumbens.

For better illustration and clearer visualization of the
difference for these selected features between PD group and HC
group, in Table 3 we reported the mean, standard deviation
(SD) and P-value of the resulting features from the dimension
reduction step for two groups. We also plotted the histograms of
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FIGURE 1 | Flowchart of the study. After the rs-fMRI and sMRI images were preprocessed, we extracted the 6669 metrics. Then, Mann–Whitney U test, screening
out high correlated variables and Lasso regression were implemented to reduce the number of features. Last, random forest and SVM were conducted to
differentiate between PD and HC subjects.

these features with different colors representing different groups
in Figure 3. In particular, the increasing or decreasing trends of
these features between two groups can be immediately revealed
by looking at the corresponding values in Table 3 or locations in
Figure 3.

Model Fitting
After the screening process, we were left with only 56 features
and were no longer stuck in the ultrahigh dimensional situation.
Most of the existing machine learning methods including
random forest and SVM could accommodate this relatively
smaller number of variables compared with previous 6669

TABLE 1 | Clinical and demographic data evaluation of PD and HC.

Characteristics PD (n = 68) HC (n = 48) Test statistics P-value

Sex (M/F) 35/33 23/25 0.409 >0.05a

Age (year) 57.8 ± 7.0 57.8 ± 5.5 0.021 >0.05b

Education (year) 11.8 ± 3.3 11.7 ± 4.8 0.689 >0.05c

MMSE 28.6 ± 1.7 29.0 ± 2.3 0.585 >0.05d

HAMD 11.0 ± 6.9 2.1 ± 2.3 67.58 <0.05e

aThe P-value for gender distribution by Fisher’s exact test; b−eThe P-values for age,
education, MMSE and HAMD, respectively, by analysis of variance (ANOVA).

features. Therefore, we conducted the model fitting procedure
for classifying subjects in the training set utilizing random forest
and SVM to evaluate the performance of these two methods. It
turned out that after cross-validation, both random forest and
SVM achieved the perfect accuracy and AUC for distinguishing
between PD and HC subjects in the training set, which was not
surprising since we only had 56 coefficients to estimate while we
had a sample size of 93 subjects.

Model Validation
Despite the superior performance of both methods in the training
set, what really matters is the predictive result in the testing set.
We therefore examined the validity of random forest and SVM by
evaluating their classification performance in the testing set using
AUC and the following measures (Table 4),

Accuracy =
TP + TN

TP + TN + FP + FN′

TPR =
TP

TP + FN′
FPR =

FP
TN + FP′

where TP, TN, FP and FN correspond to true positive, true
negative, false positive and false negative, respectively.

TPR measures the proportion of PD patients correctly
detected by the given procedure among all the PD patients.
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FPR is calculated using the number of people who were falsely
identified as having PD, divided by the total number of HCs.
Accuracy gives the proportion of true results (both true positives
and true negatives) among the total number of cases examined,
i.e., the sample size of the testing set. In practice, we used
the natural cutoff 0.5 to determine whether the subject should

be classified as PD. To further assess the robustness of two
methods, we also plotted the ROC curves in Figure 4 by varying
thresholding values.

From Table 4 and Figure 4 we can tell that random forest and
SVM performed comparably well in terms of the overall accuracy.
Random forest performed slightly better than SVM according

TABLE 2 | 46 RSFC features and the related brain regions indexed in the HOA template.

ID HOA number Brain region A Network HOA number Brain region B Network

1 1 Frontal Pole.L Other region 86 Parietal Operculum Cortex.R Other region

2 2 Frontal Pole.R Other region 5 Superior Frontal Gyrus.L Other region

3 2 Frontal Pole.R Other region 15 Temporal Pole.L AN

4 4 Insular Cortex.R AN 88 Planum Polare.R Other region

5 6 Superior Frontal Gyrus.R Other region 30 Inferior Temporal Gyrus, posterior.R DMN

6 6 Superior Frontal Gyrus.R Other region 78 Temporal Occipital Fusiform Cortex.R VIN

7 7 Middle Frontal Gyrus.L DMN 56 Paracingulate Gyrus.R ECN

8 11 Inferior Frontal Gyrus, pars opercularis.L Other region 76 Temporal Fusiform Cortex, posterior.R VIN

9 12 Inferior Frontal Gyrus, pars opercularis.R Other region 72 Lingual Gyrus.R Other region

10 12 Inferior Frontal Gyrus, pars opercularis.R Other region 87 Planum Polare.L Other region

11 14 Precentral Gyrus.R SMN 70 Parahippocampal Gyrus, posterior.R DMN

12 15 Temporal Pole.Sup.L AN 19 Superior Temporal Gyrus, posterior.L AUN

13 15 Temporal Pole.L AN 52 Juxtapositional Lobule Cortex.R Other region

14 16 Temporal Pole.R AN 36 Superior Parietal Lobule.R VIN

15 16 Temporal Pole.R AN 51 Juxtapositional Lobule Cortex.L Other region

16 16 Temporal Pole.Mid.R. AN 79 Occipital Fusiform Gyrus.L VIN

17 17 Superior Temporal Gyrus, anterior.L DMN 42 Angular Gyrus.R DMN

18 18 Superior Temporal Gyrus, anterior.R DMN 104 Right Putamen BGN

19 19 Superior Temporal Gyrus, posterior.L DMN 21 Middle Temporal Gyrus, anterior.L DMN

20 19 Superior Temporal Gyrus, posterior.L DMN 53 Subcallosal Cortex.L Other region

21 21 Middle Temporal Gyrus, anterior.L DMN 33 Postcentral Gyrus.L SEN

22 22 Middle Temporal Gyrus, anterior.R DMN 65 Frontal Orbital Cortex.L Other region

23 23 Middle Temporal Gyrus, posterior.L DMN 62 Precuneus Cortex.R DMN

24 24 Middle Temporal Gyrus, posterior.R DMN 30 Inferior Temporal Gyrus, posterior.R Other region

25 27 Inferior Temporal Gyrus, anterior.L DMN 89 Heschl’s Gyrus.L AUN

26 28 Inferior Temporal Gyrus, anterior.R DMN 60 Cingulate Gyrus, posterior.R DMN

27 29 Inferior Temporal Gyrus, posterior.L DMN 87 Planum Polare.L Other region

28 32 Inferior Temporal Gyrus, temporooccipital.R Other region 72 Lingual Gyrus.R Other region

29 34 Postcentral Gyrus.R SMN 96 Occipital Pole.R VIN

30 44 Lateral Occipital Cortex, superior.R VIN 111 Left Accumbens Other region

31 45 Lateral Occipital Cortex, inferior.L VIN 111 Left Accumbens Other region

32 54 Subcallosal Cortex.R Other region 110 Right Amygdala DMN

33 55 Paracingulate Gyrus.L ECN 57 Cingulate Gyrus, anterior.L DMN

34 55 Paracingulate Gyrus.L ECN 100 Right Thalamus DMN

35 56 Paracingulate Gyrus.R ECN 85 Parietal Operculum Cortex.L Other region

36 58 Cingulate Gyrus, anterior.R ECN 85 Parietal Operculum Cortex.L Other region

37 58 Cingulate Gyrus, anterior.R ECN 90 Heschl’s Gyrus.R AUN

38 60 Cingulate Gyrus, posterior.R DMN 74 Temporal Fusiform Cortex, anterior.R VIN

39 70 Parahippocampal Gyrus, posterior.R Other region 99 Left Thalamus DMN

40 75 Temporal Fusiform Cortex, posterior.L VIN 111 Left Accumbens Other region

41 77 Temporal Occipital Fusiform Cortex.L VIN 86 Parietal Operculum Cortex.R Other region

42 77 Temporal Occipital Fusiform Cortex.L VIN 110 Right Amygdala DMN

43 78 Temporal Occipital Fusiform Cortex.R VIN 80 Occipital Fusiform Gyrus.R VIN

44 88 Planum Polare.R Other region 99 Left Thalamus DMN

45 92 Planum Temporale.R Other region 107 Left Hippocampus DMN

46 96 Occipital Pole.R VIN 98 Brainstem.R Other region

Frontiers in Neuroscience | www.frontiersin.org 6 July 2020 | Volume 14 | Article 751

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00751 July 13, 2020 Time: 15:42 # 7

Cao et al. Radiomics for Prediction of PD

FIGURE 2 | The visualization plot of the selected 46 RSFCs. The color of the spot reflects the number of connections that the associated brain regions participate in.
The larger corresponding value on the color bar means more connections are involved in the respective region. The brain networks were visualized with the BrainNet
Viewer (Xia et al., 2013).

to FPR, while SVM outperformed random forest according to
accuracy, TPR and AUC. Therefore, for a less conservative and
more robust prediction, we would prefer SVM over random
forest based on the performance summary in the testing set.

DISCUSSION

We presented a framework for uncovering predictive markers
of PD based on radiomics analysis and obtained excellent
accuracy in classifying PD from HCs. Our model was
established based on the relevant clinical characteristics, whole-
brain functional connectivity and activity along with gray
matter structure. After collecting the MRI scans for one
subject, it may take 2 h for obtaining clinical evaluation,
10 min for preprocessing and around 2 s for running the
machine learning models. To the best of our knowledge,
this is the first study to explore the whole-brain functional
activity and gray matter structure in a homogeneous and
relatively large sample MRI study. The distinctive whole-
brain functional activity and connection were mainly located
within or across the AN, DMN, ECN and SMN in PD
compared with HCs.

Our results showed that both methods achieved perfect
accuracy in the training set, and SVM yielded an overall better
classification performance than random forest in the testing set.
In particular, SVM had higher accuracy (85%), TPR (1) and AUC
(0.97) than random forest, while the FPR for SVM (0.31) was
higher than random forest (0.27). The radiomics-based machine
learning models in present study demonstrated the validity of
trained classifiers in PD, which could be helpful to support
clinical decision in both radiology and neurology.

Previous studies have made great progress in identifying
PD and other neurodegenerative disorders from HCs using
structural and fMRI data with the assist of machine learning.
These results demonstrated the ability of supervised classification
methods with a relatively high accuracy. An automatic SVM
based study with leap motion controller recruited 16 PD and
12 HCs, and the accuracy was 74.07% with an AUC of 0.675
(Butt et al., 2018). Another study of SPECT imaging using
SVM and logistic regression (LR) showed that SVM method
produced a higher accuracy of 85% than LR of 83%, and the
authors claimed that the SVM-based model could provide better
guide for PD stage classification (Hsu et al., 2019). A large
sample based on 831 structure T1-weighted MRI achieved a
very high accuracy of up to 99% for differential diagnosis of

Frontiers in Neuroscience | www.frontiersin.org 7 July 2020 | Volume 14 | Article 751

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00751 July 13, 2020 Time: 15:42 # 8

Cao et al. Radiomics for Prediction of PD

TABLE 3 | The mean, standard deviation (SD) and P-value for all 54 selected features in PD group and HC groups.

ID Feature PD (mean ± SD) HC (mean ± SD) P-value

1 Frontal Pole.L-Parietal Operculum Cortex.R −0.1129 ± 0.2642 −0.2487 ± 0.265 0.3488

2 Frontal Pole.R-Superior Frontal Gyrus.L 0.0478 ± 0.2354 0.0408 ± 0.2536 0.0815

3 Frontal Pole.R-Temporal Pole.L 0.2116 ± 0.2723 0.3172 ± 0.2829 0.2758

4 Insular Cortex.R-Planum Polare.R 0.2713 ± 0.2794 0.1674 ± 0.2358 0.0104

5 Superior Frontal Gyrus.R-Inferior Temporal Gyrus, posterior.R −0.0828 ± 0.3272 0.0568 ± 0.3013 0.0341

6 Superior Frontal Gyrus.R-Temporal Occipital Fusiform Cortex.R −0.2821 ± 0.2749 0.4011 ± 0.2316 0.1139

7 Middle Frontal Gyrus.L-Paracingulate Gyrus.R 0.5995 ± 0.2634 0.4751 ± 0.2763 0.0082

8 Inferior Frontal Gyrus, pars opercularis.L-Temporal Fusiform Cortex, posterior.R 0.0897 ± 0.2763 0.2384 ± 0.2609 0.2141

9 Inferior Frontal Gyrus, pars opercularis.R-Lingual Gyrus.R −0.1656 ± 0.2669 0.2521 ± 0.2320 0.1853

10 Inferior Frontal Gyrus, pars opercularis.R-Planum Polare.L 0.0418 ± 0.2501 0.0845 ± 0.2656 0.0344

11 Precentral Gyrus.R-Parahippocampal Gyrus, posterior.R 0.1467 ± 0.2138 0.0216 ± 0.2398 0.0032

12 Temporal Pole.L-Superior Temporal Gyrus, posterior.L −0.3148 ± 0.2612 0.4955 ± 0.3027 0.2183

13 Temporal Pole.L-Juxtapositional Lobule Cortex.R −0.0739 ± 0.2415 0.0455 ± 0.2886 0.0269

14 Temporal Pole.R-Superior Parietal Lobule.R 0.1059 ± 0.2912 0.0107 ± 0.2773 0.0292

15 Temporal Pole.R-Juxtapositional Lobule Cortex.L 0.6623 ± 0.2743 0.7524 ± 0.2624 0.2021

16 Temporal Pole.R-Occipital Fusiform Gyrus.L −0.1192 ± 0.2378 0.0146 ± 0.2261 0.0045

17 Superior Temporal Gyrus, anterior.L-Angular Gyrus.R −0.0500 ± 0.2470 0.0688 ± 0.2392 0.0285

18 Superior Temporal Gyrus, anterior.R-Right Putamen −0.1993 ± 0.2559 0.1071 ± 0.2856 0.0207

19 Superior Temporal Gyrus, posterior.L-Middle Temporal Gyrus, anterior.L −0.0174 ± 0.2309 0.1275 ± 0.2442 0.1225

20 Superior Temporal Gyrus, posterior.L-Subcallosal Cortex.L 0.0451 ± 0.2116 0.1618 ± 0.2278 0.1429

21 Middle Temporal Gyrus, anterior.L-Postcentral Gyrus.L −0.0628 ± 0.2827 0.0856 ± 0.2278 0.0130

22 Middle Temporal Gyrus, anterior.R-Frontal Orbital Cortex.L −0.0029 ± 0.2553 0.1269 ± 0.2147 0.0659

23 Middle Temporal Gyrus, posterior.L-Precuneus Cortex.R −0.0032 ± 0.1956 0.1271 ± 0.1759 0.0238

24 Middle Temporal Gyrus, posterior.R-Inferior Temporal Gyrus, posterior.R 0.0455 ± 0.2457 0.0399 ± 0.2304 0.0888

25 Inferior Temporal Gyrus, anterior.L-Heschl’s Gyrus.L 0.4837 ± 0.3685 0.3644 ± 0.3915 0.0180

26 Inferior Temporal Gyrus, anterior.R-Cingulate Gyrus, posterior.R 0.1240 ± 0.2235 0.0302 ± 0.3139 0.0049

27 Inferior Temporal Gyrus, posterior.L-Planum Polare.L −0.0922 ± 0.2427 0.0667 ± 0.2399 0.0035

28 Inferior Temporal Gyrus, temporooccipital.R-Lingual Gyrus.R −0.0489 ± 0.2319 0.0818 ± 0.1936 0.0103

29 Postcentral Gyrus.R-Occipital Pole.R 0.2362 ± 0.2612 0.1036 ± 0.3113 0.0060

30 Lateral Occipital Cortex, superior.R-Left Accumbens −0.1134 ± 0.2020 0.0016 ± 0.2128 0.0043

31 Lateral Occipital Cortex, inferior.L-Left Accumbens 0.7454 ± 0.2993 0.6130 ± 0.2801 0.0100

32 Subcallosal Cortex.R-Right Amygdala −0.1688 ± 0.2078 0.0146 ± 0.2352 0.0006

33 Paracingulate Gyrus.L-Cingulate Gyrus, anterior.L −0.1056 ± 0.2160 0.0254 ± 0.2486 0.0047

34 Paracingulate Gyrus.L-Right Thalamus −0.0849 ± 0.2356 0.1805 ± 0.2874 0.2865

35 Paracingulate Gyrus.R-Parietal Operculum Cortex.L 0.0737 ± 0.2734 0.0281 ± 0.2416 0.0475

36 Cingulate Gyrus, anterior.R-Parietal Operculum Cortex.L 0.1262 ± 0.2546 0.2581 ± 0.2542 0.3158

37 Cingulate Gyrus, anterior.R-Heschl’s Gyrus.R 0.0159 ± 0.2817 0.0983 ± 0.1895 0.0704

38 Cingulate Gyrus, posterior.R-Temporal Fusiform Cortex, anterior.R −0.1340 ± 0.2362 0.0164 ± 0.2544 0.0084

39 Parahippocampal Gyrus, posterior.R-Left Thalamus 0.2082 ± 0.2267 0.3380 ± 0.1966 0.1968

40 Temporal Fusiform Cortex, posterior.L-Left Accumbens 0.1025 ± 0.2688 0.2534 ± 0.2388 0.2285

41 Temporal Occipital Fusiform Cortex.L-Parietal Operculum Cortex.R 0.0059 ± 0.2695 0.0970 ± 0.2492 0.2080

42 Temporal Occipital Fusiform Cortex.L-Right Amygdala 0.1999 ± 0.2317 0.0755 ± 0.2679 0.0043

43 Temporal Occipital Fusiform Cortex.R-Occipital Fusiform Gyrus.R 0.0310 ± 0.2339 0.1158 ± 0.2416 0.2874

44 Planum Polare.R-Left Thalamus −0.0057 ± 0.2023 0.1249 ± 0.2388 0.0550

45 Planum Temporale.R-Left Hippocampus −0.1296 ± 0.2257 0.0337 ± 0.2826 0.0017

46 Occipital Pole.R-Brainstem.R 0.0972 ± 0.2042 0.0076 ± 0.2136 0.0096

47 HAMD Score 10.1429 ± 6.3545 1.9730 ± 2.1793 0.0000

48 mALFF of Superior Temporal Gyrus, posterior.R 1.1140 ± 0.1317 1.0478 ± 0.1379 0.0270

49 mReHo of Parahippocampal Gyrus, posterior.L 0.8302 ± 0.0956 0.7870 ± 0.0859 0.0292

50 mReHo of Right Thalamus 0.8533 ± 0.0924 0.9144 ± 0.1154 0.1034

51 mReHo of Left Pallidum 0.7300 ± 0.0772 0.7718 ± 0.1010 0.0910

52 VMHC of Temporal Fusiform Cortex, anterior.R 0.2277 ± 0.1448 0.1818 ± 0.1395 0.0159

53 Gray Matter Volume of Inferior Temporal Gyrus, anterior.R 0.0025 ± 0.0008 0.0021 ± 0.0008 0.0103

54 Gray Matter Volume of Right Accumbens 0.0004 ± 0.0001 0.0004 ± 0.0001 0.1797
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FIGURE 3 | Histograms of selected features for PD and HC subjects with darker color representing overlapping values. Purple: PD; Green: HC. (A) HAMD score; (B)
mReHo values of the left parahippocampal gyrus, posterior division, the right thalamus and left Pallidum; (C) mALFF values of the left superior temporal gyrus,
posterior division; (D) VHMC values of the right temporal fusiform cortex, anterior division; (E) GM volumes of the right inferior temporal gyrus, anterior division and
the right accumbens.

PD (Singh and Samavedham, 2015). A study incorporating DTI
and VBM in an SVM algorithm correctly distinguished PD from
progressive supranuclear palsy (PSP) when white matter atrophy
was considered (Cherubini et al., 2014). Combined with these
previous findings, big data-driven approaches were helpful to aid
PD diagnosis and to reach precision medicine (Khoury et al.,
2019; van den Heuvel et al., 2020).

The aforementioned methods either possessed a lower
accuracy and AUC or only considered part of the complete
radiomic features based on either rs-MRI or sMRI. In our
study, the radiomics approach integrated both rs-MRI and sMRI
by extracting features that quantify the whole-brain functional
activity and connectivity along with GM volume and clinical
evaluations. Forty-six RSFCs and the respective connected brain
regions were selected after dimension reduction, and these
disturbed brain regions related to RSFCs were primarily located
in the ECN, DMN, AN, VN, and SMN. Seven more features
of the HAMD, mALFF, mReHo, VMHC and the GM volume
were also retained to build the classifying model. Within

TABLE 4 | Predictive performance table in the testing set for random
forest and SVM.

Accuracy TPR FPR AUC

Random forest 0.8261 0.9167 0.2727 0.9015

SVM 0.8483 1 0.3136 0.9697

the model, intrinsic connectivity networks of mALFF were
identified and located mainly in DMN including the left superior
temporal gyrus, posterior division, the left parahippocampal
gyrus, posterior division. The particular neural activities of
mReHo maps were also located in DMN of the right thalamus and
GN of the left pallidum. Selected VMHC quantified the functional
homotopy of connectivity in VN of the right temporal fusiform
cortex and anterior division. Features of the GM volume also
covered the DMN in the right inferior temporal gyrus, anterior
division and the right accumbens.

Some of these findings were expected and in accordance with
previous studies. For example, the altered RSFCs were primarily
located in the typical resting-state network (RSN). However,
the prominent role of DMN, ECN, AN, VIN and sensorimotor
functioning in PD revealed in our study was remarkable. The
identified regions in DMN included the left superior temporal
gyrus, posterior division, the left parahippocampal gyrus, the
right thalamus and the right inferior temporal gyrus. We also
found abnormal AN in the right insular cortex, left and right
temporal pole, along with unusual VIN in lateral occipital cortex,
superior, temporal fusiform cortex, the left and right temporal
occipital fusiform cortex, the left occipital pole, the right superior
parietal lobule. Abnormal ECN was detected in the left and right
paracingulate gyrus, and the right anterior cingulate gyrus.

RSN reflects the spontaneous neural activities of the blood
oxygenation level-dependent (BOLD) signals between temporally
correlated brain regions. Compared with the control group, the
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FIGURE 4 | ROC curves evaluating the predictive performance of random forest and SVM in the testing set.

DMN plays a crucial role in neurodegenerative disorders and
normal aging. Several fMRI studies have indicated that the DMN
injured before the cognitive decline in PD (Sandrone and Catani,
2013; Koshimori et al., 2016). A 2-year study using ReHo and
VBM to identify differences in local spontaneous brain activity
and gray matter volume found that PD patients with normal
cognition showed a decreased ReHo in the DMN (Zeng et al.,
2017). In addition, a gender-specific effect of uric acid on resting-
state cortical FC found the de novo PD group had decreased
FC in bilateral cingulate, postcentral and lingual gyri within
DMN (Lee et al., 2018). Our results were consistent with these
previous studies.

The basal ganglia, thalamus, and brainstem are important in
the pathophysiology of PD. Studies on detecting neural activity
changes in these regions have achieved more sensitive and reliable
results for scientific and clinical research on PD. The basal ganglia
network (BGN) has been observed in pathologies with altered
neurotransmitter systems of dopaminergic processes, and also
involving motor control. In the present study, we found disturbed
BGN in left pallidum, the right thalamus and the right brainstem.
The variability of FC in healthy older adults found strongest
correlate of FC in the BGN, and potential links to dopamine-
related function (Griffanti et al., 2018). A sex-related pattern of
RSN showed an increased connectivity within the BGN in female
PD patients, and FC changes in sensorimotor at baseline were
considered as an independent predictor of disease severity in the
early stage of PD (De Micco et al., 2019).

Attention networks (AN) in cortical regions are affected in
early stage of PD (Madhyastha et al., 2015). Proteinopathy and
longitudinal changes in FC networks within the SMN were
confirmed, and the interaction between the dorsal attention
network (DAN) the frontoparietal control network decreased

significantly over time in PD while correlated with the decline in
cognitive function (Campbell et al., 2019). Altered organization
of the DAN and lack of changes in the ventral attention network
(VAN) in PD patients indicated the higher risk for freezing
of gait during complex walking situations, and these findings
revealed that AN played an important role in freezing of gait
(Maidan et al., 2019). Gender-specific effect of uric acid on rs-
fMRI networks in de novo PD found decreased FC in bilateral
insular, frontal and temporal areas within DAN and bilateral
medial temporal and right insular areas within executive control
network (ECN) (Lee et al., 2018).

Apart from these RSFC findings, structure MRI has received
more research focus on better stability and repeatability
compared with rs-fMRI. In our study, GM volume of the
right inferior temporal gyrus, anterior division and the right
accumbens demonstrated differences in PD as opposed to HC.
Atrophy of the putamen and altered FC of the striatal structures
in PD revealed key structure-function relationship. Caudate
nucleus and putamen atrophy could serve as neuroimaging
biomeasures for PD (Owens-Walton et al., 2018). A brain
microstructual study found decreased white matter fiber
features in the right arcuate fasciculus and bilateral middle
cerebellar peduncles. The study also detected increased network
connectivity in prodromal early PD, which might indicate
the neural compensation (Sanjari et al., 2019). The right
accumben as one of selected GM features in the model is
an interesting sign. An analysis of dopamine regulation and
transporter function found regional brain (the nuclei accumbens,
cingulate regions and inferior frontal) were closely related
with apathy rating scores and β-amyloidopathy for predicting
cognitive decline in advancing PD (Zhou et al., 2020). An event-
related fMRI study based on reward-related neural responses
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showed the left nucleus accumbens with lower activation
indicated involvement of the ventral striatum in individuals for
further development of PD (Thaler et al., 2019) and PD patients
with persistent pain displayed an accumbens-hippocampus
disconnection (Polli et al., 2016).

Our study certainly has several limitations. First, although
we have carried out detailed clinical evaluation and stage
classification for all subjects, due to our limited sample size, we
could not further stratify the patients according to the disease
severity. Second, RSFCs in the model may be influenced by
the different clinical symptoms such as olfaction or depression.
Third, cerebellum networks were left out in the model. Although
the key molecular events that provoke PD have not been
fully understood and the underlying mechanisms involving
cerebellum were relatively less reported, considerable evidence
has indicated that cerebellum plays an important role in
sensorimotor dysregulation and has now received growing
attention (Lopez et al., 2020; Maas et al., 2020). For future studies,
we will include the cerebellum, and increase our sample size in
order to obtain different subgroups based on disease stages.

In agreement with previous rs-fMRI studies, the proposed
radiomics method that combined rs-fMRI spontaneous activity,
connectivity and structure MRI of gray matter (GM) was proved
to be scientifically sound and valid. The machine learning
based radiomics approach can help the diagnosis, personalized
treatment, and prognosis orientation for patient with PD at
a lower cost. This type of radiomics approaches should be
widely performed and considered as an automated classification
framework for predicting PD in clinical management.
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