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Abstract: Lung cancer is the biggest cause of cancer-related death worldwide. An accurate nodal
staging is critical for the determination of treatment strategy for lung cancer patients. Endobronchial-
ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has revolutionized the field
of pulmonology and is considered to be extremely sensitive, specific, and secure for lung cancer
staging through rapid on-site evaluation (ROSE), but manual visual inspection on the entire slide
of EBUS smears is challenging, time consuming, and worse, subjective, on a large interobserver
scale. To satisfy ROSE’s needs, a rapid, automated, and accurate diagnosis system using EBUS-TBNA
whole-slide images (WSIs) is highly desired to improve diagnosis accuracy and speed, minimize
workload and labor costs, and ensure reproducibility. We present a fast, efficient, and fully automatic
deep-convolutional-neural-network-based system for advanced lung cancer staging on gigapixel
EBUS-TBNA cytological WSIs. Each WSI was converted into a patch-based hierarchical structure
and examined by the proposed deep convolutional neural network, generating the segmentation
of metastatic lesions in EBUS-TBNA WSIs. To the best of the authors’ knowledge, this is the first
research on fully automated enlarged mediastinal lymph node analysis using EBUS-TBNA cytological
WSIs. We evaluated the robustness of the proposed framework on a dataset of 122 WSIs, and the
proposed method achieved a high precision of 93.4%, sensitivity of 89.8%, DSC of 82.2%, and IoU
of 83.2% for the first experiment (37.7% training and 62.3% testing) and a high precision of 91.8
± 1.2, sensitivity of 96.3 ± 0.8, DSC of 94.0 ± 1.0, and IoU of 88.7 ± 1.8 for the second experiment
using a three-fold cross-validation, respectively. Furthermore, the proposed method significantly
outperformed the three state-of-the-art baseline models, including U-Net, SegNet, and FCN, in terms
of precision, sensitivity, DSC, and Jaccard index, based on Fisher’s least significant difference (LSD)
test (p < 0.001). For a computational time comparison on a WSI, the proposed method was 2.5
times faster than U-Net, 2.3 times faster than SegNet, and 3.4 times faster than FCN, using a single
GeForce GTX 1080 Ti, respectively. With its high precision and sensitivity, the proposed method
demonstrated that it manifested the potential to reduce the workload of pathologists in their routine
clinical practice.

Keywords: endobronchial-ultrasound-guided transbronchial needle aspiration; lung cancer; whole-
slide images; deep learning
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1. Introduction

In normal physical examinations, one of the most difficult malignancies to identify at
an early stage is lung cancer [1], which is one of the most often diagnosed diseases. As the
number of lung cancer patients rises, the health care systems in both industrialized and
developing nations are being put under immense strain [2]. Lung cancer is mainly divided
into non-small-cell lung cancer (NSCLC) and small-cell lung carcinoma. About 80% to 85%
of lung cancers cases are NSCLC. The subtypes of NSCLC are adenocarcinoma, squamous-
cell carcinoma, and some other subtypes [3]. Although there have been new developments
in the diagnosis, classification, and treatment of lung cancer, the overall survival rate is
still poor [4]. At the time of diagnosis, the majority of the cases have distant metastasis [5].
Because of their advanced clinical stage, the great majority of patients with NSCLC do not
need surgical resection [6]. Mediastinal lymphadenopathy (ML) presents a diagnostic chal-
lenge. ML may be caused by infections, granulomatous disease, reactive hyperplasia, and
metastatic tumor [7]. In patients with NSCLC, determining mediastinal and hilar metas-
tases may help guide therapy decisions, provide prognostic information, and help with
patient care [8]. ML nodes need to be sampled to reach a diagnostic conclusion. Currently,
there are several evaluation methods, such as positron emission tomography/computed
tomography (PET/CT), endobronchial ultrasound (EBUS)-guided transbronchial needle
aspiration (TBNA), B-mode morphological ultrasound, and elastography, that can be used
to classify the nodal stage before surgery [9]. Although PET/CT is the main instrument
for the preoperative examination of lung cancer patients, EBUS-TBNA has superior test
performance and PET/CT cannot be regarded as an alternative method to be used to
replace EBUS-TBNA for tissue sampling [10].

EBUS-TBNA is a new clinical technology and currently the preferred method of as-
sessing advanced lung cancer with mediastinal lymphadenopathy. Real-time ultrasound
guidance gives good diagnostic value during mediastinal lymph node collection with EBUS-
TBNA, a minimally invasive method. Some of its benefits include being cost-effective,
easy to use, and safe [11]. Because of this, EBUS-TBNA is considered a better option for
mediastinal lymph node sampling than traditional mediastinoscopy. When combined with
EBUS-TBNA, EBUS-TBNA may provide clinical information in 19% of patients, negating
the need for further invasive testing. Direct smears from needle aspiration and brushing
specimens allow the EBUS-TBNA to be used for on-site assessment [11–15]. The EBUS-
TBNA treatment, which requires only little sedation and may be performed as an outpatient
procedure, can be used to get a sample from the hilar lymph nodes [16]. There have been
several prospective protocol-based studies [17] that have shown that EBUS-TBNA is 95 per-
cent accurate in detecting and staging lung cancer. Microscopic pathological examination
is usually the gold standard for diagnosing different types of cancer [18,19]. When dealing
with suspected metastatic mediastinal lesions, rapid on-site assessment (ROSE) seems to be
especially helpful in improving the EBUS-diagnostic TBNA’s yield [20]. The preliminary
diagnosis provided by ROSE may minimize the number of invasive procedures (such as
mediastinoscopy) required in the future [21]. When used in clinical settings, the ROSE of
EBUS-TBNA needs the collaboration of many medical specialists for analysis and diagnosis,
which is not always achievable owing to a lack of medical personnel. Furthermore, if
malignant cells are missed during the manual screening procedure, the patient runs the
risk of undergoing unneeded surgery as a result of their condition worsening.

It is now possible to convert glass slides into whole-slide images (WSIs), which enables
the examination of pathological images using computer-based algorithms [22]. WSIs are
high-resolution images with huge file sizes on the order of 10 gigapixels, making it difficult
for pathologists to manually examine all the information on the histopathology slide
due to the large quantity of information on each slide. Thus, a qualified cancer diagnosis
necessitates peer review and consensus, a requirement that can be costly to meet in hospitals
and small cancer centers with a scarcity of skilled pathologists. Deep learning algorithms
have been frequently used in pathological image analysis applications in recent years,
demonstrating their strength in representation learning. Automating the pathological
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image analysis aids pathologist in making accurate diagnoses in a short amount of time.
Deep learning has previously shown promise in helping pathologists diagnose, classify,
and segment cancer [23–25]. Examples include Rijthoven et al. [26], who proposed a
segmentation model that combined context and details by utilizing many branches of
encoder–decoder convolution neural networks for breast and lung cancer segmentation
in WSIs. Wang et al. [27] proposed a fast and fully automatic hierarchical deep learning
approach that utilized the coarse-to-fine strategy for bone marrow nucleated differential
count on WSIs. Dov et al. [28] proposed a weakly supervised two-stage deep learning
model for detecting thyroid cancer on WSIs. Tang et al. [29] proposed a DeFusionNet that
can efficiently and accurately detect defocus blur. Masud et al. [30] utilized pretrained deep
learning models for the detection of breast cancer in ultrasound images.

To the best of the authors’ knowledge, this is the first research on automatic segmenta-
tion of enlarged mediastinal lymph nodes metastasis in EBUS-TBNA cytological slides. The
proposed automatic deep learning system is shown to be capable of detecting metastases
of enlarged mediastinal lymph nodes and immediately notifying clinical doctors as a guide
for subsequent adequate treatment. Figure 1 presents the workflow of the system and
information on the dataset in detail. In a quantitative evaluation on the segmentation
performance, the proposed method is compared with three state-of-the-art deep learning
models, including U-Net [31], SegNet [32], and FCN [33], since this is the first research on
automatic segmentation of lymph nodes metastasis in EBUS-TBNA cytological slides.

Figure 1. System workflow and dataset information. (a) System workflow; (a, i) collection of patients’
lung smear samples through EBUS-TBNA; (a, ii) preparation and staining of EBUS smears slides using
Liu’s staining; (a, iii) digitalization of Liu stained microscopic slides at the microscopic resolution
(20× magnification); (a, iv) random distribution of digitized whole-slide gigapixel images into a
separate training (37.7%) set and a testing (62.3%) set for the first experiment and a three-fold cross
validation for the second experiment; (a, v) processing of WSIs with fast background filtering; (a, vi)
rapid detection of enlarged mediastinal lymph nodes metastasis in EBUS-TBNA cytological slides
using the proposed deep learning model in seconds. (b) Distribution of dataset for each class, as well
as for training and testing sets for the first experiment and a three-fold cross validation for the second
experiment. (c) Distribution of the number of tiles per WSI. (d) Size distribution of the WSIs, with
width and height represented in blue and orange, respectively.
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2. Methods

In this study, we developed a fast, efficient, and fully automatic deep-convolutional-
neural-network-based AI system to segment metastatic lesions in EBUS-TBNA cytological
WSIs. Figure 2 presents the overview of the deep-convolutional-neural-network-based AI
system. Each WSI was converted into a patch-based hierarchical structure and processed
using the fast background filtering model and the proposed deep convolutional neural
network for the segmentation of a metastatic lesion from EBUS-TBNA WSIs. Figure 4
illustrates the detailed architecture of the proposed deep learning model.

Figure 2. The overview of the proposed deep learning analysis system. (a) Each WSI is converted
into a patch-based hierarchical structure (each tile is represented by a black rectangular box). (b) Each
WSI is processed using the fast background filtering model to efficiently discard all the background.
(c) Each tile is examined by the proposed deep convolutional neural network for segmentation
of metastatic lesion from EBUS-TBNA WSIs. (d) The tiles are then stitched together to obtain an
output image.

2.1. Whole-Slide Image Processing

Figure 2 shows the framework for the segmentation of metastatic lesion from EBUS-
TBNA WSIs. For the efficiency of the data assessment, WSIs tend to be encoded and stored
in a pyramid structure, that contains several layers of images at different magnification
rate, by various microscopic scanners such as Leica, Hamamatsu, and Philips. In order
to deal with gigapixel WSIs effectively, each WSI I(i, j) was converted into a patch-based

structureH =
{

hv
α,β(x, y)

}N

v=1
∈ I(i, j), where α, β, x, y, and v represent the patch column

index, patch row index, patch horizontal subindex, patch vertical subindex, and the image
level, respectively. When v=N, α, β, x, and y were calculated as follows:

α = bi/wc, β = bj/ψc,
x = i− α× w, y = j− β× ψ

(1)

where w and ψ denote the patch width and patch height, respectively. The values α, β, x,
and y are in the range {0, · · · , γ− 1}, {0, · · · , ζ − 1}, {0, · · · , w− 1}, and {0, · · · , ψ− 1},
respectively; (w, ψ) = (512,512) in this study. The bc operation was devised for rapid
processing of WSI by discarding the border part of a slide, which tends to have a low
probability of containing regions of interest.

Firstly, a WSI was processed with fast background filtering by Otsu’s method applied
onto hz

α,β(x, y) at the level closest to and greater than or equal to the size of a unit tile
and then mapping the filtered image back to the highest level to efficiently discard all
the background patches (patches that contains less than 70% tissue samples), significantly
decreasing the computational cost per slide. The value of z is formulated in Equation (2).
As the dimensionality of WSIs was tremendous, fast background filtering was applied in
order to efficiently discard the background areas which contained no cells and rapidly
decreased the dimension. For further analysis, previous studies [34,35] also showed that
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Otsu’s method performed well to remove the background regions of a WSI on the slide’s
thumbnail image to efficiently discard all background tiles, thus drastically reducing the
amount of computation.

z = argminv(γ× ζ ≥ 1∧ card(hv) ≥ w× ψ) (2)

The proposed deep convolutional neural network L was applied for a fast WSI analysis.
The proposed deep convolutional neural network is described in detail in the next section.
Each tile of hN

α,β(x, y) was analyzed by the proposed convolution model L to generate the
probabilities of malignant cells as shown in Equation (3).

pN
α,β(x, y)c = L(hN

α,β(x, y)) (3)

where c = 0, . . . , C represents the number of types of tissue to be identified, and 0, 1 and 2
represent the background, the nontarget, and the target cell type, respectively.

A two-dimensional pixel-based class map was produced as the index of the cell type
that had the maximum probability of the pixel, using Equation (4).

mN
α,β(x, y) = argmaxc((pN

α,β(x, y)c)) (4)

Then, the pixel-based segmentation results of tumor cells R = {rN
α,β(x, y)} were

produced based on class map mN
α,β(x, y) using Equation (5). Equation (5) suppressed the

nontumor information, producing the tumor information as the segmentation results.

rN
α,β(x, y) =

{
Iα,β(x, y) , mN

α,β(x, y) > 1
φ , otherwise

(5)

where φ represents a null set.

2.2. Proposed Convolution Network Architecture

A fully convolutional network (FCN) was introduced by Shelhamer et al. [33] and
it was demonstrated to be successful in the tumor segmentation of breast cancer metas-
tases [36], thyroid cancer [37], cervical cancer [38], and ovarian cancer [39]. Inspired by
the fully convolutional network (FCN) framework of Shelhamer et al. [33], the proposed
deep learning network architecture has two improvements, as shown in Figure 3. To begin,
we employed a five-layer shallower architecture instead of the original seven-layer FCN
architecture to deal with the issue of limited GPU memory in training. Secondly, we used a
single-stream 32 s upsampling path instead of three upsampling paths to prevent overly
fragmented segmentation results and to save computing time. The proposed deep learning
network architecture consisted of six convolutional layers, five max-pooling layers, two
dropout layers, one deconvolutional layer, and a cropping layer. Firstly, there were five
convolutional layers, with the first two layers consisting of two convolution sequences
(kernel size of 3× 3 and stride size of 1, respectively) and the last three layers consisting of
three convolution sequences (kernel size of 3× 3 and stride size of 1, respectively), and a
ReLU after each convolution layer. To downsample the feature maps, a max pooling layer
(kernel size of 2× 2 and stride size of 2) was added at the end of each convolution layer.
After the five convolution layers and five max-pooling layers, there were two drop-out
layers (dropout ratio of 0.5) with two convolutions (kernel size of 7× 7 and stride size of
1 for the first convolution, and a kernel size of 1× 1 and stride size of 1 for the second
convolution, respectively), and a ReLU after each convolution. Following the two dropout
layers was a convolution layer with a kernel size of 1× 1 and a stride size of 1. Following
the convolution layer, a deconvolution layer with kernel size of 64× 64 and stride size of
32 was used to upsample the feature maps. Following the deconvolution layer, cropping
was performed in order to match the input size. After cropping, softmax was employed to
calculate the probability of each class. Finally, an argmax function was utilized to generate
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a two-dimensional pixel-based class map as the pixel’s index of the tissue type with the
highest likelihood using Equation (4). The detailed architecture of the proposed deep
learning network is shown in Figure 4 and Table 1.

Figure 3. The comparison of the original FCN and the proposed modified FCN. (a) The architecture
of original FCN. (b) The architecture of proposed modified FCN.

Table 1. The architecture of the proposed deep learning network.

Layer Features (Train) Features (Inference) Kernel Size Stride Padding

Input 512 × 512 × 3 512 × 512 × 3 - - -
Conv1_1 + relu1_1 710 × 710 × 64 710 × 710 × 64 3 × 3 1 same
Conv1_2 + relu1_2 710 × 710 × 64 710 × 710 × 64 3 × 3 1 same

Pool1 355 × 355 × 64 355 × 355 × 64 2 × 2 2 valid
Conv2_1 + relu2_1 355 × 355 × 128 355 × 355 × 128 3 × 3 1 same
Conv2_2 + relu2_2 355 × 355 × 128 355 × 355 × 128 3 × 3 1 same

Pool2 178 × 178 × 128 178 × 178 × 128 2 × 2 2 valid
Conv3_1 + relu3_1 178 × 178 × 256 178 × 178 × 256 3 × 3 1 same
Conv3_2 + relu3_2 178 × 178 × 256 178 × 178 × 256 3 × 3 1 same
Conv3_3 + relu3_3 178 × 178 × 256 178 × 178 × 256 3 × 3 1 same

Pool3 89 × 89 × 256 89 × 89 × 256 2 × 2 2 valid
Conv4_1 + relu4_1 89 × 89 × 512 89 × 89 × 512 3 × 3 1 same
Conv4_2 + relu4_2 89 × 89 × 512 89 × 89 × 512 3 × 3 1 same
Conv4_3 + relu4_3 89 × 89 × 512 89 × 89 × 512 3 × 3 1 same

Pool4 45 × 45 × 512 45 × 45 × 512 2 × 2 2 valid
Conv5_1 + relu5_1 45 × 45 × 512 45 × 45 × 512 3 × 3 1 same
Conv5_2 + relu5_2 45 × 45 × 512 45 × 45 × 512 3 × 3 1 same
Conv5_3 + relu5_3 45 × 45 × 512 45 × 45 × 512 3 × 3 1 same

Pool5 23 × 23 × 512 23 × 23 × 512 2 × 2 2 valid
Conv6 + relu6 + Drop6 17 × 17 × 4096 17 × 17 × 4096 7 × 7 1 same
Conv7 + relu7 + Drop7 17 × 17 × 4096 17 × 17 × 4096 1 × 1 1 same

Conv8 17 × 17 × 3 17 × 17 × 3 1 × 1 1 same
Deconv9 576 × 576 × 3 576 × 576 × 3 64 × 64 32 same
Cropping 512 × 512 × 3 512 × 512 × 3 - - -
Softmax 512 × 512 × 3 512 × 512 × 3 - - -

Output Class Map 512 × 512 × 1 512 × 512 × 1 - - -
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Figure 4. The detailed architecture of the proposed deep learning network.

3. Data and Results
3.1. Data Preparation

EBUS-TBNA cytology samples of patients were collected from the Department of
Pathology at the Tri-Service General Hospital. This research was approved by the Institu-
tional Review Board of the Tri-Service General Hospital (TSGH) (TSGHIRB No.1-107-05-171
and No.B202005070), and informed consent was formally waived by the approving commit-
tee. The data were deidentifed and used for a retrospective study without impacting patient
care. All the methods were performed in accordance with the relevant guidelines and regu-
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lations. For this retrospective study, slides of nodal aspirates from consecutive EBUS-TBNA
procedures performed at TSGH between January 2018 and December 2020 were obtained.
We refer to two slides on average from a single lymph node as a case because each nodal
sampling could involve more than one slide. All cases had an associated cell block that
contributed to the final diagnosis. All the lung cancer patients had thoracic CT before
EBUS-TBNA examination, which showed enlarged hilar or mediastinal lymph nodes. Each
patient was aware of the indications, technique, and possible complications of EBUS-TBNA.
EBUS-TBNA was performed under general endotracheal anesthesia and the procedure was
performed only under moderate sedation. All the EBUS-TBNA procedures were performed
by pulmonologists. On the advice of pulmonologists and thoracic surgeons, EBUS-TBNA
was used to take selective lymph node samples.

There is still some limitation of EBUS-TBNA in mediastinal lymph nodes sampling.
The size of the lymph node, the SUVmax of the lymph node, and the characteristics of the
node in color Doppler image may provide information when the physician is performing
the EBUS-TBNA procedure [40–42]. However, the yield rate of this procedure depends on
the experience of the operator. The new diagnostic tool of elastography was applied to
predict the lymph node status [43]. In this study, we analyzed the clinical data including
the size of the lymph node, SUVmax of the tumor, and blue color proportion of the node
in elastography (35%) to select the possible metastatic lymph nodes for EBUS-TBNA
cytological examination.

Initially, aspirated material was pushed out by the internal stylet and smeared onto
glass slides for immediate ROSE. Then, using the following staining procedures, a quick
cytological Liu’s staining was carried out. The Liu A solution was added to alcohol-fixed
endobronchial-ultrasound-guided transbronchial needle aspiration smears and allowed to
stand for 30 s. The Liu B solution (about double the dose of A) was then added to the smears
without discarding the Liu A solution. To stain for 2 min, the two solutions were completely
mixed. Before microscopic analysis, the smears were rinsed with tap water and air dried or
dried with filter paper. The EBUS-TBNA specimen’s cytological imaging data were evaluated.
For histological assessment, the residual aspirate and additional needle routes were preserved
in formalin solution. Staff pathologists examined cytology and tissue slides.

Based on the diagnosis by two cytopathologists, we classified the EBUS-TBNA samples
into 47 positive slides from 24 patient cases and 75 negative slides from 38 patients. The
positive group was defined as the cases of enlarged mediastinal lymph nodes accompanied
by tumor cells metastasis, and the follow-up diagnosis of the positive cases was determined
as adenocarcinoma (n = 20), squamous-cell carcinoma (n = 3), and small-cell carcinoma
(n = 1). On the other hand, the negative group contained the cases diagnosed as having no
evidence of tumor cells metastasis, and the associated follow-up diagnosis was determined
as reactive lymph nodes (n = 36) and benign granulomatous lymphadenopathy (n = 2).
Images were produced by a digital slide scanner (Leica AT Turbo (Leica, Germany) with
a 20× objective lens and stored as a pyramid data structure with several downsampled
variants of the base image in the same file encoded in the svs file format. This study
employed a total of 122 slides, including 47 malignant slides and 75 benign slides. The
average slide dimensions were 97,608 × 45,309 pixels with a physical size of 49.13 × 22.80
mm2. All the slides were anonymized during the data collection. Pixel-level annotations
were generated as reference standards by two expert pathologists. Two experiments were
performed in evaluation and the data division process in the first and second experiments
was performed by random sampling of the slides. For the first experiment, the AI models
were trained using a total of 46 WSIs, which accounted for 37.7% of the whole dataset and
included 36 malignant slides and 10 benign slides, where around 0.02% benign cells and
0.03% malignant cells were sampled, and the remaining 76 WSIs, which accounted for
62.3% of the whole dataset and included 11 malignant and 65 benign slides, were employed
as a separate testing set. Figure 1b shows the data distribution in further detail. For the
second experiment, a three-fold cross-validation was performed. During the evaluation,
each model was independently assessed on the testing set.
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3.2. Experimental Settings

The proposed deep learning framework was implemented using the Caffe library on a
workstation equipped with four NVIDIA GeForce GTX 1080 Ti GPU cards, Intel Xeon Gold
6134 CPU, and 128 GB memory, and a workstation equipped with one NVIDIA GeForce
GTX 1080 Ti GPU card, Intel Xeon CPU E5-2650 v2, and 32 GB memory. For training, the
proposed method was trained with the settings as follows: learning rate, 1× 10−10; dropout
ratio, 0.5; weight decay, 0.0005; and batch size, 1. A stochastic gradient descent (SGD)
optimizer was utilized for the optimization, and the categorical cross-entropy function was
employed as a loss function. In addition, the baseline models (U-Net, SegNet, and FCN)
were implemented utilizing the keras implementation of the image segmentation models
by Gupta et al. [44] on the workstation equipped with one NVIDIA GeForce GTX 1080
Ti GPU card, Intel Xeon CPU E5-2650 v2, and 32 GB memory. For training, the baseline
models were trained using the default settings based on the codes provided in the literature.
Furthermore, for WSI processing, the proposed deep learning model and the baseline
models utilized the same framework that is described in detail in Section 2.1.

3.3. Evaluation Metrics

The quantitative evaluation of the segmentation performance was produced using four
measurements, i.e., precision, sensitivity, Dice similarity coefficient (DSC), and Intersection
over Union (IoU). The evaluation metrics were computed as follows:

Precision =
TP

TP + FP
(6)

Sensitivity =
TP

TP + FN
(7)

DSC =
2TP

2TP + FP + FN
(8)

IoU =
TP

TP + FN + FP
(9)

where TP denotes the true positives, TN represents the true negatives, FP denotes false
positives, and FN is the false negatives.

3.4. Quantitative Evaluation with Statistical Analysis

For the first experiment, we evaluated the performance of the proposed method with
the three state-of-the-art deep learning models, including U-Net, SegNet, and FCN, as
shown in Table 2(a). The experimental results demonstrated that the proposed method
achieved a precision of 93.4%, sensitivity of 89.8%, DSC of 82.2%, and IoU of 83.2% while
the U-Net model obtained a precision of 67.0%, sensitivity of 54.1%, DSC of 55.7%, and
IoU of 47.3%, the SegNet model obtained a precision of 55.8%, sensitivity of 43.8%, DSC
of 42.2%, and IoU of 33.6%, and the FCN model obtained a precision of 59.0%, sensitivity
of 63.0%, DSC of 52.5%, and IoU of 42.7%, respectively. To further validate the robust-
ness and effectiveness of the proposed method, we assessed the quantitative scores with
Fisher’s least significant difference (LSD), using SPSS software [45] (see Table 2(b)). The
LSD test results demonstrated that the proposed method significantly outperformed the
baseline methods (U-Net, SegNet, and FCN) based on precision, sensitivity, DSC, and IoU
(p < 0.001). Figure 5 presents the box plots of the quantitative evaluation results of the
proposed method and three baseline methods (U-Net, SegNet, and FCN) for metastatic
lesion segmentation in EBUS-TBNA, showing that the proposed method outperforms the
baseline methods in terms of precision, sensitivity, DSC, and IoU (p < 0.001).

For the second experiment using a three-fold cross validation (see Table 3), the pro-
posed method demonstrated a promising performance, higher than the two best performing
baseline methods, including U-Net and FCN, with a precision of 91.8 ± 1.2, sensitivity
of 96.3 ± 0.8, DSC of 94.0 ± 1.0, and IoU of 88.7 ± 1.8 while the U-Net model obtained a
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precision of 68.6 ± 17.0, sensitivity of 52.3 ± 9.2, DSC of 57.6 ± 2.8, and IOU of 40.5 ± 2.8
and the FCN model obtained a precision of 72.3 ± 19.0, sensitivity of 59.0 ± 15.4, DSC
of 61.6 ± 0.5, and IOU of 44.5 ± 0.6, respectively. The experimental results of the two
experiments demonstrated that the proposed method could be used for the automatic
detection and segmentation of lymph node metastasis in EBUS-TBNA cytological slides
robustly. To further investigate if there was any overfitting or underfitting, Figure 6 shows
an epochwise train–test curve that presents the training loss with the training and the
testing DSC scores through iterations/epochs, indicating that the proposed model is least
likely to be underfitting or overfitting. Figure 6 was generated based on the result of the
second fold in the cross-validation.

For the qualitative evaluation, Figure 7 compares the segmentation outputs by the pro-
posed method and the three baseline methods (U-Net, SegNet, and FCN) for metastatic lesion
segmentation. The results show that the proposed method generated annotations consistent
with the reference standard produced by an expert pathologist while the three baseline meth-
ods performed poorly for metastatic lesions segmentation. Figure 8 presents a pathologist’s
assessment of the segmentation results produced by the proposed approach. It can be seen
that the automatic predictive results generated by the proposed method demonstrate the
typical lung adenocarcinoma features, including syncytial tumor group, hyperchromatic
nuclei, high N/C ratio, prominent nucleoli, irregular nuclear shape, pleomorphic nuclei,
and intracytoplasmic vacuolation, that are required by pathologists to make a diagnostic
evaluation.

Table 2. The first experiment: quantitative evaluation and statistical analysis of the proposed method
and the baseline methods in metastatic lesions segmentation on EBUS-TBNA WSIs.

(a): Quantitative Segmentation Results

Method
Score 95% C.I. for Mean

Mean Std. Deviation Std. Error Lower Bound Upper Bound

Precision

Proposed Method 0.934 0.094 0.028 0.871 0.997
U-Net [31] 0.670 0.123 0.036 0.592 0.748
SegNet [32] 0.558 0.158 0.046 0.644 0.656
FCN [33] 0.590 0.118 0.034 0.515 0.664

Sensitivity

Proposed Method 0.898 0.093 0.028 0.836 0.960
U-Net [31] 0.541 0.114 0.033 0.469 0.613
SegNet [32] 0.438 0.063 0.018 0.397 0.478
FCN [33] 0.630 0.202 0.058 0.501 0.758

DSC

Proposed Method 0.822 0.283 0.085 0.632 1.012
U-Net [31] 0.556 0.096 0.277 0.495 0.617
SegNet [32] 0.421 0.102 0.296 0.356 0.486
FCN [33] 0.525 0.160 0.046 0.422 0.627

IoU

Proposed Method 0.832 0.142 0.042 0.736 0.927
U-Net [31] 0.473 0.090 0.026 0.416 0.530
SegNet [32] 0.335 0.106 0.030 0.268 0.403
FCN [33] 0.427 0.155 0.044 0.328 0.526

(b): LSD Multiple Comparisons

Dependent Variable (I) Method (J) Method Mean Difference (I−J) Std. Error Sig.
95% C.I.

Lower Bound Upper Bound

Precision Proposed Method
U-Net [31] 0.263 * 0.536 <0.001 0.154 0.511
SegNet [32] 0.377 * 0.536 <0.001 0.268 0.483
FCN [33] 0.343 * 0.525 <0.001 0.237 0.449

Sensitivity Proposed Method
U-Net [31] 0.357 * 0.038 <0.001 0.278 0.278
SegNet [32] 0.460 * 0.386 <0.001 0.382 0.332
FCN [33] 0.268 * 0.541 <0.001 0.158 0.377

DSC Proposed Method
U-Net [31] 0.265 * 0.074 <0.001 0.113 0.416
SegNet [32] 0.400 * 0.074 <0.001 0.248 0.551
FCN [33] 0.296 * 0.072 <0.001 0.150 0.443

IoU Proposed Method
U-Net [31] 0.358 * 0.047 <0.001 0.261 0.455
SegNet [32] 0.496 * 0.047 <0.001 0.399 0.593
FCN [33] 0.404 * 0.0525 <0.001 0.298 0.510

* The proposed method is significantly better than the baseline methods (U-Net, SegNet, and FCN) using LSD test
(p < 0.001).
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Table 3. The second experiment: quantitative evaluation of the proposed method and the two
best-performing baseline models using three-fold cross-validation.

Model Fold Precision Sensitivity DSC IoU

Fold1 0.909 0.954 0.931 0.871

Proposed Method
Fold2 0.935 0.974 0.954 0.913
Fold3 0.909 0.96 0.934 0.877

Mean ± std 0.918 ± 0.012 0.963 ± 0.008 0.940 ± 0.010 0.887 ± 0.018

Fold1 0.560 0.550 0.560 0.385

U-Net [31]
Fold2 0.880 0.420 0.560 0.392
Fold3 0.620 0.600 0.610 0.438

Mean ± std 0.686 ± 0.170 0.523 ± 0.092 0.576 ± 0.028 0.405 ± 0.028

Fold1 0.730 0.550 0.620 0.449

FCN [33]
Fold2 0.910 0.460 0.610 0.438
Fold3 0.530 0.760 0.620 0.449

Mean ± std 0.723 ± 0.190 0.590 ± 0.154 0.616 ± 0.005 0.445 ± 0.006

Figure 5. The box plot of quantitative evaluation results of metastatic lesion segmentation where the
outliers >3 × interquartile range are marked with an asterisk. The LSD test results demonstrates that
the proposed method performs significantly better than the baseline methods (p < 0.001).

Figure 6. The results of the training loss, the training DSC scores, and the testing DSC scores through
iterations/epochs represented in blue and orange, respectively.
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Figure 7. Visual comparison of the typical segmentation results generated by the proposed method
and the three baseline methods (U-Net, SegNet, and FCN) for metastatic lesion segmentation in
EBUS-TBNA WSIs.

Figure 8. Pathologist’s assessment of automatic predictive results generated by the proposed method
with typical lung adenocarcinoma features required to generate a diagnostic evaluation, including
syncytial tumor group, hyperchromatic nuclei, high N/C ratio, prominent nucleoli, irregular nuclear
shape, pleomorphic nuclei, and intracytoplasmic vacuolation.
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3.5. Computational Time Comparison

The computational time is critical for methods to be implemented in practical clinical
use. To demonstrate the computational efficiency of the proposed method, we analyzed
the AI computational time utilizing different hardware specifications (see Section 3.2). We
evaluated the computational efficiency of the proposed method and the three baseline
methods by calculating the AI inference time on a 77,688 × 41,014 sized WSI. To process
a 77,688 × 41,014 sized WSI, the proposed method took less than a minute utilizing four
NVIDIA Geforce GTX 1080 Ti GPU cards and 3.6 min using a single NVIDIA Geforce GTX
1080 Ti GPU card while the U-Net model required 9.1 min, the SegNet model required
8.4 min, and the FCN model required 12.4 min, as shown in Table 4. The computational
evaluation experiments demonstrated that the proposed technique could process WSI 2.5
times faster than U-Net, 2.3 times faster than SegNet, and 3.4 times quicker than FCN,
even with a less expensive GPU, demonstrating that the proposed method was an effective,
suitable, and cost-effective solution for processing multigigapixel histopathological images
in clinical practice, where rapid diagnosis analyses are required.

Table 4. Computational time comparison of the proposed method and the baseline methods.

Method WSI Size (pixels) AI Inference Time (min)

Proposed Method 77,688 × 41,014 0.9

Proposed Method 77,688 × 41,014 3.6

U-Net [31] 77,688 × 41,014 9.1

SegNet [32] 77,688 × 41,014 8.4

FCN [33] 77,688 × 41,014 12.4

4. Discussion and Conclusions

The diagnosis of mediastinal metastatic lesions is required to determine the best treat-
ment plan. It is critical for lung cancer staging to correctly classify lymph nodes as benign
or malignant. The detection of mediastinal lymph node metastases can save unneces-
sary procedures. Although TBNA, transesophageal-ultrasound-guided needle aspiration,
computed-tomography-guided transbronchial aspiration, and mediastinoscopy can all be
used to sample lymph nodes, the majority of these techniques have drawbacks, including
the need for general anesthesia, a low yield, and poor accessibility. The EBUS-TBNA has
emerged as a revolutionary method to estimate both benign or metastatic lymph nodes
with a high diagnostic yield. It has several advantages including being a minimally in-
vasive approach, safe, cost effective, and offering real-time image guidance [11]. In 19%
of patients, EBUS-TBNA may give diagnostic information as well as staging information,
reducing the need for additional invasive procedures [8]. The EBUS-TBNA may be utilized
for on-site assessment because of immediate smears from needle aspiration and brushing
specimens [11–15], and the diagnostic rate at various sites ranges from 50% to 90% [46–55].
The large variation in the diagnosis rate of different centers is due to the manual diagnosis.
In this work, we presented a deep learning method that produced consistent and accurate
diagnosis of mediastinal metastasis lesions for lung cancer staging. Apart from lung cancer
staging, EBUS-TBNA has been used in various medical applications. The accuracy of EBUS-
TBNA for detecting mediastinal metastases from extrathoracic malignancy and lymphoma
was 85–95 percent [56,57] and 91–97 percent [58], respectively, while the accuracy of EBUS-
TBNA for diagnosing sarcoidosis was 79 percent [59]. Our future plans include applying
the proposed deep-learning-based framework to other applications such as detecting medi-
astinal metastasis from extrathoracic malignancy and lymphoma, diagnosing sarcoidosis,
detecting endoscopic-ultrasonography-steered fine-needle aspiration for the diagnosis of
pancreaticobiliary lesions, and analyzing pleural effusion or ascites. In addition, we are
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interested in exploring further model improvement, such as incorporating upsampling or
the transpose details used for dilation in deconvolution.

Glass slides may now be converted into WSIs, allowing pathological images to be
examined using computer-based approaches [22]. WSIs are obtained at very high resolution
(order of 10 gigapixels) and are difficult to visually scrutinize thoroughly. Over the last
decade, there has been a surge of interest in creating computational tools to assist medical
practitioners with improving the efficiency of medical image analysis. There are compelling
grounds to assume that digital pathology in conjunction with AI is a viable solution to
this problem since it assists the establishment of more exact diagnoses, decreases exam-
ination time, and reduces the labor of pathologists as well as the examination cost. The
computational cost is a substantial barrier to using computational approaches to diagnose
gigapixel WSIs, and as a result, many existing algorithms are not suitable for real-world
deployment. A complete and comprehensive automated inspection of WSIs with high
accuracy may require additional time and computer resources. We presented in this study
an efficient and effective approach for automatic detection and segmentation of lymph
nodes metastasis in EBUS-TBNA cytological slides in seconds. Although it is challeng-
ing for physicians to detect metastatic lesions using PET/CT imaging, AI utilizing deep
learning has shown acceptable and fast diagnostic abilities for distinguishing malignant
from benign mediastinal lymph nodes. The effectiveness and robustness of the proposed
method was evaluated using two experiments. The experimental results demonstrated that
the proposed method achieved promising performance in the segmentation of enlarged
mediastinal lymph nodes metastasis in EBUS-TBNA WSIs, significantly outperforming
the state-of-the-art baseline approaches (p < 0.001). The high precision and recall in the
experimental results demonstrated that the proposed method could aid the pathologists
with aspects of their evaluation applicable to an automatic analysis.
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58. Erer, O.F.; Erol, S.; Anar, C.; Aydoğdu, Z.; Özkan, S.A. Diagnostic yield of EBUS-TBNA for lymphoma and review of the literature.
Endosc. Ultrasound 2017, 6, 317.

59. Agarwal, R.; Srinivasan, A.; Aggarwal, A.N.; Gupta, D. Efficacy and safety of convex probe EBUS-TBNA in sarcoidosis: A
systematic review and meta-analysis. Respir. Med. 2012, 106, 883–892. [CrossRef]

http://dx.doi.org/10.1159/000490192
http://dx.doi.org/10.1378/chest.10-2914
http://dx.doi.org/10.1097/LBR.0000000000000080
http://dx.doi.org/10.1097/LBR.0000000000000339
http://www.ncbi.nlm.nih.gov/pubmed/27984385
http://dx.doi.org/10.4103/0970-9371.175493
http://www.ncbi.nlm.nih.gov/pubmed/27011437
http://dx.doi.org/10.1007/s10585-012-9556-3
http://www.ncbi.nlm.nih.gov/pubmed/23196318
http://dx.doi.org/10.1016/j.rmed.2012.02.014

	Introduction
	Methods
	Whole-Slide Image Processing
	Proposed Convolution Network Architecture

	Data and Results
	Data Preparation
	Experimental Settings
	Evaluation Metrics
	Quantitative Evaluation with Statistical Analysis
	Computational Time Comparison

	Discussion and Conclusions
	References

