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A B S T R A C T   

This paper uses a synthetic control method (SCM) and a Ridge Augmented SCM to estimate the impact of holding 
the Tokyo Olympic games on the number of newly confirmed COVID-19 cases in Tokyo (Japan). Our analysis 
with these methods enables us to estimate the causal impact of the Tokyo Olympics on COVID-19 cases by 
constructing counterfactual COVID-19 cases for Tokyo (Japan) as the optimal weighted average of COVID-19 
cases of OECD countries that are not affected by holding the Olympics through a data-driven approach. Based 
on reliable estimates obtained from different analytical settings, we find that, compared to the counterfactuals, 
holding the Tokyo Olympics significantly increased the daily average number of COVID-19 cases by 105 to 132 
cases in Tokyo (47 to 65 cases in Japan as a whole) per million people. This result suggests that holding the 
Olympics likely led to the spread of COVID-19 infection in Tokyo (Japan).   

1. Introduction 

The Tokyo Olympic games, which were delayed for a year due to the 
global spread of COVID-19, were held from July 23 to August 8, 2021. 
Unlike normal Olympic games, all events were held without spectators 
in and around the host city of Tokyo because COVID-19 infection 
entered an expansion phase in Tokyo in early July. Whether the Olym-
pics should have been held or cancelled while the COVID-19 pandemic 
was not yet under control was actively debated in many quarters, 
including the National Diet, academic societies, TV, newspapers, and 
social networking sites. In general, there was much skepticism about the 
safety of holding the Olympics. For example, according to a poll con-
ducted by Asahi Shimbun (2021a) on July 17 and 18, 33% of re-
spondents were in favor of holding the Olympics, while 55% were 
against. In the same survey, 21% of respondents said that a “safe and 
secure Olympics” could be achieved, while 68% said they could not. 

Given the development of newly confirmed COVID-19 cases shown 
in Fig. 1, many people believe that the Olympics increased new COVID- 
19 cases in Tokyo because it appears that COVID-19 cases increased 
rapidly around the time of the Olympics. According to a poll conducted 

by Mainichi Shimbun (2021) on August 28, more than 70% of re-
spondents said that holding the Olympics might have affected the spread 
of COVID-19 infection. From a causal inference perspective, did holding 
the Tokyo Olympics truly increase the number of new COVID-19 cases in 
Tokyo? If so, how many cases did it cause? These are important ques-
tions of social concern and policy relevance. However, there have been 
no reliable post hoc studies using causal inference methods to answer 
these questions. 

The aim of this paper is to answer these questions by estimating the 
causal impact of holding the Tokyo Olympics on newly confirmed 
COVID-19 cases in Tokyo (Japan) using a novel causal inference 
approach. To estimate this impact, we need to know the unobserved 
counterfactual COVID-19 cases; that is, what would have been the cases 
if the Olympics had not been held. To do so, we use a synthetic control 
method (SCM) proposed by Abadie et al. (2010, 2015) and a Ridge 
Augmented SCM (RASCM) developed by Ben-Michael et al. (2021). 
These methods allow us to estimate the causal impact of an event on its 
outcome for a single treatment unit by constructing a counterfactual 
so-called “synthetic control” (SC), which can be constructed from out-
comes in the control units through a data-driven approach (Abadie et al., 
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2010, 2015; Athey and Imbens, 2017; Abadie, 2021). 
In our analysis using SCMs, we use a daily 7-day moving average of 

newly confirmed COVID-19 cases per one million people as an outcome 
variable and define holding the Olympics as a treatment (event), Tokyo 
(Japan) as a treatment unit, and 37 OECD countries as control units.1 

Following Doudchenko and Imbens (2016) and Botosaru and Ferman 
(2019), we use all lagged COVID-19 cases (i.e., all lagged outcomes) as 
predictors to construct an SC that can accurately fit the path of the actual 
outcome for the pre-treatment period. Using the SCMs, we construct a 
counterfactual for COVID-19 cases in Tokyo (Japan) as a weighted 

average of COVID-19 cases of the 37 OECD countries that are not 
affected by holding the Tokyo Olympics. We obtain a reliable counter-
factual given that the estimated SC has a good pre-treatment fit in pre-
dicting the actual COVID-19 cases. According to the context of the SCM, 
using our reliable SC enables us to estimate the treatment effect of the 
Olympics by controlling for time-varying observed and unobserved 
factors that affect COVID-19 cases. The difference between the actual 
COVID-19 cases and their SC values in the post-treatment period in-
dicates the treatment effect of holding the Olympics on COVID-19 cases 
in Tokyo (Japan). 

We find that holding the Tokyo Olympics significantly increased the 
number of newly confirmed COVID-19 cases in Tokyo. This finding is 
qualitatively robust to varying pre-treatment windows, measurements 
of outcomes, and different SCMs. The quantitative impacts are slightly 
different for each analytical setting. When looking at the daily average 
of newly confirmed COVID-19 cases per one million people from July 23 

Fig. 1. The evolution of 7-day moving average of newly confirmed COVID-19 cases. 
Notes: The shadow areas represent the duration of the Olympics. 
Sources: Japanese Ministry of Health, Labour and Welfare and Our World in Data. 

1 Although it would have been better to use Japanese prefectures without 
venues for the Olympics as control units (donors) in the case of the estimation 
for Tokyo, we did not adopt them as donors for many reasons, as shown in 
Section 3.2 and Appendix A. 
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to August 22, the Olympics increased COVID-19 cases by 105 to 132 in 
Tokyo (47 to 65 in Japan) relative to the counterfactuals. Based on these 
estimates and the population of Tokyo (Japan), our results suggest that if 
the Olympics had not been held, the daily average of new COVID-19 
cases could have been reduced by as many as approximately 1500 to 
1850 cases in Tokyo (approximately 5900 to 8150 cases in Japan as a 
whole). These results suggest that holding the Tokyo Olympics likely led 
to the spread of COVID-19 infection in Tokyo (Japan). 

1.1. Related literature 

This paper relates to three strands of the growing literature on the 

COVID-19 pandemic. First, this paper is directly related to recent studies 
that examine the relationship between holding the Tokyo Olympics and 
COVID-19 infection rates. Professors Nakata and Fujii of the University 
of Tokyo build a traceable SIR-macro model and use it to conduct a 
simulation analysis of the relationship between economic output and the 
spread of COVID-19 in Japan (Fujii and Nakata, 2021).2 As part of their 

Fig. 2. SCM estimates for Tokyo: level of the outcome. 
Notes: Fig. 2 summarizes the SCM estimates from estimating the impact of the Tokyo Olympics on newly confirmed COVID-19 cases per million people in Tokyo 
when using the level of the number of the cases as the outcome. For using the pre-treatment period from June 23 to July 22, panels A and B show the daily actual 
COVID-19 cases and the SC (i.e., counterfactual) and the treatment effect (TE) of the Olympics, respectively. For using the pre-treatment period from April 2 to July 
22, panels C and D show the daily actual COVID-19 cases and the SC and the TE of the Olympics, respectively. In panels A and C, the development of actual COVID-19 
cases is shown in the black solid line and the SC is shown in the blue dashed line. The shadow areas represent the duration of the Olympics. 

2 They have performed a simulation analysis with new data every week to 
examine COVID-19 related policy issues, and updated the results on their 
website (https://covid19outputjapan.github.io/JP/). Their research project 
was the most successful in considering the relationship between the economy 
and COVID-19 in Japan in real time. 
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research, Fujii et al. (2021) present the results of model-based analyses 
on May 21 and June 16, 2021 to quantify the impact of holding the 
Olympics and Paralympics on COVID-19 infection in Tokyo. Based on 
June-16th analysis, they show that as of one week after the closing of the 
Olympics, the Olympics would increase the number of new COVID-19 
cases in Tokyo by approximately 500 per day compared to the base-
line of no Olympics. Fujii et al. (2021) point out that the festival moods 
promoted by holding the Olympics could lead to the spread of COVID-19 
infection. Linton et al. (2021) employ a multitype branching process 
model by using information related to COVID-19 and the Olympics just 
before the Olympic Games to simulate the number of new COVID-19 
cases in Tokyo after the opening of the Olympics. They show that if 
COVID-19 transmission could not be controlled, the maximum number 
of new cases in Tokyo would reach up to more than 4000 per day. Fujii 
et al. (2021) and Linton et al. (2021) perform ex ante simulation studies 
on the potential infection in Tokyo. 

However, to the best of our knowledge, as of December 1, 2021, 
there have been no reliable ex post studies using causal inference 
methods, although more research will be conducted in the future. The 
daily average effect of holding the Olympics estimated from the SCMs is 
approximately 1500 to 1850 cases in Tokyo, indicating that our 

estimates are different and larger than that of Fujii et al. (2021).3 The 
reason for this is, of course, the difference in methodology, plus the fact 
that the study by Fujii et al. (2021) could not use the information that 
the number of new COVID-19 cases in Tokyo increased considerably in 
July.4 Therefore, our contribution to this literature is to provide policy 
evaluation findings obtained from a reliable causal inference approach 
for estimating the impact of holding the Olympics on new COVID-19 
cases in Tokyo (Japan). 

Second, this paper is connected to empirical studies that examine the 
relation between sports events and COVID-19 infection in the local 
population. From a public health perspective, it is clear that sports 
events with many spectators substantially increase COVID-19 infection 
risk among spectators during the COVID-19 pandemic (e.g., Parnell 
et al., 2020). Therefore, do these events increase the risk of COVID-19 
infection in the local population where they are held? To answer this 
question, Breidenbach and Mitze (2022) study the impact of hosting the 
German professional football matches, Toumi et al. (2021) study the 
impacts of hosting the United States National Football League games and 
NCAA football games, Carlin et al. (2021) study the impacts of hosting 
the NHL hockey games, NBA basketball games, and NCAA basketball 
games, and Dave et al. (2021) study the impact of the Sturgis Motorcycle 
Rally in South Dakota. Breidenbach and Mitze (2022), Carlin et al. 
(2021), and Dave et al. (2021) find that these events with large gath-
erings of people significantly increased the number of new COVID-19 
cases in the local population, while Toumi et al. (2021) find no signifi-
cant evidence. The first main difference between these studies and ours 
is that we examine the impact of holding a national event, such as the 
Olympics, on COVID-19 infection in the local population. The second 
main difference is that we estimate the impact of holding a large-scale 
event without spectators on COVID-19 infection in the local popula-
tion. Therefore, our contribution is to provide empirical evidence that 
holding the Tokyo Olympics significantly increased the number of new 
COVID-19 cases in the local population, even though there was no 
audience. 

Third, our paper is related to recent COVID-19 studies in application 
of the SCM. Using the SCM, Friedson et al. (2021) conduct a policy 
evaluation of shelter-in-place orders in California, Mitze et al. (2020) 
estimate the preventive effect of face masks in Germany, Cho (2020) 
examine the effectiveness of lockdown by estimating a counterfactual 
case for Sweden, Dave et al. (2021) estimate the impact of the Sturgis 
Motorcycle Rally in South Dakota on COVID-19 infection, and Brei-
denbach and Mitze (2022) estimate the impact of hosting professional 
football games on COVID-19 infection in Germany. Although these 
studies use the standard SCM proposed by Abadie et al. (2010, 2015), 
our study uses a RASCM developed by Ben-Michael et al. (2021) in 
addition to the standard SCM to estimate the impact of holding the 
Tokyo Olympics on new COVID-19 cases in Tokyo. The RASCM can 
construct an SC that better fits the trajectory of the actual outcome in the 
pre-treatment period than the standard SCM by admitting small negative 
weights. Using the RASCM, we obtain a more reliable counterfactual in 
the sense that the estimated SC has a better pre-treatment fit. Therefore, 
by comparing the SCM estimates to the RASCM estimates, we can in-
crease the reliability of our results for COVID-19 infection. 

Table 1 
SCM estimates for Tokyo.  

RMSPE=0.5649 (1) (2) 

Method SCM SCM 
Pre-window June 23 to July 22 June 23 to July 22 
Outcome Level (cases) Level (cases)  

Average daily TE Cumulative TE 
TE 113.25 3510.78 
Placebo test: rank 1/38 1/38 
Two-sided p-value [0.0263] [0.0263] 
90% confidence interval (29.27, 197.23) (907.47, 6114.10)    

RMSPE=2.7851 (3) (4) 
Method SCM SCM 
Pre-window April 2 to July 22 April 2 to July 22 
Outcome Level (cases) Level (cases)  

Average daily TE Cumulative TE 
TE 131.87 4087.88 
Placebo test: rank 1/38 1/38 
Two-sided p-value [0.0263] [0.0263] 
90% confidence interval (34.09, 229.65) (1056.64, 7119.12)    

RMSPE=0.3417 (5) (6) 
Method SCM SCM 
Pre-window June 23 to July 22 June 23 to July 22 
Outcome Log (cases) Log (cases)  

Average daily TE Cumulative TE 
TE 113.62 3522.36 
Placebo test: rank 1/38 1/38 
Two-sided p-value [0.0263] [0.0263] 
90% confidence interval (29.37, 197.88) (910.46, 6134.25)    

RMSPE=5.7230 (7) (8) 
Method SCM SCM 
Pre-window April 2 to July 22 April 2 to July 22 
Outcome Log (cases) Log (cases)  

Average daily TE Cumulative TE 
TE 141.81 4396.16 
Placebo test: rank 1/38 1/38 
Two-sided p-value [0.0263] [0.0263] 
90% confidence interval (36.66, 246.97) (1136.32, 7656.00) 

Notes: From the SCM results when using the post-treatment period from July 23 
to August 22, we calculate the average daily treatment effect (TE) and the cu-
mulative TE in Tokyo. When using the log of COVID-19 cases as the outcome, the 
estimates obtained from the SCM are converted to the level of the outcomes (i.e., 
exp (SC)) to easily compare to the baseline results in (1) and (2). Then, we 
calculate the root mean squared prediction error (RMSPE), the average daily TE, 
and the cumulative TE. The two-sided p-values are calculated from the placebo 
and permutation tests that use the country-specific RMSPE ratio. The 90% 
confidence intervals are calculated from the two-sided p-values. 

3 The effect of holding the Olympics was not certain in Linton et al. (2021) 
because it was not compared to the case where if the Olympics were not held. 
Thus, it is not possible to simply compare Linton et al. (2021) estimates to ours.  

4 It is natural that their May-21st and June-16th analyses could not use 
COVID-19-related information for future July. The study by Fujii et al. (2021) is 
important and significant because as of two months before the Olympics, it 
presented that holding the Olympics would greatly increase the spread of 
COVID-19 in Tokyo. 
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2. Background 

2.1. COVID-19 cases in Tokyo before the Olympics and control measures 

Tokyo is the capital and the economic and administrative center of 
Japan. The population was approximately 14 million in 2020, and the 
GDP was approximately 107 trillion yen (965.4 billion dollars) in fiscal 
2018.5 Comparing Tokyo to the 38 OECD countries, Tokyo ranked 17th 
in population and 12th in GDP. Hence, Tokyo is a super megacity in 

Japan that is comparable to the major countries of the world. 
Tokyo and Japan had a relatively lower number of newly confirmed 

COVID-19 cases than OECD countries. As shown in Fig. 1, in early April 
2021, the number of new COVID-19 cases per day was approximately 
400 (30 per million people) in Tokyo, while it was approximately 2000 
(20 per million people) in Japan as a whole. However, new COVID-19 
cases increased until mid-May, reaching approximately 900 (70 per 
million people) in Tokyo and approximately 6000 (50 per million 

Fig. 3. SCM estimates for Tokyo: log of the outcome. 
Notes: Fig. 3 summarizes the SCM estimates from estimating the impact of the Tokyo Olympics on newly confirmed COVID-19 cases per million people in Tokyo 
when using the log of the number of the cases as the outcome. To easily compare to the level of the outcome in Fig. 2, the estimates obtained from the SCM are 
converted to the level of the outcomes (i.e., exp (SC)). For using the pre-treatment period from June 23 to July 22, panels A and B show the daily actual COVID-19 
cases and the SC (i.e., counterfactual) and the treatment effect (TE) of the Olympics, respectively. For using the pre-treatment period from April 2 to July 22, panels C 
and D show the daily actual COVID-19 cases and the SC and the TE of the Olympics, respectively. In panels A and C, the development of the actual COVID-19 cases is 
shown in the black solid line and the SC is shown in the blue dashed line. The shadow areas represent the duration of the Olympics. 

5 See Tokyo Statistics (https://www.toukei.metro.tokyo.lg.jp/). 
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people) in Japan. Since then, the number of new cases had been 
decreasing, and by mid-June, it had dropped to the level of early April. 
In response to this decrease, the Japanese government lifted the third 
state of emergency that was in place in Tokyo from April 25 to June 20.6 

In early July, the number of new COVID-19 cases began to increase 
again. In response to the spread of the infection, on the night of July 8, 
the government declared the fourth state of emergency in Tokyo from 
July 12 to August 22. At the same time, the Tokyo Organising 

Committee of the Olympic and Paralympic Games (TOCOG) announced 
that all events for the Olympics would be held without spectators in and 
around the host city of Tokyo to hold the Olympics while preventing the 
spread of COVID-19 infection. From a public health perspective, holding 
the Olympics was inconsistent with the state of emergency for pre-
venting the spread of COVID-19. Never before have the Olympics been 
held during a new virus spread as was the case with the Tokyo Olympics. 
Therefore, our research is a case study to estimate the impact of a large- 
scale and rare event, such as the Olympics, on new viral infections, such 

Fig. 4. RASCM estimates for Tokyo: level of the outcome. 
Notes: Fig. 4 summarizes the RASCM estimates from estimating the impact of the Tokyo Olympics on newly confirmed COVID-19 cases per million people in Tokyo 
when using the level of the number of the cases as the outcome. For using the pre-treatment period from June 23 to July 22, panels A and B show the daily actual 
COVID-19 cases and the SC (i.e., counterfactual) and the treatment effect (TE) of the Olympics, respectively. For using the pre-treatment period from April 2 to July 
22, panels C and D show the daily actual COVID-19 cases and the SC and the TE of the Olympics, respectively. In panels A and C, the development of the actual 
COVID-19 cases is shown in the black solid line and the SC is shown in the blue dashed line. The shadow areas represent the duration of the Olympics. 

6 Although many countries imposed a lockdown with restrictions to prevent 
COVID-19 infection, the state of emergency government in Japan was not 
enforceable and nonpunitive with the declaration. 
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as COVID-19, in the host city of Tokyo. 
In addition to holding the events without spectators, the TOCOG 

implemented several measures to prevent the spread of COVID-19 
infection.7 In particular, the TOCOG adopted a “bubble system” in 
which athletes and participants were isolated from the outside world. 
Moreover, the committee made it mandatory for Olympic participants to 
follow the “Playbooks,” a set of guidelines for infection control. 

2.2. COVID-19 cases in Tokyo after the Olympics 

The Tokyo Olympics were held from July 23 to August 8, 2021 under 
the state of emergency during the COVID-19 pandemic. The Olympics 
featured 339 events in 33 sports and attracted 11,259 athletes, 
approximately 33,000 overseas game officials, and 51,672 volunteers, 
among Olympic participants.8 In addition to Tokyo, events were held in 
eight prefectures including Saitama, Kanagawa, Chiba, Ibaraki, Shi-
zuoka, Fukushima, Miyagi, and Hokkaido. Almost all of the competition 

Fig. 5. RASCM estimates for Tokyo: log of the outcome. 
Notes: Fig. 5 summarizes the RASCM estimates from estimating the impact of the Tokyo Olympics on newly confirmed COVID-19 cases per million people in Tokyo 
when using the log of the number of the cases as the outcome. To easily compare to the level of the outcome in Fig. 4, the estimates obtained from the RASCM are 
converted to the level of the outcomes (i.e., exp (SC)). For using the pre-treatment period from June 23 to July 22, panels A and B show the daily actual COVID-19 
cases and the SC (i.e., counterfactual) and the treatment effect (TE) of the Olympics, respectively. For using the pre-treatment period from April 2 to July 22, panels C 
and D show the daily actual COVID-19 cases and the SC and the TE of the Olympics, respectively. In panels A and C, the development of the actual COVID-19 cases is 
shown in the black solid line and the SC is shown in the blue dashed line. The shadow areas represent the duration of the Olympics. 

7 For details of COVID-19 countermeasures and Playbooks, see https://www 
.2020games.metro.tokyo.lg.jp/special/eng/guide/ and https://olympics. 
com/ioc/tokyo-2020-playbooks. 8 See TOCOG (2021a). 
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venues were in Tokyo and other metropolitan areas, and events took 
place without spectators. 

Although the TOCOG implemented various infection control mea-
sures, how many of the Olympic participants were actually infected with 
COVID-19? The report by Japan Broadcasting Corporation (NHK) on 
September 8 indicates that the number of people infected with COVID- 
19 directly related to the Olympics was 547, which was based on an 
announcement by the TOCOG.9 Of these 547 COVID-19 cases, 28 were 
athletes who came to Japan from overseas, 147 were from the IOC or 
sports organizations or were coaches and other officials, 32 were 
members of the media, 15 were from the organizing committee, 296 
were contractors, and 29 were volunteers. Based on these figures and the 
low positivity rate of the screening test for COVID-19, the TOCOG 
(2021b) claimed that COVID-19 countermeasures were effective in 
controlling the spread of COVID-19 among Olympic participants. 

What happened to COVID-19 cases among the citizens of the host 
city, Tokyo, as a result of holding the Tokyo Olympics? As shown in 
Fig. 1, it appears that the number of new COVID-19 cases in Tokyo 

increased during the Olympics. Although the number of COVID-19 cases 
in Tokyo per day was approximately 1400 (100 per million people) on 
July 22, it was approximately 4000 (300 per million people) on August 
8. In response to the increase in COVID-19 cases, the government 
announced on July 31 that the fourth state of emergency in Tokyo would 
be extended until August 31. On August 17, the government announced 
that it would be extended again until September 12. Finally, the fourth 
state of emergency was extended until September 30. The data in Fig. 1 
lead many people to believe that the Olympics had caused the spread of 
COVID-19 in Tokyo.10 However, the TOCOG (2021b) rejected this 
public opinion, citing the reasons that the effective reproduction number 
of COVID-19 had been on a downward trend and that people’s mobility 
had been declining during the Olympics. 

Unlike the TOCOG (2021b), using a causal inference approach, we 
address the question of whether holding the Olympics substantially 
increased the number of new COVID-19 cases in Tokyo. Specifically, we 

Table 2 
RASCM estimates for Tokyo.  

RMSPE=0.2319 (1) (2) 

Method RASCM RASCM 
Pre-window June 23 to July 22 June 23 to July 22 
Outcome Level (cases) Level (cases)  

Average daily TE Cumulative TE 
TE 105.18 3260.69 
Placebo test: rank 2/38 2/38 
Two-sided p-value [0.0526] [0.0526] 
90% confidence interval (15.76, 194.61) (488.47, 6032.91)    

RMSPE=1.2760 (3) (4) 
Method RASCM RASCM 
Pre-window April 2 to July 22 April 2 to July 22 
Outcome Level (cases) Level (cases)  

Average daily TE Cumulative TE 
TE 124.86 3870.66 
Placebo test: rank 3/38 3/38 
Two-sided p-value [0.0789] [0.0789] 
90% confidence interval (7.81, 241.91) (242.14, 7499.18)    

RMSPE=0.3332 (5) (6) 
Method RASCM RASCM 
Pre-window June 23 to July 22 June 23 to July 22 
Outcome Log (cases) Log (cases)  

Average daily TE Cumulative TE 
TE 113.46 3517.35 
Placebo test: rank 2/38 2/38 
Two-sided p-value [0.0526] [0.0526] 
90% confidence interval (17.00, 209.93) (526.92, 6507.77)    

RMSPE=1.6899 (7) (8) 
Method RASCM RASCM 
Pre-window April 2 to July 22 April 2 to July 22 
Outcome Log (cases) Log (cases)  

Average daily TE Cumulative TE 
TE 81.65 2531.00 
Placebo test: rank 6/38 6/38 
Two-sided p-value [0.1579] [0.1579] 
90% confidence interval (-13.33, 176.62) (-413.13, 5475.13) 

Notes: From the RASCM results when using the post-treatment period from July 
23 to August 22, we calculate the average daily treatment effect (TE) and the 
cumulative TE in Tokyo. When using the log of COVID-19 cases as the outcome, 
the estimates obtained from the RASCM are converted to the level of the out-
comes (i.e., exp (SC)) to easily compare to the baseline results. Then, we 
calculate the root mean squared prediction error (RMSPE), the average daily TE, 
and the cumulative TE. The two-sided p-values are calculated from the placebo 
and permutation tests that use the country-specific RMSPE ratio. The 90% 
confidence intervals are calculated from the two-sided p-values. 

Table 3 
SCM estimates for Japan.  

RMSPE=0.3495 (1) (2) 

Method SCM SCM 
Pre-window June 23 to July 22 June 23 to July 22 
Outcome Level (cases) Level (cases)  

Average daily TE Cumulative TE 
TE 52.75 1635.22 
Placebo test: rank 1/38 1/38 
Two-sided p-value [0.0263] [0.0263] 
90% confidence interval (13.63, 91.86) (422.67, 2847.77)    

RMSPE= 3.0003 (3) (4) 
Method SCM SCM 
Pre-window April 2 to July 22 April 2 to July 22 
Outcome Level (cases) Level (cases)  

Average daily TE Cumulative TE 
TE 64.67 2004.71 
Placebo test: rank 3/38 3/38 
Two-sided p-value [0.0789] [0.0789] 
90% confidence interval (4.05, 125.29) (125.41, 3884.01)    

RMSPE=0.0912 (5) (6) 
Method SCM SCM 
Pre-window June 23 to July 22 June 23 to July 22 
Outcome Log (cases) Log (cases)  

Average daily TE Cumulative TE 
TE 47.30 1466.20 
Placebo test: rank 1/38 1/38 
Two-sided p-value [0.0263] [0.0263] 
90% confidence interval (12.23, 82.37) (378.99, 2553.42)    

RMSPE=6.0802 (7) (8) 
Method SCM SCM 
Pre-window April 2 to July 22 April 2 to July 22 
Outcome Log (cases) Log (cases)  

Average daily TE Cumulative TE 
TE 37.89 1174.74 
Placebo test: rank 9/38 9/38 
Two-sided p-value [0.2368] [0.2368] 
90% confidence interval (-14.54, 90.33) (-450.71, 2800.19) 

Notes: From the SCM results when using the post-treatment period from July 23 
to August 22, we calculate the average daily treatment effect (TE) and the cu-
mulative TE in Japan. When using the log of COVID-19 cases as the outcome, the 
estimates obtained from the SCM are converted to the level of the outcomes (i.e., 
exp (SC)) to easily compare to the baseline results in (1) and (2). Then, we 
calculate the root mean squared prediction error (RMSPE), the average daily TE, 
and the cumulative TE. The two-sided p-values are calculated from the placebo 
and permutation tests that use the country-specific RMSPE ratio. The 90% 
confidence intervals are calculated from the two-sided p-values. 

9 https://www3.nhk.or.jp/news/html/20210908/k10013249701000.html. 

10 For example, according to a poll conducted by Kyodo News (2021) on 
August 16, 59.8% of respondents thought that the holding the Olympics was a 
factor in the spread of COVID-19 infection. 

T. Esaka and T. Fujii                                                                                                                                                                                                                           

https://www3.nhk.or.jp/news/html/20210908/k10013249701000.html


Journal of The Japanese and International Economies 66 (2022) 101228

9

use the SCM approach to estimate the counterfactual COVID-19 cases; 
that is, what would have been the cases if the Olympics had not been 
held. We then estimate the impact of holding the Olympics on COVID-19 
cases in Tokyo by comparing the actual cases to the counterfactual cases. 
Therefore, our analysis does not examine the effectiveness of various 
COVID-19 countermeasures implemented in response to the Olympics 
but rather the overall impact of holding the Olympics on COVID-19 cases 
in Tokyo. 

3. Methodology and data 

To estimate the impact of holding the Tokyo Olympics on COVID-19 
cases in Tokyo, we use the SCM proposed by Abadie et al. (2010, 2015) 
and the RASCM developed by Ben-Michael et al. (2021) which is an 
extended version of the SCM. Since the SCM was introduced in the 
seminal papers of Abadie and Gardeazabal (2003) and Abadie et al. 
(2010), it has been widely used to estimate the effect of a treatment for a 
single treatment unit in comparative case studies in various fields 
(Athey and Imbens, 2017; Bouttell et al., 2018; Abadie, 2021). 

3.1. Synthetic control method 

In this section, we present an empirical methodology of using the 
SCM. Following the treatment effect literature, we define holding the 
Tokyo Olympics as “treatment,” Tokyo (Japan) as the “treatment unit,” 
and countries other than Tokyo (Japan) as the “control unit.” In our 
application of the SCM, we also define a daily 7-day moving average of 
newly confirmed COVID-19 cases per one million people as the 
“outcome” variable (Yit). Yit is the outcome in country i at time t. 

We begin by presenting some notations of the SCM.11 Suppose that 
we observe J+1 units over the period from time 1 to time T (t = 1,⋯,T0,

T0 + 1⋯,T). Without loss of generality, suppose that only the first unit is 
exposed to the treatment of interest (i.e., Tokyo is affected by the Tokyo 
Olympics), so that J remaining units are defined as potential control 
units (i.e., donor pool). Let Y1t denote the observed outcome for Tokyo 
at time t and Tokyo be exposed to the treatment at time T0 + 1. Let T0 

denote the number of pre-treatment periods, with 1 ≤ T0 ≤ T. Let YN
it be 

the counterfactual outcome for unit i at time t (i.e., what would have 
been an outcome if a treatment had not been adopted). 

The SCM assumes that YN
it follows a factor model given by 

YN
it = ηt + θtZi + λtμi + εit, (1)  

where ηt is an unknown common factor (e.g., time-specific effect), θt is a 
(1× r) vector of unknown parameters, Zi is an (r× 1) vector of observed 

covariates, λt is a (1× F) vector of unobserved common factors that 
depends on time, μi is an (F× 1) vector of unknown factor loadings (e. 
g., country-specific effect), and εit is unobserved transitory shock at a 
unit level with zero mean. 

We aim to estimate the treatment effect (TE) of the treatment as 
follows: 

α1t = Y1t − YN
1t , (2)  

for t > T0. However, we cannot directly estimate the TE (α1t) because 
YN

1t cannot be observed. According to Abadie et al. (2010, 2015), the 
counterfactual outcome YN

1t for the treatment unit is called synthetic 
control (SC). 

Consider a (J × 1) vector of weights W = (w2,⋯,wJ+1)
′

such that 
wi ≥ 0 for j = 2,⋯, J + 1 and w2 + ⋯+ wJ+1 = 1. In the SCM, YN

1t can 
be constructed from a weighted average of outcomes in the donor pool 
(i.e., 

∑J+1
j=2 w∗

j Yjt) through a data-driven approach. Abadie et al. (2010, 
2015) argue that retaining the simplex constraint on the weights can 
avoid bias resulted from extrapolating outside the convex hull of the 
control units, indicating that the SCM prevents estimation of extreme 
counterfactuals (Ben-Michael et al., 2021). Therefore, the estimated TE 
is given by 

α̂1t = Y1t −
∑J+1

j=2
w∗

j Yjt, (3)  

for t > T0. Abadie et al. (2010, 2015) show that under regular condi-
tions, given optimal weights w∗

j , the estimated TE (α̂1t) is an unbiased 
estimator. 

In our analysis, we need to choose the optimal weight w∗
j so that the 

SC can accurately fit the trajectory of the actual outcome before the start 
of the Tokyo Olympics because, theoretically, the relation Y1t = YN

1t 
holds for the pre-treatment period. Thus, Abadie et al. (2010, 2015) 
propose that the optimal weight vector W∗ is chosen to minimize the 
following distance between X1 and X0W: 

Table 4 
RASCM estimates for Japan.  

RMSPE=0.0848 (1) (2) 

Method RASCM RASCM 
Pre-window June 23 to July 22 June 23 to July 22 
Outcome Level (cases) Level (cases)  

Average daily TE Cumulative TE 
TE 50.83 1575.64 
Placebo test: rank 2/38 2/38 
Two-sided p-value [0.0526] [0.0526] 
90% confidence interval (7.61, 94.04) (236.04, 2915.23)    

RMSPE=1.1893 (3) (4) 
Method RASCM RASCM 
Pre-window April 2 to July 22 April 2 to July 22 
Outcome Level (cases) Level (cases)  

Average daily TE Cumulative TE 
TE 44.55 1380.92 
Placebo test: rank 13/38 13/38 
Two-sided p-value [0.3421] [0.3421] 
90% confidence interval (-31.74, 120.83) (-983.83, 3745.68)    

RMSPE=0.0898 (5) (6) 
Method RASCM RASCM 
Pre-window June 23 to July 22 June 23 to July 22 
Outcome Log (cases) Log (cases)  

Average daily TE Cumulative TE 
TE 47.37 1468.61 
Placebo test: rank 1/38 1/38 
Two-sided p-value [0.0263] [0.0263] 
90% confidence interval (12.25, 82.50) (379.61, 2557.61)    

RMSPE=0.9598 (7) (8) 
Method RASCM RASCM 
Pre-window April 2 to July 22 April 2 to July 22 
Outcome Log (cases) Log (cases)  

Average daily TE Cumulative TE 
TE 17.85 553.26 
Placebo test: rank 8/38 8/38 
Two-sided p-value [0.2105] [0.2105] 
90% confidence interval (-5.51, 41.21) (-170.90, 1277.42) 

Notes: From the RASCM results when using the post-treatment period from July 
23 to August 22, we calculate the average daily treatment effect (TE) and the 
cumulative TE in Japan. When using the log of COVID-19 cases as the outcome, 
the estimates obtained from the RASCM are converted to the level of the out-
comes (i.e., exp (SC)) to easily compare to the baseline results. Then, we 
calculate the root mean squared prediction error (RMSPE), the average daily TE, 
and the cumulative TE. The two-sided p-values are calculated from the placebo 
and permutation tests that use the country-specific RMSPE ratio. The 90% 
confidence intervals are calculated from the two-sided p-values. 

11 The presentation is partly based on the theory and application of the SCM 
by Abadie et al. (2010, 2015), Doudchenko and Imbens (2016), and Ben-Mi-
chael et al. (2021). 
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‖ X1 − X0W‖v =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(X1 − X0W)
’V(X1 − X0W)

√

,

where X1 is a (k × 1) vector of pre-treatment predictors for the treated 
unit and, similarly, X0 is a (k× J) matrix for the donor pool. X1 and X0 
contain the pre-treatment outcomes Y and covariates Z. V is some (k×k)
symmetric and positive semi-definite matrix that captures the relative 
importance of these variables as predictors of the outcome variable. The 
value of V is chosen such that the mean squared prediction error (MSPE) 
of the outcome variable is minimized for the pre-treatment period. To 
assess whether the estimated SC accurately fits the path of the actual 
outcome for the treated unit in the pre-treatment period, we calculate 
the root mean squared prediction error (RMSPE) of the SC and perform a 

visual inspection. 
According to Abadie et al. (2010, 2015), Abadie (2021), Bouttell 

et al. (2018), and Mitze et al. (2020), the assumptions and requirements 
for effective use of the SCM are as follows: (i) All control units do not 
adopt the treatment during the analysis period. (ii) The pre-treatment 
period is long (i.e., the number of pre-treatment observations is large). 
(iii) The treatment unit lies in the convex hull of control units. The 
outcomes and predictors for the treatment unit must not be extreme 
relative to those for the control units. (iv) There are no anticipation 
effects. In other words, there are no effects related to the treatment in the 
treatment unit before the event start date for the SCM. (v) In the use of 
predictors, covariates are not affected by the treatment. (vi) As in con-
ventional treatment effect analyses, outcomes of the control units are 

Fig. 6. SCM estimates for Japan: level of the outcome. 
Notes: Fig. 6 summarizes the SCM estimates from estimating the impact of the Tokyo Olympics on newly confirmed COVID-19 cases per million people in Japan when 
using the level of the number of the cases as the outcome. For using the pre-treatment period from June 23 to July 22, panels A and B show the daily actual COVID-19 
cases and the SC (i.e., counterfactual) and the treatment effect (TE) of the Olympics, respectively. For using the pre-treatment period from April 2 to July 22, panels C 
and D show the daily actual COVID-19 cases and the SC and the TE of the Olympics, respectively. In panels A and C, the development of the actual COVID-19 cases is 
shown in the black solid line and the SC is shown in the blue dashed line. The shadow areas represent the duration of the Olympics. 
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not affected by the treatment in the treated unit. This condition is well 
known as the “stable unit treatment value assumption” (SUTVA). (vii) If 
it is not possible to construct an SC that can accurately fit the path of the 
actual outcome for the pre-treatment period, the counterfactual is not 
reliable. Accordingly, taking these conditions into account, we will 
select control units, pre-treatment periods, and prediction variables for 
estimating a reliable counterfactual outcome. 

3.2. Data 

Our analysis uses daily panel data from Tokyo and the 38 OECD 
countries from April 2, 2021 to August 22, 2021. The outcome variable 
is the number of daily newly confirmed COVID-19 cases per one million 
people. We use the 7-day moving average of the outcome to correct for 
the day-of-the week effect observed in COVID-19 data. The data are 

Fig. 7. SCM estimates for Japan: log of the outcome. 
Notes: Fig. 7 summarizes the SCM estimates from estimating the impact of the Tokyo Olympics on newly confirmed COVID-19 cases per million people in Japan when 
using the log of the number of the cases as the outcome. To easily compare to the level of the outcome in Fig. 6, the estimates obtained from the SCM are converted to 
the level of the outcomes (i.e., exp (SC)). For using the pre-treatment period from June 23 to July 22, panels A and B show the daily actual COVID-19 cases and the SC 
(i.e., counterfactual) and the treatment effect (TE) of the Olympics, respectively. For using the pre-treatment period from April 2 to July 22, panels C and D show the 
daily actual COVID-19 cases and the SC and the TE of the Olympics, respectively. In panels A and C, the development of the actual COVID-19 cases is shown in the 
black solid line and the SC is shown in the blue dashed line. The shadow areas represent the duration of the Olympics. 
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obtained from the Our World in Data website (Ritchie et al., 2020).12 

Taking the SCM requirements into account, we select the 37 OECD 
countries except for Japan as our donor pool because the 
above-mentioned conditions (i), (iii), and (vi) are met. In fact, the 
number of COVID-19 cases in Tokyo was not large compared to those in 
other OECD countries, indicating that the treatment unit was in the 
convex hull of control units (see Appendix B). Importantly, it is unlikely 
that holding the Tokyo Olympics affected COVID-19 cases in the people 
in the 37 OECD countries, so we believe that the SUTVA is satisfied. In 
addition, despite being a city, Tokyo has an economy and population 

comparable in size to those of an OECD country, and its social and po-
litical systems are similar to those of OECD countries. 

Let us now consider the case if we use Japanese prefectures as the 
donor pool in the case of the estimation for Tokyo. As shown in 
Appendix A, the number of COVID-19 cases in Tokyo was much larger 
than that in Japanese prefectures, indicating that the treatment unit 
does not lie in the convex hull of control units. The SUTVA is not 
satisfied because it is possible that holding the Olympics had an impact 
on COVID-19 cases in other Japanese prefectures (i.e., there were 
spillover effects within Japan). Moreover, although we tried to use 

Fig. 8. RASCM estimates for Japan: level of the outcome. 
Notes: Fig. 8 summarizes the RASCM estimates from estimating the impact of the Tokyo Olympics on newly confirmed COVID-19 cases per million people in Japan 
when using the level of the number of the cases as the outcome. For using the pre-treatment period from June 23 to July 22, panels A and B show the daily actual 
COVID-19 cases and the SC (i.e., counterfactual) and the treatment effect (TE) of the Olympics, respectively. For using the pre-treatment period from April 2 to July 
22, panels C and D show the daily actual COVID-19 cases and the SC and the TE of the Olympics, respectively. In panels A and C, the development of the actual 
COVID-19 cases is shown in the black solid line and the SC is shown in the blue dashed line. The shadow areas represent the duration of the Olympics. 

12 The data were accessed on September 11, 2021. 
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Fig. 9. RASCM estimates for Japan: log of the outcome. 
Notes: Fig. 9 summarizes the RASCM estimates from estimating the impact of the Tokyo Olympics on newly confirmed COVID-19 cases per million people in Japan 
when using the log of the number of the cases as the outcome. To easily compare to the level of the outcome in Fig. 8, the estimates obtained from the RASCM are 
converted to the level of the outcomes (i.e., exp (SC)). For using the pre-treatment period from June 23 to July 22, panels A and B show the daily actual COVID-19 
cases and the SC (i.e., counterfactual) and the treatment effect (TE) of the Olympics, respectively. For using the pre-treatment period from April 2 to July 22, panels C 
and D show the daily actual COVID-19 cases and the SC and the TE of the Olympics, respectively. In panels A and C, the development of the actual COVID-19 cases is 
shown in the black solid line and the SC is shown in the blue dashed line. The shadow areas represent the duration of the Olympics. 
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Japanese prefectures as donors in the SCM, we could not construct a 
reliable counterfactual because the estimated SC did not fit the path of 
the actual outcome for the pre-treatment period.13 Therefore, Japanese 
prefectures are not suitable for use as the donor pool for our analysis. 

To construct an SC that can accurately fit the trajectory of the actual 
outcome for Tokyo in the pre-treatment period, we need to find reliable 
prediction variables. Abadie et al. (2010, 2015) show that if the SC can 
approximate the trajectory of the outcome for the treated unit in the 
pre-treatment period, it is possible to control for time-varying observed 
and unobserved factors that affect the outcome and the treatment. 
Doudchenko and Imbens (2016) show that lagged outcomes should be 
used as predictors because in terms of predictive power, they tend to be 
substantially more important, while in practice, other covariates tend to 
play a relatively minor role. Moreover, Abadie et al. (2010) suggest that 
researchers should not use covariates that are affected by the treatment. 
When following their suggestions, we cannot find appropriate covariates 
on a daily basis. Botosaru and Ferman (2019) show that if the SC ob-
tained by using only the lagged outcomes as predictors has a perfect 
balance on pre-treatment outcome, it leads to an approximate balance 
for other covariates that may affect the outcome. This suggests that in 
application of the SCM, it would be possible to construct a reliable 
counterfactual even if there is no information on relevant covariates. 
Thus, following Doudchenko and Imbens (2016) and Botosaru and 
Ferman (2019), we use all lagged COVID-19 cases as predictors, indi-
cating that X is equal to the full vector of pre-treatment outcomes Yit for 
t = 1,⋯,T0 and contains no other variables.14 Doudchenko and Imbens 

(2016) refer to this case of the SCM as constrained regression. 
Our data period is from April 2, 2021 to August 22, 2021. Since the 

Tokyo Olympics were held from July 23 to August 8, 2021, we consider 
an analysis window consisting of 112 days before the start of the event, 
the event period (17 days), and 14 days after the closing of the event (i. 
e., 31 days after the start of the event). The number of observations 
before the event is large enough to apply the SCM. However, when using 
a long period including many periods of a low level of infection as pre- 
treatment window, the SC may be constructed from matching relatively 
small values of COVID-19 cases in the pre-treatment period. If so, the 
estimated counterfactual for Tokyo may be low, and the impact of 
holding the Olympics on COVID-19 cases may be excessively large. To 
address this concern, we use a 30-day pre-treatment window from June 
23 to July 22 as a baseline window given that the SC may be more likely 
to match the growing path of COVID-19 cases just before the Olympics. 
The number of pre-treatment observations for our baseline is larger 
compared to recent COVID-19 studies in application of the SCM.15 

Emphasizing the length of pre-treatment window, we will use a full pre- 
treatment window from April 2 to July 22 as an alternative window. As 
noted by Friedson et al. (2021), when COVID-19 infection is growing at 
an exponential rate, it may be better to use the natural logarithm of the 
outcome rather than the level of the outcome. Considering such a con-
dition, we will use the log of COVID-19 cases as an alternative outcome. 

3.3. Inference 

Following Abadie et al. (2010, 2015), we use placebo and permu-
tation tests to examine whether the effect of holding the Olympics is 
statistically significant. Using these tests, we are able to evaluate 
whether the estimated effect for the treated unit is large relative to the 
effect estimated for a unit chosen at random. More specifically, first, we 
iteratively apply the SCM for each unit in the donor pool to estimate a 
placebo effect, assuming that the Olympics would be held in other 
countries at time T0 + 1 (i.e., placebo-in-space tests). Second, as in Cho 
(2020) and Friedson et al. (2021), considering the quality of 
pre-treatment fit for the placebo effects, we calculate the 
country-specific RMSPE ratio of the post-treatment RMSPE to the 
pre-treatment RMSPE for each donor and then obtain a distribution of 
the RMSPE ratios for the placebo effects. Finally, we rank the RMSPE 
ratio for the actual treatment unit by comparing to the distribution of the 
RMSPE ratios and calculate a p-value for the significance of the treat-
ment effect. When the RMSPE ratio in Tokyo ranks the first compared to 
the 37 donor countries, the two-sided p-value is 0.0263 (=1/38), indi-
cating that the p-value cannot be less than 0.0263. Additionally, as in 
Mitze et al. (2020), we follow Altman and Bland (2011) to estimate the 
90 percent confidence intervals from the two-sided p-values. 

3.4. Ridge Augmented synthetic control method 

As an application extension of the SCM, we use an Augmented syn-
thetic control method (ASCM) recently developed by Ben-Michael et al. 
(2021) to estimate the impact of the Tokyo Olympics on COVID-19 
cases. Abadie et al. (2010, 2015) suggest that if it is not possible to 
construct an SC that accurately fits the path of the actual outcome for the 
pre-treatment period, the estimated SC (counterfactual) should not be 
used for analysis. Ben-Michael et al. (2021) aim to correct the bias 
resulted from imbalance in pre-treatment outcomes between the treat-
ment unit and the SC. The ASCM uses an outcome model to estimate and 
adjust the bias due to poor pre-treatment fit in the standard SCM esti-
mate. Ben-Michael et al. (2021) propose the use of ridge regression as 
the outcome model. They call ASCM with a ridge outcome regression 
“Ridge ASCM” (RASCM). 

This approach can improve pre-treatment fit by allowing for negative 
weights on some control units while minimizing the extrapolation from 
the convex hull by directly penalizing the distance from non-negative 
SCM weights. When using the RASCM, if there are control units with 
large negative weights, there may be risks of overfitting and bias 
resulted from extrapolation because Abadie et al. (2010, 2015) show 
that retaining the constraint on non-negative weights can prevent bias 
from extrapolating outside the convex hull of the control units.16 

Therefore, we check whether there are control units with large negative 
weights when using the RASCM. If there are, the estimated counter-
factuals may not be reliable, even if the pre-treatment fit of the SC is 
better than the standard SCM. 

3.5. Analysis procedure 

As a baseline analysis, we first use the SCM, with the 30-day pre- 
treatment window from June 23 to July 22, and the level of the 
outcome to estimate the impact of holding the Tokyo Olympics on 
COVID-19 cases in Tokyo. We then conduct robustness checks using the 
full pre-treatment window from April 2 to July 22 or the log of the 
outcome. To confirm the robustness of the results using the SCM, we use 

13 As shown in Appendix A, although the SCs estimated from the RASCM had 
good pre-treatment fits compared to those from the SCM, there were many 
control units with large negative weights. Therefore, the RASCM estimates were 
not reliable. 
14 In applications of the SCM, the approach of using all pre-treatment out-

comes has become popular recently because it improves the pre-treatment fit of 
the SC and mitigates concerns of choice of predictors such as p-hacking 
(Botosaru and Ferman, 2019). As shown by Kaul et al. (2022) and Botosaru and 
Ferman (2019), even if adding other covariates to all pre-treatment outcomes as 
predictors, optimization procedure by Abadie et al. (2010) used to estimate the 
SC will render all other covariates irrelevant because they are not used for 
predicting the outcome.  
15 For example, the pre-treatment window was 7 days for Friedson et al. 

(2021), 14 days for Mitze et al. (2020), 14 days for Breidenbach and Mitze 
(2022), 25 days for Cho (2020), and 28 days for Dave et al. (2021). 

16 As an empirical illustration of the RASCM, Ben-Michael et al. (2021) esti-
mated the effect of the 2012 Kansas tax cut on log GSP per capita. From the 
weights of 49 control units used to construct the SC for Kansas when using all 
pre-treatment outcomes, there were no control units with negative weights 
greater than -0.1 (i.e., no large negative weights). 

T. Esaka and T. Fujii                                                                                                                                                                                                                           



Journal of The Japanese and International Economies 66 (2022) 101228

15

the RASCM for our analysis.17 Additionally, we estimate the impact of 
the Olympics on COVID-19 cases in Japan as a whole by conducting the 
same analysis as above. 

To evaluate the treatment effect (TE) of holding the Olympics on 
COVID-19 cases, we use the actual COVID-19 cases and the estimated 
counterfactuals from July 23 to August 22 (i.e., from the opening day of 
the Olympics to two weeks after the closing day) because there are 
approximately 7- to 14-day lags between infection and the reporting 
confirmed cases (Siordia, 2020; Chernozhukov et al., 2021).18 Using the 
post-treatment period from July 23 to August 22, we calculate the 
average daily TE of holding the Olympics and the cumulative TE. When 
using the log of COVID-19 cases as the outcome, the estimates obtained 
from the SCMs are converted to the level of the outcomes (i.e., exp (SC)) 
to easily compare to the baseline results. 

4. Results 

4.1. SCM estimates for Tokyo 

Fig. 2 shows the SCM estimates of the impact of holding the Tokyo 
Olympics on newly confirmed COVID-19 cases per one million people in 
Tokyo when using the level of the outcome.19 Panel A reports the daily 
actual outcome and its SC. Panel B reports the difference between them, 
indicating the prediction errors before the treatment and the TE of the 
Olympics after the treatment. From panel A, we note that the estimated 
SC almost perfectly fits the development of the actual outcome, indi-
cating that it can be used as a credible counterfactual. Panel B shows that 
the TE increased rapidly from a few days after the opening of the 
Olympics, and it became increasingly larger as time passed, reaching a 
maximum around August 19. The size of the effect increased to 154 
cases on August 8 and 185 cases on August 22. Using the SCM estimates 
from July 23 to August 22, we calculate the average and cumulative TEs 
in Table 1. From column (1), the average daily TE was 113 (p-val-
ue=0.026), indicating that the Olympics significantly increased the 
number of COVID-19 cases by 113 cases per one million people per day 
on average. Column (2) shows that the Olympics significantly increased 
the cumulative number of COVID-19 cases by 3511 cases per one million 
people during the period. These results clearly show that holding the 
Olympics led to a rapid increase in COVID-19 infection in Tokyo. 

To check the robustness of the baseline results, we redo our analysis 
using the full pre-treatment window. From panels C and D in Fig. 2, 
although the pre-treatment fit of the SC is worse than the baseline due to 
the much longer pre-treatment period, the SC has a still good fit. Similar 
to the baseline, the TE expanded rapidly from a few days after the 
opening of the Olympics. Columns (3) and (4) in Table 1 show that the 
average and cumulative TEs are slightly larger than the baseline levels 
and they are significant. Therefore, we note that the baseline results do 
not substantially change, even when using the full pre-treatment 
window. 

We redo our analysis using the log of the outcome, and the results are 
shown in Fig. 3. In the case of using the 30-day pre-treatment window, 
the SC has a perfect pre-treatment fit in the period of the growing path of 

COVID-19 cases just before the Olympics. Comparing columns (1)-(2) to 
(5)-(6) in Table 1, the average and cumulative TEs when using the log of 
the outcome are almost the same as those when using the level of the 
outcome. In the case of using the full pre-treatment window, panels C 
and D show that the SC has a poor pre-treatment fit compared to the SC 
estimated from using the level of the outcome, indicating that the SC in 
this case may not be reliable. However, columns (7) and (8) in Table 1 
show that the average and cumulative TEs are not much different from 
those when using the level of outcome. Therefore, we note that our re-
sults do not substantially change, even when using the log of the 
outcome. 

4.2. RASCM estimates for Tokyo 

To confirm the robustness of the results using the SCM, we use the 
RASCM for our analysis in Figs. 4 and 5 and Table 2.20 Compared to the 
SCs estimated from the SCM in the same analysis setting, the SCs esti-
mated from the RASCM have good pre-treatment fits because the 
RASCM allows for negative weights on control units. As shown in Sec-
tion 3.4, if there are control units with large negative weights even if the 
extrapolation from the convex hull is minimized by directly penalizing 
the distance from non-negative SCM weights, there may be risks of 
overfitting and bias resulted from extrapolation. Appendix C shows that 
for the RASCM when using the log of the outcome and the full pre- 
treatment window, there are 16 control units with negative weights, 
including 7 control units with negative weights greater than -0.1. 
Moreover, the SC in this case has the poorest pre-treatment fit in the 
RASCM analysis, even if large negative weights are placed on many 
control units. Therefore, the RASCM estimates in this case are not reli-
able (panels C and D in Fig. 5 and columns (7) and (8) in Table 2). 

As shown in Figs. 4 and 5, the trajectories of the TEs estimated from 
the RASCM are similar to those estimated from the SCM: the TEs 
expanded rapidly from a few days after the start of the Olympics, and 
they reached their maximum around August 19. Table 2 shows that the 
average and cumulative TEs are slightly different and less significant 
compared to the SCM, but they are still significant and quite large, 
except for the less reliable result. The Olympics significantly increased 
the number of COVID-19 cases by 105 to 125 cases per one million 
people per day on average. Holding the Olympics led to a 3261 to 3871 
increase in cumulative new COVID-19 cases per one million people 
during the period. Therefore, the RASCM results reinforce the robustness 
of the SCM results. 

4.3. SCMs estimates for Japan 

Additionally, we estimate the impact of the Tokyo Olympics on COVID- 
19 cases in Japan as a whole using the SCMs, although the main purpose of 
this paper is to estimate the impact of the Olympics on the host city of 
Tokyo. Tables 3 and 4 and Figs. 6–9 summarize the SCM and RASCM es-
timates for Japan. For the SCM results, Fig. 6 and 7 show that the SCs have 
good pre-treatment fits, except for the case of using the full pre-treatment 
window and the log of the outcome. As shown in these figures, as the 
Olympics progressed, the TEs in Japan increased rapidly. Table 3 shows 
that the average and cumulative TEs are significant and large, except for 
unreliable results due to a poor pre-treatment fit. For example, the 
Olympics significantly increased the number of COVID-19 cases in Japan 
by 47 to 65 cases per one million people per day on average. 

Figs. 8 and 9 show that the SCs estimated from the RASCM have good 
pre-treatment fits compared to the SCs estimated from SCM in the same 

17 In addition to these tests, we performed several robustness checks in Section 
5.  
18 Naturally, it is difficult to specify from when to when the Olympics had an 

influence. Considering the time lag between infection and the reporting 
confirmed cases, if persons were reported as COVID-19 patients on July 23, they 
were infected between July 9 and July 16. This means that our baseline esti-
mates using the event day on July 23 may also include an infection of COVID-19 
before the opening of the Olympics. 
19 In our implementation of the SCM, we used the Stata ado-file (synth) pro-

vided by Abadie et al. (2010). 

20 In our implementation of the RASCM, we used the R code (augsynth) pro-
vided by Ben-Michael et al. (2021). 
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analysis setting. Similar to the case of Tokyo, the RASCM estimates when 
using the log of the outcome and full pre-treatment window are not 
reliable because there are many control units with large negative 
weights.21 As shown in Figs. 8 and 9, the trajectories of the TEs esti-
mated from the RASCM are similar to those estimated from the SCM. 
Table 4 shows that the Olympics increased the number of COVID-19 
cases in Japan by approximately 50 cases per one million people per 
day on average, except for unreliable or insignificant estimates.22 

Therefore, although the impact for Japan is much smaller than that for 
Tokyo, holding the Tokyo Olympics led to a large increase in the number 
of COVID-19 infections in Japan as a whole. 

5. Additional robustness checks 

To further increase the reliability of our results, we perform addi-
tional robustness checks in this section.23 The detailed results are 
shown in the Appendix. First, we check whether our results are sensi-
tive to excluding Australia from the donor pool because Australia had 
the maximum weight (more than 60%) in the SCMs when using the full 
pre-treatment window. Appendix D shows that our results do not 
substantially change, even when excluding Australia from the donor 
pool. 

Second, we examine whether the baseline results change when 
using OECD countries with increasing spread of the delta variant of 
COVID-19 in July 2021 as the control units. In Japan, a more infec-
tious delta variant spread in July, 2021. From biweekly data provided 
by the Our World in Data, the delta variant’s share of SARS-CoV-2 
sequences in Japan was 12.52% on June 28 and 61.07% on July 26, 
representing an increase of 48.55 percentage points in the month of 
July.24 As an analysis that takes into account the spread of the delta 
variant in July, we conduct the SCMs using a donor pool of 17 OECD 
countries whose share of the delta variant increased more than Japan 
(i.e., an increase of more than 48.55 percentage points) in July.25 

Appendix E shows that the SCs have good pre-treatment fits and that 
the average and cumulative TEs are very similar to the baseline esti-
mates. According to the context of the SCM, the results indicate that 
our method can construct reliable SCs (counterfactuals) controlled for 
the delta variant spread that affected COVID-19 cases in Tokyo and 
Japan, whether we use 37 or 17 countries as the control units.26 

However, it may not control for the delta variant if the prevalence of 
delta variant was more strongly affecting the actual COVID-19 cases 
only in Tokyo and Japan after the Olympics. If so, the estimated 
treatment effect of holding the Olympics may be overestimated. This 
is a limitation of our method. 

Third, we examine how our estimates change when setting the 
event start date for the SCMs before July 23 to test whether there were 

substantial anticipation effects of holding the Olympics (i.e., placebo- 
in-time tests). Specifically, we redo our analysis by initially setting 
the event start date to July 9 (i.e., the day after announcing that the 
Olympics would be held without spectators) and then changing the 
event start date from July 9 to every other day.27 Appendix F shows 
that there were small but no sizable deviations of the actual outcomes 
from the SCs before July 23, indicating that there were no substantial 
anticipation effects.28 

Fourth, given the time lags between infection and the reporting 
confirmed cases, we examine how the SCMs estimates change if the 
evaluation period is changed from July 23-August 22 to July 30-August 
22. From Appendix G, the average TEs in Tokyo (Japan) were approx-
imately 30 cases (approximately 15 cases) larger than the baseline es-
timates. Due to the shorter evaluation period, the cumulative TEs were 
slightly smaller than the baselines, but not much different from them. 
Therefore, the results support the evidence that holding the Olympics 
led to a rapid increase in COVID-19 infection in Tokyo (Japan). 

Fifth, taking the stationarity (non-stationarity) of the data into ac-
count, we examine how the baseline estimates change when using the 
daily change rate of COVID-19 cases as the outcome to be matched in 
the SCMs. To compare to the baseline estimates, we first set that on 
July 22 (i.e., the last day before the opening of the Olympics), the level 
of the SC is equal to the actual level of COVID-19 cases. Then, using 
July 22 as a benchmark point, we calculate the level of the counter-
factual by piecing together the estimated SC of the daily change rate 
from July 22 to August 22. Finally, we estimate the daily average and 
cumulative TEs of holding the Olympics. Appendix H shows that the 
trajectories of the TEs and the average TEs are similar to the base-
lines.29 Therefore, our baseline estimates are robust to using the daily 
change rate of COVID-19 cases as the outcome. 

Sixth and finally, we estimate the impact of holding the Olympics on 
effective reproduction number of COVID-19 using the SCMs. The 
effective reproduction number (Rt) is used as a leading indicator of the 
extent of new infection spread. If Rt is greater than 1, it indicates that the 
number of new cases will increase. Following the methodology of the 
Toyo Keizai Online, we simply calculate an Rt for Tokyo and 38 OECD 
countries.30 From Appendix I, the SCs have good pre-treatment fits, 
indicating that they can be used as reliable counterfactuals.31 Both of the 
actual Rt and the SC were greater than 1 in the evaluation period. The 
estimated TEs (i.e., deviations of the actual Rt from the SCs) increased 
from July 27, reached a maximum around August 1, and decreased from 

21 In this case, there were 16 control units with negative weights, including 7 
control units with negative weights greater than -0.1 (see Appendix C).  
22 The SCM estimates for Japan using the level of the outcome and the full pre- 

treatment window were significant, while the RASCM estimates using the same 
setting were not significant.  
23 Following the referees’ comments, we performed some tests presented in 

this section. We are grateful to two anonymous referees because these tests 
helped to increase the validity of our results.  
24 The data were obtained on March 12, 2022.  
25 The 17 countries were as follows: Belgium, Canada, Czechia, Denmark, 

France, Ireland, Italy, Latvia, Lithuania, Mexico, Netherlands, Norway, Poland, 
Slovakia, Slovenia, Sweden, and Switzerland.  
26 In the context of the SCM, if we can construct an SC that correctly fits the 

actual outcome in the pre-treatment period, we can control for time-varying 
observed and unobserved factors (e.g., delta variant) that affect the outcome 
and the treatment. 

27 For this test, the full pre-treatment window was used to ensure the length of 
the pre-sample for the SCMs.  
28 If we consider small deviations of the actual outcomes from the SCs as 

anticipation effects, following the advice of Abadie et al. (2010, 2015), we need 
to set the event start date before July 23. In that case, the counterfactuals were 
slightly smaller than the baselines because the SCs could not be constructed to 
match the expansion of COVID-19 cases just before the Olympics.  
29 In the case of using the full pre-treatment window, the average TE in Tokyo 

(Japan) was 114 (53) for the SCM and 106 (48) for the RASCM, while the 
detailed results were omitted for brevity.  
30 According to the Toyo Keizai Online (https://toyokeizai.net/sp/visual/tko/ 

covid19/), Rt= (Number of new COVID-19 cases in past 7 days / Number of 
new COVID-19 cases in 7 days before that) ^ (Mean generation time / Length of 
reporting interval), where mean generation time is 5 and length of reporting 
interval is 7.  
31 Although we estimated the impact of the Olympics on Rt using the full pre- 

treatment window, we could not obtain reliable counterfactuals because the SCs 
had poor pre-treatment fits. 
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around August 4. The average TE in Tokyo (Japan) was 0.18 (0.20) for 
the SCMs.32 Therefore, these results in Appendix I show that holding the 
Olympics spread COVID-19 infection in Tokyo and Japan. 

6. Discussion and conclusion 

We used the SCMs to estimate the impact of holding the Tokyo 
Olympics on the number of newly confirmed COVID-19 cases in Tokyo 
(Japan). Using reliable estimates obtained from the SCMs,33 we found 
that holding the Olympics significantly increased the daily average of 
new COVID-19 cases by 105 to 132 cases in Tokyo (47 to 65 cases in 
Japan) per one million people from July 23 to August 22 compared to 
the counterfactuals. From these estimates and the population of Tokyo 
and Japan, we calculated that if the Olympics had not been held, the 
average daily number of COVID-19 cases could have been reduced by as 
many as approximately 1500 to 1850 cases in Tokyo and approximately 
5900 to 8150 cases in Japan as a whole during that time period. These 
impacts were quite sizable. We may therefore reasonably conclude that 
holding the Tokyo Olympics was likely a factor in the spread of COVID- 
19 infection in the host city of Tokyo. 

Our study has some limitations. Our research approach did not enable 
us to determine the mechanisms behind the results obtained. We offer a 
few conjectures. It is possible that the coronavirus could have been 
transmitted directly from the participants of the Olympics to the people of 
Tokyo. However, since there were no spectators in the venues around 
Tokyo and if the TOCOG implemented effective measures to combat 
COVID-19 infection, we believe that the number of new COVID-19 cases 
in Tokyo would not have increased as much as it did through this route. It 
may be hard to argue that the Olympics increased people’s mobility and 
consequently the rapid spread of COVID-19 in Tokyo because the fourth 
state of emergency did not change people’s mobility, and the mobility 
during and after the Olympics did not change substantially compared to 
last year, although it declined (see Appendix J).34 We conjecture that 
holding the Olympics, which was an inconsistent policy with the state of 
emergency for preventing COVID-19, may have indirectly caused a 
decline in the motivation for self-restraint and awareness of prevention, 
resulting in a decline in infectious disease control measures at the indi-
vidual level (Fujii et al., 2021). For example, according to a poll con-
ducted by Asahi Shimbun (2021b) on August 7 and 8, 61% of respondents 
said that holding the Tokyo Olympics “had loosened” the mood of 
self-restraint in society against COVID-19 infection. 

Our study is limited by the quality of the data.35 It is based on 

observational data, rather than data from laboratory experiments or 
from social experiments with randomized controlled trials (RCTs). It 
cannot control for all external conditions that may influence the impact 
of the Olympics on COVID-19 cases.36 However, the SCM is a valuable 
approach for evaluating the causal impact on population-level health 
outcomes when an RCT is impractical, such as the Olympics (e.g., 
Bouttell et al., 2018). Using the SCMs, we succeeded in estimating 
reliable counterfactuals controlled for time-varying observed and un-
observed factors that affected the outcome and the treatment by con-
structing the SCs that accurately approximated the trajectories of 
COVID-19 cases for Tokyo or Japan in the pre-treatment period. How-
ever, our method using the SCMs cannot fully control for all other 
confounding factors specific only to Tokyo or Japan after the opening of 
the Olympics. Hence, the estimated treatment effect of holding the 
Olympics could be biased if there were specific factors that strongly 
influenced the actual COVID-19 cases only in Tokyo or Japan after the 
Olympics. This is a limitation of our method. 

Since our research is a case study of the impact of holding the Tokyo 
Olympics on COVID-19 cases in the host city of Tokyo during the COVID- 
19 pandemic, it may not be possible to generalize our empirical results 
from this study. Holding the Olympics itself is a rare event, and more-
over, the Olympics have never before been held in the midst of a new 
virus spread. Although we conducted a case study of the ultimately rare 
event, we believe that our findings provide useful information for un-
derstanding the relationship between large-scale national events such as 
the Olympics and infectious diseases. 
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Appendix A. SCMs results for Tokyo when using Japanese 
prefectures as the control units 

Figs. A1, A2, A3 

32 In Appendix I, although the cumulative TEs were shown in a way that fitted 
the other figures, they might not be appropriate in evaluating the effective 
reproduction number.  
33 As shown in Section 4, the estimates obtained from using the log of the 

outcome and the full pre-treatment window were not reliable.  
34 Watanabe and Yabu (2021a, 2021b) show that people in Japan responded 

to an increase in new COVID-19 cases in 2020 by voluntarily refraining from 
going out. Hosono, 2021 shows that such a voluntary lockdown accounts for a 
major part of the low COVID-19 infection rates in 2020 in Japan. While 
Watanabe and Yabu (2021a, 2021b) and Hosono, 2021 stress the demand-side 
effects of voluntary restriction on movement, Hayakawa et al. (2022) discuss 
the supply-side effects of restaurant restraining order in Japan. If the voluntary 
lockdown had occurred after the opening of the Olympics, and if it had been 
effective in preventing the spread of COVID-19 infection, the number of new 
COVID-19 cases in Tokyo (Japan) after the Olympics might have been much 
larger than there would have been without the voluntary lockdown. In addition, 
if the degree of the voluntary lockdown was higher in Japan than in other OECD 
countries, the SC for Tokyo (Japan) constructed as a weighted average of 
COVID-19 cases of the 37 OECD countries may be overestimated. Thus, if the 
above two cases hold, the estimated treatment effect of holding the Olympics 
may be underestimated.  
35 As is common in research on COVID-19, the reported number of newly 

confirmed COVID-19 cases is understated compared to the true cases because 
not all people have been tested. 

36 As in conventional causal inference methods, if there are other events after 
the treatment that would affect the outcome only in the treatment unit, the SCM 
cannot correctly identify the effects of treatment and such events. For example, 
since the fourth state of emergency had been declared in Tokyo since July 12, 
the Tokyo Olympics were held from July 23 to August 8 under the state of 
emergency. The analysis by setting the event start date for the SCM to July 9 
and 11 shows that the infection control effect of the state of emergency was not 
seen before the Olympics (see Appendix F). However, if the infection control 
effect of the state of emergency had been substantial after the opening of the 
Olympics, the number of new COVID-19 cases in Tokyo after the Olympics 
might have been much larger than in the absence of the state of emergency. 
Thus, if such is the case, the estimated treatment effect of holding the Olympics 
may be underestimated. 
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Fig. A1. COVID-19 cases in Japan by 
prefecture. 
Notes: Fig. A1 shows the development 
of daily 7-day moving average of newly 
confirmed COVID-19 cases per million 
people by each Japanese prefecture. 
The control units include 37 Japanese 
prefectures, excluding Tokyo, Kana-
gawa, Saitama, Chiba, Ibaraki, Yama-
nashi, Shizuoka, Miyagi, Fukushima, 
and Hokkaido (which have Olympic 
venues or are in close proximity to 
Tokyo). The number of COVID-19 cases 
for Tokyo is shown in the thick line and 
those for other prefectures are shown in 
the thin lines. 
Sources: Japanese Ministry of Health, 
Labour and Welfare and Our World in 
Data.   

Fig. A2. SCMs estimates for Tokyo: using Japanese prefectures as the control units. 
Notes: Fig. A2 shows the SCMs estimates for Tokyo when using the level of the outcome and Japanese prefectures as control units. The control units include 37 
Japanese prefectures, excluding Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, Yamanashi, Shizuoka, Miyagi, Fukushima, and Hokkaido (which have Olympic venues or 
are in close proximity to Tokyo). Panels A and B show the SCM estimates for Tokyo. Panels C and D show the RASCM estimates for Tokyo. The development of the 
actual COVID-19 cases is shown in the black solid line and that of the SCs is shown in the blue dashed line. The shadow areas represent the duration of the Olympic. 
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Appendix B. Comparison COVID-19 cases in Tokyo (Japan) to 
those in 37 OECD countries 

Figs. B1, B2 

Fig. A3. Weights for control units used to construct the SC for Tokyo. 
Notes: Fig. A3 shows the estimated weights for 37 Japanese prefectures used to construct the SC for Tokyo by using the SCMs. The weights estimated from the SCM 
are shown in the blue dots, and the weights estimated from the RASCM are shown in the red dots. 

Fig. B1. COVID-19 cases between Tokyo and 37 OECD countries. 
Notes: Fig. B1 shows the development of daily 7-day moving average of newly confirmed COVID-19 cases per million people between Tokyo and 37 OECD countries. 
The number of COVID-19 cases for Tokyo is shown in the thick line and those for 37 OECD countries are shown in the thin lines. 
Sources: Japanese Ministry of Health, Labour and Welfare and Our World in Data. 
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Fig. B2. COVID-19 cases between Japan and 37 OECD countries. 
Notes: Fig. B2 shows the development of daily 7-day moving average of newly confirmed COVID-19 cases per million people between Japan and 37 OECD countries. 
The number of COVID-19 cases for Japan is shown in the thick line and those for 37 OECD countries are shown in the thin lines. 
Sources: Japanese Ministry of Health, Labour and Welfare and Our World in Data. 
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Appendix C. Weights for the control units of 37 countries 

Figs. C1, C2 

Fig. C1. Weights for control units used to construct the SC for Tokyo. 
Notes: Fig. C1 shows the estimated weights for 37 OECD countries used to construct the SC for Tokyo by using the SCMs. The weights estimated from the SCM are 
shown in the blue dots, and the weights estimated from the RASCM are shown in the red dots. 
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Fig. C2. Weights for control units used to construct the SC for Japan. 
Notes: Fig. C2 shows the estimated weights for 37 OECD countries used to construct the SC for Japan by using the SCMs. The weights estimated from the SCM are 
shown in the blue dots, and the weights estimated from the RASCM are shown in the red dots. 
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Appendix D. Excluding Australia from the donor pool 

Fig. D 

Fig. D. SCMs estimates for Tokyo and Japan: excluding Australia from the donor pool. 
Notes: Fig. D shows the actual level of COVID-19 cases and the counterfactuals in Tokyo and Japan when excluding Australia (which had the maximum weight in the 
SCM estimates when using the full pre-treatment window) from the donor pool. The SCM and RASCM estimates for Tokyo are shown in panels A and B, and those for 
Japan are shown in panels C and D. 
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Appendix E. Using only countries with spread of delta variant of 
COVID-19 in July 2021 as the control units 

Fig. E 

Fig. E. SCMs estimates for Tokyo and Japan: using 17 OECD countries with spread of delta variant in July 2021 as the control units. 
Notes: Fig. E shows the actual level of COVID-19 cases and the counterfactuals in Tokyo and Japan when using 17 OECD countries with spread of delta variant of 
COVID-19 in July 2021 as the control units. The 17 countries are as follows: Belgium, Canada, Czechia, Denmark, France, Ireland, Italy, Latvia, Lithuania, Mexico, 
Netherlands, Norway, Poland, Slovakia, Slovenia, Sweden, and Switzerland. The SCM and RASCM estimates for Tokyo are shown in panels A and B, and those for 
Japan are shown in panels C and D. 
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Appendix F. Placebo-in-time tests 

Fig. F 

Appendix G. Changing the evaluation period from July 23- 
August 22 to July 30-August 22 

Table G1, G2 

Fig. F. Placebo-in-time tests: Tokyo and Japan. 
Notes: We examine how the baseline results change when setting the event start date in the SCMs before July 23 (i.e., placebo-in-time tests). Specifically, we redo our 
analysis by changing the event start date from July 9 to every other day. The full pre-treatment window is used to ensure the length of the pre-sample for the SCMs. 
The SCM and RASCM estimates for Tokyo are shown in panels A and B, and those for Japan are shown in panels C and D. 
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Table G1 
SCMs estimates for Tokyo: changing evaluation period.  

RMSPE=0.5649 (1) (2) 

Method SCM SCM 
Pre-window June 23 to July 22 June 23 to July 22 
Outcome Level (cases) Level (cases) 
Evaluation periods and TE Average daily TE Cumulative TE 
July 23-August 22 113.25 3510.78 
July 30-August 22 143.22 3437.30    

RMSPE=2.7851 (3) (4) 
Method SCM SCM 
Pre-window April 2 to July 22 April 2 to July 22 
Outcome Level (cases) Level (cases) 
Evaluation periods and TE Average daily TE Cumulative TE 
July 23-August 22 131.87 4087.88 
July 30-August 22 164.73 3953.40    

RMSPE=0.2319 (5) (6) 
Method RASCM RASCM 
Pre-window June 23 to July 22 June 23 to July 22 
Outcome Level (cases) Level (cases) 
Evaluation periods and TE Average daily TE Cumulative TE 
July 23-August 22 105.18 3260.69 
July 30-August 22 133.84 3212.28    

RMSPE=1.2760 (7) (8) 
Method RASCM RASCM 
Pre-window April 2 to July 22 April 2 to July 22 
Outcome Level (cases) Level (cases) 
Evaluation periods and TE Average daily TE Cumulative TE 
July 23-August 22 124.86 3870.66 
July 30-August 22 157.11 3770.72 

Notes: We examine how the baseline results change when the evaluation period is changed from July 23-August 22 to July 30-August 22. From the SCM and RASCM 
results, we calculate the average daily treatment effect (TE) and the cumulative TE in Tokyo. 

Table G2 
SCMs estimates for Japan: changing evaluation period.  

RMSPE=0.3495 (1) (2) 

Method SCM SCM 
Pre-window June 23 to July 22 June 23 to July 22 
Outcome Level (cases) Level (cases) 
Evaluation periods and TE Average daily TE Cumulative TE 
July 23-August 22 52.75 1635.22 
July 30-August 22 67.12 1610.86    

RMSPE= 3.0003 (3) (4) 
Method SCM SCM 
Pre-window April 2 to July 22 April 2 to July 22 
Outcome Level (cases) Level (cases) 
Evaluation periods and TE Average daily TE Cumulative TE 
July 23-August 22 64.67 2004.71 
July 30-August 22 78.83 1891.80    

RMSPE=0.0848 (5) (6) 
Method RASCM RASCM 
Pre-window June 23 to July 22 June 23 to July 22 
Outcome Level (cases) Level (cases) 
Evaluation periods and TE Average daily TE Cumulative TE 
July 23-August 22 50.83 1575.64 
July 30-August 22 64.47 1547.26    

RMSPE=1.1893 (7) (8) 
Method RASCM RASCM 
Pre-window April 2 to July 22 April 2 to July 22 
Outcome Level (cases) Level (cases) 
Evaluation periods and TE Average daily TE Cumulative TE 
July 23-August 22 44.55 1380.92 
July 30-August 22 57.12 1370.79 

Notes: We examine how the baseline results change when the evaluation period is changed from July 23-August 22 to July 30-August 22. From the SCM and RASCM 
results, we calculate the average daily treatment effect (TE) and the cumulative TE in Japan. 
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Appendix H. Using daily change rate of COVID-19 cases as the 
outcome 

Fig. H 

Fig. H. SCM estimates for Tokyo and Japan: daily change rate of COVID-19 cases. 
Notes: In Fig. 1, taking the stationarity (non-stationarity) of the data into account, we present the actual level of COVID-19 cases and the counterfactual in Tokyo and 
Japan from July 22 to August 22 when using the daily change rate of COVID-19 cases as the outcome. To compare to the baseline estimates, using July 22 as a 
benchmark point, we calculate the level of the counterfactual by piecing together the estimated SC of the daily change rate from July 22 to August 22. The SCM and 
RASCM estimates for Tokyo are shown in panels A and B, and those for Japan are shown in panels C and D. 
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Appendix I. Using the effective reproduction number of COVID- 
19 as the outcome 

Fig. I 

Fig. I. SCMs estimates for Tokyo and Japan: effective reproduction number. 
Notes: Fig. I shows the actual effective reproduction number of COVID-19 and the counterfactuals in Tokyo and Japan. Following the methodology of the Toyo Keizai 
Online (https://toyokeizai.net/sp/visual/tko/covid19/), we calculated an effective reproduction number (Rt) as follows:Rt =

(
Number of new COVID-19 cases in past 7 days

Number of new COVID-19 cases in 7 days before that

)
(

Mean generation time
Length of reporting interval

)

, where mean generation time is 5 and length of reporting interval is 7. The SCM and RASCM estimates 

for Tokyo are shown in panels A and B, and those for Japan are shown in panels C and D. 
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Appendix J. Mobility trends in Tokyo 

Fig. J 
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