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AM = alveolar macrophage; CF = cystic fibrosis; EPO = erythropoietin; HIF-1 = hypoxia-inducible factor-1; HS = hemorrhagic shock; IL = inter-
leukin; NF-κB = nuclear factor-κB; pO2 = partial pressure of oxygen; redox = reduction–oxidation; ROS = reactive oxygen species; SLPI = secre-
tory leukocyte protease inhibitor; TNF = tumor necrosis factor; VEGF = vascular endothelial growth factor.
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Altering gene expression is the most fundamental and effec-
tive way for a cell to respond to extracellular signals and/or
changes in its environment, in both the short term and the
long term [1]. In the short term, transcription factors are
involved in mediating responses to growth factors and a
variety of other extracellular signals [2]. In contrast, the long-
term control of gene expression induced by growth factors
and the changes in gene expression, which occur during
development, is generally (with few exceptions) irreversible.

During development, the expression of specific sets of
genes is regulated spatially (by position/morphogenetic gra-
dients) and temporally. Regulation of the signaling

responses is governed at the genetic level by transcription
factors that bind to control regions of target genes and alter
their expression [1,2]. Transcription factors are endogenous
substances, usually proteins, that are effective in the initia-
tion, stimulation or termination of the genetic transcription
process. While in the cytoplasm, the transcription factor is
incapable of promoting transcription. A signaling event
occurs, such as a change of the state of phosphorylation,
which results in protein subunit translocation into the
nucleus [3,4]. Transcription is a process in which one DNA
strand is used as a template to synthesize a complementary
RNA. Signal transduction therefore involves complex inter-
actions of multiple cellular pathways [1,2].
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Abstract

A progressive rise of oxidative stress due to altered reduction–oxidation (redox) homeostasis appears
to be one of the hallmarks of the processes that regulate gene transcription in physiology and
pathophysiology. Reactive oxygen species and reactive nitrogen species serve as signaling
messengers for the evolution and perpetuation of the inflammatory process that is often associated
with the condition of oxidative stress, which involves genetic regulation. Changes in the pattern of gene
expression through reactive oxygen species/reactive nitrogen species-sensitive regulatory transcription
factors are crucial components of the machinery that determines cellular responses to oxidative/redox
conditions. The present review describes the basic components of the intracellular oxidative/redox
control machinery and its crucial regulation of oxygen-sensitive and redox-sensitive transcription factors
within the context of lung injury. Particularly, the review discusses mechanical ventilation and NF-κB-
mediated lung injury, ischemia-reperfusion and transplantation, compromised host defense and
inflammatory stimuli, and hypoxemia and the crucial role of hypoxia-inducible factor in mediating lung
injury. Changes in the pattern of gene expression through regulatory transcription factors are therefore
crucial components of the machinery that determines cellular responses to oxidative/redox stress.

Keywords antioxidant, hypoxia-inducible factor-α, injury, lung, oxygen, redox, transcription factors



48

Critical Care    February 2003 Vol 7 No 1 Haddad

In particular, reduction–oxidation/oxygen (redox)-sensitive
transcription factors have gained an overwhelming backlog of
interest momentum over the years, ever since the onset of the
burgeoning field of free radical research and oxidative stress.
The reason for this is that redox-sensitive transcription factors
are often associated with the development and progression
of many human disease states. Their ultimate regulation
therefore bears potential therapeutic intervention for possible
clinical applications [1–4].

In the present review, I will focus on elaborating a compre-
hensive overview of the current understanding of redox/
oxidative mechanisms mediating the regulation of transcrip-
tion factors. These transcription factors regulate a plethora
of cellular functions that span the range from anoxia and
hypoxia to oxidative stress within the context of oxidant-medi-
ated lung injury.

Inflammatory reactions and lung injury
Mechanical ventilation and NF-κκB-mediated lung injury
Some unprecedented conditions may occur during the evolu-
tion of the inflammatory process, which can eventually lead to
dramatic changes in the progression of lung injury. For
example, positive-pressure mechanical ventilation supports
gas exchange in patients with respiratory failure but is also
responsible for significant lung injury.

Pugin and colleagues, for instance, have developed an in
vitro model in which isolated lung cells can be submitted to
a prolonged cyclic pressure-stretching strain resembling that
of conventional mechanical ventilation [5]. In this model,
cells cultured on a silastic membrane were elongated up to
7% of their initial diameter, corresponding to a 12% increase
in cell surface. The lung alveolar macrophage (AM) was iden-
tified as the main cellular source for critical inflammatory
mediators such as tumor necrosis factor (TNF)-α, the
chemokines IL-8 and IL-6, and matrix metalloproteinase-9 in
this model system of mechanical ventilation. These media-
tors were measured in supernatants from ventilated AMs,
monocyte-derived macrophages and promonocytic THP-1
cells. In addition, NF-κB was found to be activated in venti-
lated macrophages. Synergistic proinflammatory effects of
mechanical stress and molecules such as bacterial endo-
toxin were observed, suggesting that mechanical ventilation
might be particularly deleterious in pre-injured or infected
lungs. Dexamethasone, an anti-inflammatory steroid, pre-
vented IL-8 and TNF-α secretion in ventilated macrophages.
Mechanical ventilation also induced low levels of IL-8 secre-
tion by alveolar type II-like cells. Other lung cell types such
as endothelial cells, bronchial cells and fibroblasts failed to
produce IL-8 in response to a prolonged cyclic pressure-
stretching load [5]. This model is of particular value for explor-
ing physical stress-induced signaling pathways, as well as for
testing the effects of novel ventilatory strategies or adjunctive
substances aimed at modulating cell activation induced by
mechanical ventilation.

Furthermore, alterations in AM function during sepsis-induced
hypoxia may influence TNF secretion and the progression of
acute lung injury. It was proposed that acute changes in
partial pressure of oxygen (pO2) tension surrounding AMs
alter NF-κB activation and TNF secretion in these lung cells.
AM-derived TNF-α secretion and NF-κB expression were
determined after acute hypoxic exposure of isolated
Sprague–Dawley rat AMs. Adhered AMs (106/ml) were incu-
bated (37°C at 5% CO2) for 2 hours with 1 µg/ml
lipopolysaccharide–endotoxin (Pseudomonas aeruginosa) in
normoxia (21% O2–5% CO2) or in hypoxia (1.8% O2–5%
CO2). The AMs exposed to lipopolysaccharide–endotoxin in
hypoxia had higher levels of TNF-α and enhanced expression
of NF-κB than those in normoxia; the predominant isoforms
were RelA (p65) and c-Rel (p75). Increased mRNA bands for
TNF-α, IL-1α and IL-1β were also observed in the hypoxic
AMs [6]. This observation demonstrates that acute hypoxia in
the lung may induce enhanced NF-κB activation in AMs,
which may result in increased production and release of
inflammatory cytokines.

Ischemia-reperfusion and transplantation

It has been reported that secretory leukocyte protease
inhibitor (SLPI) in mice regulates local and remote organ
inflammatory injury induced by hepatic ischemia-reperfusion
[7–9]. Intravenous infusion of SLPI reduced liver and lung
damage and diminished neutrophil accumulation in both
organs. These effects were accompanied by reduced serum
levels of TNF-α and macrophage inflammatory protein-2. SLPI
also suppressed activation of NF-κB in the liver. Moreover,
hepatic ischemia and reperfusion caused increased expres-
sion of SLPI mRNA and SLPI protein, which was found
specifically in hepatocytes. Furthermore, treatment of mice
with anti-SLPI antibodies enhanced serum levels of TNF-α
and macrophage inflammatory protein-2, and it increased
hepatic neutrophil accumulation and the amount of liver injury
and lung injury [7–13]. These data indicate that SLPI has pro-
tective effects against hepatic ischemia-reperfusion injury and
suggest that endogenous SLPI regulates the hepatic and
remote inflammatory responses.

In concert with these observations, attenuation of lung reper-
fusion injury after transplantation using an inhibitor of NF-κB
was achieved [14]. It was hypothesized that NF-κB is a criti-
cal early regulator of the inflammatory response in lung
ischemia-reperfusion injury and that inhibition of NF-κB acti-
vation reduces this injury and improves pulmonary graft func-
tion. With the use of a porcine transplantation model, left
lungs were harvested and stored in cold Euro-Collins preser-
vation solution for 6 hours before transplantation [14]. Activa-
tion of NF-κB occurred 30 min and 1 hour after
transplantation, and it declined to near baseline levels after
4 hours. Pyrrolidine dithiocarbamate, a potent inhibitor of NF-
κB, given to the lung graft during organ preservation
(40 mmol/l), effectively inhibited NF-κB activation and signifi-
cantly improved lung function. Compared with control lungs
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4 hours after transplant, pyrrolidine dithiocarbamate-treated
lungs displayed significantly higher oxygenation, lower pCO2,
reduced mean pulmonary arterial pressure and reduced
edema and cellular infiltration [14]. This demonstrates that
NF-κB is rapidly activated and is associated with poor pul-
monary graft function in transplant reperfusion injury. Target-
ing the NF-κB pathway may therefore be a promising therapy
to reduce injury and to improve lung function.

Compromised host defense

Progressive pulmonary infection may be a prominent clinical
feature of lung injury, but the molecular basis for this suscep-
tibility remains incompletely understood.

To study this problem, Sajjan et al. developed a model of
chronic pneumonia by repeated instillation of a clinical isolate
of Burkholderia cepacia, an opportunistic Gram-negative
bacterium, from a case of cystic fibrosis (CF) into the lungs of
Cftr (m1unc–/– [Cftr–/–]) and congenic Cftr+/+ controls [15].
Nine days after the last instillation, the CF transmembrane
regulator knockout mice showed persistence of viable bacte-
ria with chronic severe bronchopneumonia, while wild-type
mice remained healthy. A mixed population of macrophages
and neutrophils characterized the histopathological changes
in the lungs of the susceptible Cftr–/– mice by infiltration of a
mixed inflammatory cell population into the peribronchiolar
and perivascular spaces, by Clara cell hyperplasia, by mucus
hypersecretion in the airways and by exudation into alveolar
airspaces. An increased proportion of neutrophils was
observed in the bronchoalveolar lavage fluid from the Cftr–/–

mice that, despite an increased bacterial load, demonstrated
minimal evidence of activation. In addition, alveolar
macrophages from Cftr–/– mice also demonstrated subopti-
mal activation [15].

These observations suggest that the pulmonary host
defenses are compromised in lungs from animals with CF, as
manifested by increased susceptibility to bacterial infection
and lung injury. This murine model of chronic pneumonia thus
reflects, in part, the situation in human patients and may help
to elucidate the mechanisms leading to defective host
defense in CF [16–25].

Summary

Acute lung injury therefore occurs as a result of a cascade of
cellular events initiated by either infectious or noninfectious
inflammatory stimuli. An elevated level of proinflammatory
mediators combined with a decreased expression of anti-
inflammatory molecules is a critical component of lung inflam-
mation.

Expression of proinflammatory genes is regulated by trans-
criptional mechanisms. NF-κB is one critical transcription
factor required for the expression of many cytokines involved
in the pathogenesis of acute lung injury [26–35]. In acute
lung injury caused by infection of bacteria, cytokine receptors

play a central role in initiating the innate immune system and
in activating NF-κB. Anti-inflammatory cytokines have the
ability to suppress inflammatory processes via the inhibition
of NF-κB, which can interact with other transcription factors,
and these interactions thereby lead to greater transcriptional
selectivity. Modification of transcription, and particularly of
NF-κB, is likely to be a logical therapeutic target for the
manipulation and treatment of acute lung injury [36–42].

Hypoxemia
A crucial transcription factor that is a master regulatory
element in sensing hypoxic conditions and in integrating an
adapted response via gene expression of oxygen-sensitive
and redox-sensitive enzymes and cofactors is hypoxia-
inducible factor-1 (HIF-1) (Fig. 1) [43–45]. The signal trans-
duction components that link the availability of oxygen to the
activation of these transcription factors are poorly defined,
but are broadly believed to hinge on the free abundance of
oxidants.

HIF-1 consists of two subunits: HIF-1α, which is unique to
the oxygen response; and HIF-1β (aryl hydrocarbon receptor
nuclear translocator). The stability and activity of HIF-1α, first
identified as a DNA-binding activity expressed under hypoxic
conditions, increase exponentially when pO2 is lowered.
Whereas HIF-1β is constitutively expressed under normoxic
conditions, HIF-1α is rapidly degraded by the ubiquitin–pro-
teasome system. Under hypoxic conditions, however, HIF-1α
protein stabilizes and accumulates, thus allowing the het-
erodimer to translocate to the nucleus and to bind specific
promoter moieties of selective genes encoding erythropoietin
(EPO), vascular endothelial growth factor (VEGF), glycolytic
enzymes and glucose transporters, as well as cytokines and
other inflammatory mediators (Fig. 1) [44–46]. It is expected
that any reduction of tissue oxygenation in vivo and in vitro
would therefore provide a mechanistic stimulus for a graded
and adaptive response mediated by hypoxia-inducible factor
(Fig. 2).

Inflammatory stimuli
The role of HIF-1α in oxidant-induced lung injury is less clear,
or less prominent, than that of NF-κB. Indirect, but unprece-
dented and unequivocal, evidence was independently pro-
vided by Hellwig-Bürgel and colleagues [47–49] and by
Haddad and Land [50,51], however, to indicate HIF-1 as a
possible regulator of the evolution and propagation of the
inflammatory process. The rate of transcription of several
genes encoding proteins involved in oxygen and energy
homeostasis is controlled by HIF-1. Since EPO gene expres-
sion is inhibited by the proinflammatory cytokines, such as
IL-1β and TNF-α, while no such effect has been reported with
respect to the VEGF gene, Hellwig-Bürgel et al. investigated
the effects of these cytokines on the activation of the HIF-1
DNA-binding complex and the amount of HIF-1α protein in
human hepatoma cells in culture [47]. Under normoxic condi-
tions, both cytokines caused a moderate activation of HIF-1

Available online http://ccforum.com/content/7/1/47
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DNA binding. In hypoxia, cytokines strongly increased HIF-1
activity compared with the effect of hypoxia alone. Only IL-1β
increased HIF-1α protein levels. In transient transfection
experiments, HIF-1-driven reporter gene expression was aug-
mented by cytokines only under hypoxic conditions. In con-
trast to their effect on EPO synthesis, neither IL-1β or TNF-α
decreased VEGF production. The mRNA levels of HIF-1α
and VEGF were unaffected. Cytokine-induced inhibition of
EPO production may thus not be mediated by impairment of
HIF-1 function [47].

Hellwig-Bürgel and colleagues subsequently proposed that
HIF-1 might be involved in modulating gene expression during
inflammation. Furthermore, since VEGF promotes angiogene-
sis and inflammatory reactions, in a parallel study VEGF
mRNA was found detectable in the proximal tubules of
inflamed kidneys but not in normal kidneys [48]. In other
organs, VEGF gene expression is induced by hypoxia and by
cytokines. To identify the cellular mechanisms in control of
tubular VEGF production, the effects of hypoxia and IL-1β on
VEGF mRNA levels, on VEGF secretion and on activity of HIF-
1 in human proximal tubular epithelial cells were assessed.

The human proximal tubular epithelial cells were grown in
monolayers from human kidneys, and hypoxia was induced by
incubation at 3% O2. Significant amounts of VEGF mRNA and
VEGF protein were measured in human proximal tubular
epithelial cell extracts and culture media, respectively. More-
over, stimulation of VEGF synthesis at low pO2 tension and
following IL-1β treatment was detectable at the protein level
only. Nuclear HIF-1α protein levels and HIF-1 binding to DNA
were also increased under these conditions [48].

VEGF induction appears to increase DNA binding of HIF-1 to
hypoxia-responsive elements in the VEGF gene promoter. In
inflammatory diseases of the kidney, tubular cell-derived
VEGF may therefore contribute to microvascular leakage and
to monocyte extravasation. Regarding the mechanisms
reported, LY-294002 (an inhibitor of phosphatidylinositol 3-
kinase) suppressed HIF-1 activation in a dose-dependent
manner irrespective of the stimulus. With respect to target
proteins controlled by HIF-1, the production of EPO was fully
blocked and that of VEGF reduced following inhibition of the
phosphatidylinositol 3-kinase pathway [49]. The role of
mitogen-activated protein kinase kinases in this process
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Figure 1

Oxygen-sensing proposed mechanisms for the regulation of gene transcription and the involvement of hypoxia-inducible factor-1 (HIF-1) as a
hypoxia-mediated transcriptional activity (see text for further details). AA, arachidonic acid; ARNT, aryl receptor hydrocarbon nuclear translocator;
CREB, cAMP-responsive element binding protein; CBP, CREB-binding protein; DAG, diacyl glycerol; ECF, extracellular fluid; ICF, intracellular
fluid; IP3, inositol triphosphate; MAPK, mitogen-activated protein kinase; NADP, nicotinamide dinucleotide oxidized; NADPH, nicotinamide
dinucleotide reduced; PKC, protein kinase C; ROS, reactive oxygen species; SAPK, stress-activated protein kinase.
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remained ambiguous, because PD-98059 and U-0126
inhibitors did not significantly reduce HIF-1α levels at non-
toxic doses [49]. It was proposed that phosphatidylinositol 3-
kinase signaling is not only important in the hypoxic induction
of HIF-1, but that it is also crucially involved in the response
to insulin and IL-1.

Furthermore, evidence that reactive oxygen species (ROS) sig-
naling mediates cytokine-dependent regulation of HIF-1α has
been postulated by Haddad and Land [50,51]. In the airway
epithelium, recombinant human IL-1β and recombinant murine
TNF-α induced, in a time-dependent manner, the nuclear
translocation of HIF-1α. This translocation is an effect associ-
ated with upregulating the activity of this transcription factor
under normoxic conditions. In addition, analysis of the mode of
action of IL-1β and TNF-α revealed a novel induction of intra-
cellular ROS, including hydrogen peroxide, the superoxide
anion (O2

−•) and the •OH radical [50,51]. The antioxidants
dimethyl sulfoxide and 1,3-dimethyl-2-thiourea, purported to be
prototypical scavengers of hydrogen peroxide and •OH, attenu-
ated cytokine-induced HIF-1α nuclear translocation and activa-
tion in a dose-dependent manner. The NADPH-oxidase
inhibitor 4′-hydroxy-3′-methoxy-acetophenone, which may
affect mitochondrial ROS production, attenuated cytokine-
mediated nuclear translocation and activation of HIF-1α. Fur-
thermore, inhibition of the mitochondrion complex I
nicotinamide ADP-dependent oxidase by diphenylene iodo-

nium, which blocks the conversion of ubiquinone to ubiquinol,
abrogated IL-1β-dependent and TNF-α-dependent nuclear
translocation and activation of HIF-1α. Similarly, interrupting the
respiratory chain with potassium cyanide reversed the excita-
tory effect of cytokines on HIF-1α nuclear translocation and
activation [50,51]. These results indicate that a nonhypoxic
pathway mediates cytokine-dependent regulation of HIF-1α
translocation and activation in a ROS-sensitive mechanism.

Direct evidence implicating HIF-1 in lung injury emerged with
VEGF, which has been recognized as a potent mediator of
endothelial barrier dysfunction and is upregulated during
ischemia in many organs [43–46]. Because ventilated
pulmonary ischemia causes a marked increase in pulmonary
vascular permeability, it was hypothesized that VEGF would
increase during ischemic lung injury.

To test this hypothesis, VEGF expression was measured by
northern and western blot analysis in isolated ferret lungs
after 45 or 180 min of ventilated (95% or 0% O2) ischemia
[52]. Pulmonary vascular permeability, assessed by measure-
ment of the osmotic reflection coefficient for albumin, was
evaluated in the same lungs, as was expression of HIF-1α.
The distribution of VEGF as a function of ischemic time and
oxygen tension was also evaluated by immunohistochemical
staining in separate groups of lungs. VEGF mRNA increased
threefold by 180 min of ventilated ischemia, independent of
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Figure 2

Potential oxygen-sensing mechanisms and the role of the transcription factor hypoxia-inducible factor-1 (HIF-1). 6GP, 6-glucose phosphate; 6PG,
6-phosphoglycerate; FAD, flavin adenine dinucleotide oxidized; FADH, flavin adenine dinucleotide reduced; NADP, nicotinamide dinucleotide
oxidized; NADPH, nicotinamide dinucleotide reduced; ROS, reactive oxygen species; VHL, von Hippel-Lindau tumor suppressor protein.
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oxygen tension. VEGF protein increased in parallel to VEGF
mRNA. Immunohistochemical staining demonstrated the
appearance of VEGF protein along alveolar septae after
180 min of hyperoxic ischemia and after 45 or 180 min of
hypoxic ischemia. In addition, albumin was not altered by
45 min of hyperoxic ischemia (0.69 ± 0.09 versus
0.50 ± 0.12, respectively), but decreased significantly after
180 min of hyperoxic ischemia and after 45 and 180 min of
hypoxic ischemia (0.20 ± 0.03, 0.26 ± 0.08 and 0.23 ± 0.03,
respectively) [52]. HIF-1α mRNA increased during both
hyperoxic and hypoxic ischemia, but HIF-1α protein increased
only during hypoxic ischemia. This implicates VEGF as a
potential mediator of increased pulmonary vascular permea-
bility in this model of acute lung injury.

Further elaborating on the mechanisms involving HIF-1 in reg-
ulating the inflammatory response, Hierholzer et al. reported
that hemorrhagic shock (HS) initiates an inflammatory
response that includes increased expression of inducible
nitric oxide synthase and production of prostaglandins [53].
Induction of inducible nitric oxide synthase during the
ischemic phase of HS may involve the activation of HIF-1.
Increased expression of cyclooxygenase-2 during HS con-
tributes to prostaglandin production. The lungs of rats sub-
jected to HS demonstrated a twofold increase in HIF-1
activation and a 7.4-fold increase in expression of cyclo-
oxygenase-2 mRNA, as compared with sham controls [53]. It
was concluded that the upregulation of inducible nitric oxide
synthase and cyclooxygenase-2 during ischemia are two
important early response genes that promote the inflam-
matory response and may contribute to organ damage
through the rapid and exaggerated production of nitric oxide
and prostaglandins.

Furthermore, in a novel study by Shoshani and colleagues,
the identification and cloning of a HIF-1-responsive gene,
designated RTP801, was recently reported. Strong upregula-
tion of RTP801 by hypoxia was detected both in vitro and in
vivo in an animal model of ischemic stroke [54]. When
induced from a tetracycline-repressible promoter, RTP801
protected MCF7 and PC12 cells from hypoxia in glucose-free
medium and from hydrogen peroxide-triggered apoptosis via
a dramatic reduction in the generation of ROS. However,
expression of RTP801 appeared toxic for nondividing neuron-
like PC12 cells and increased their sensitivity to ischemic
injury and oxidative stress. Furthermore, liposomal delivery of
RTP801 cDNA to mouse lungs also resulted in massive cell
death [54]. The biological effect of RTP801 overexpression
thus depends on the cell context and may be either protect-
ing or detrimental for cells under conditions of oxidative or
ischemic stresses. Altogether, the data suggest a complex
type of involvement of RTP801 in the pathogenesis of
ischemic diseases.

A hypothetical schematic depicting the role of HIF-1 in lung
injury is displayed in Fig. 3.

Conclusion and future prospects
The molecular response to oxidative stress is regulated by
redox-sensitive transcription factors [55–60]. The study of
gene expression and regulation is critical in the development
of novel gene therapies [61–70]. Recognition of reactive
species and redox-mediated protein modifications as poten-
tial signals may open up a new field of cell regulation via
specific and targeted genetic control of transcription factors,
and can thus provide us with a novel way of controlling
disease processes [71–75]. Dynamic variation in pO2 and
redox equilibrium thus regulate gene expression, apoptosis
signaling and the inflammatory process, thereby bearing
potential consequences for screening emerging targets for
therapeutic intervention.
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Figure 3

A schematic overview of the potential signaling pathways involved in
cytokine-mediated regulation of hypoxia-induced hypoxia-inducible
factor-1α (HIF-1α) translocation and activation. Hypoxia and
inflammatory signals induce the intracellular accumulation of reactive
oxygen species (ROS), which may cause changes in the
phosphorylation state of target kinases, thereby mediating a specific
regulatory mechanism. The mitochondrion is a potential source for
cytokine-unleashed ROS, whose regulation is selectively mediated by
antioxidants. ROS-mediated signaling allows HIF-1α protein
stabilization, nuclear translocation and transcriptional activation.
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