
Int. J. Mol. Sci. 2012, 13, 9298-9331; doi:10.3390/ijms13079298 

 
International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Review 

The Immunomodulatory and Neuroprotective Effects of 
Mesenchymal Stem Cells (MSCs) in Experimental Autoimmune 
Encephalomyelitis (EAE): A Model of Multiple Sclerosis (MS) 

Mohammed A. Al Jumah and Mohamed H. Abumaree *  

College of medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah 

International Medical Research Center, King Abdulaziz Medical City, National Guard Health Affairs, 

P.O. Box 22490, Riyadh 11426, Mail Code 1515, Saudi Arabia; E-Mail: jumahm@ngha.med.sa 

* Author to whom correspondence should be addressed; E-Mail: abumareem@ksau-hs.edu.sa;  

Tel.: +966-1-2520088 (ext. 47180); Fax: +966-1-2520088 (ext. 47120). 

Received: 18 May 2012; in revised form: 11 July 2012 / Accepted: 11 July 2012 /  

Published: 24 July 2012 

 

Abstract: Mesenchymal stem cells (MSCs) are multipotent cells that differentiate into the 

mesenchymal lineages of adipocytes, osteocytes and chondrocytes. MSCs can also 

transdifferentiate and thereby cross lineage barriers, differentiating for example into neurons 

under certain experimental conditions. MSCs have anti-proliferative, anti-inflammatory and 

anti-apoptotic effects on neurons. Therefore, MSCs were tested in experimental autoimmune 

encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), for their effectiveness 

in modulating the pathogenic process in EAE to develop effective therapies for MS. The data 

in the literature have shown that MSCs can inhibit the functions of autoreactive T cells in 

EAE and that this immunomodulation can be neuroprotective. In addition, MSCs can rescue 

neural cells via a mechanism that is mediated by soluble factors, which provide a suitable 

environment for neuron regeneration, remyelination and cerebral blood flow improvement. 

In this review, we discuss the effectiveness of MSCs in modulating the immunopathogenic 

process and in providing neuroprotection in EAE. 
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1. Introduction 

Multiple sclerosis (MS) is a chronic, progressive inflammatory disorder of the central nervous system 

(CNS). It is characterized by myelin loss, various degrees of axonal pathology, and progressive 

neurological dysfunction [1]. The associated inflammatory plaque is the pathological hallmark of  

MS [2]. Experimental autoimmune encephalomyelitis (EAE) is the best-characterized animal model of 

MS [3]. The finding of inflammatory cells and their secreted molecules in the brain lesions of MS 

patients and of animals with EAE has supported the widely accepted notion that MS is mediated by 

pathogenic T cells, which react with myelin antigens, resulting in a larger degeneration of surrounding 

neurons [4]. These autoreactive T cells then migrate and cross the blood-brain barrier (BBB) to destroy 

the central neurons and their myelin sheaths as well as their axons.  

The exact etiology of MS remains unknown. However, there are three key hypotheses that may 

explain the causes underlying MS, namely an immune response against the CNS, pathogen trigger and 

oligodendrocyte degeneration. In addition, genetic factors contribute to MS. Although the pathogenesis 

of MS is poorly understood, increasing evidence suggests that genetic and environmental factors may 

both contribute to the development of the disease [5]. Typically, MS affects young adults between 20 

and 40 years of age [4,6]. MS shows a strong gender preference, with approximately 70 to 75% of all 

people with MS being female [4,6]. The incidence and prevalence of MS vary throughout the world, 

with at least one to two million individuals affected worldwide.  

The key morphological characteristic of MS is the demyelination of nerve axons, which blocks or 

slows signal conduction at the site of demyelination [4,7]. MS patients suffer from a number of 

neurological symptoms, such as visual problems, changes in sensation, weakness, spasticity, acute/chronic 

pain, fatigue, depression and paralysis. Neurological symptoms develop when conduction blockade 

occurs concurrently in a considerable percentage of fibers within a particular neural pathway [7]. During 

clinical recovery, the inflammation and edema in the CNS resolve, and it is suggested that the restoration 

of CNS conductivity results from glial ensheathment and remyelination. In contrast, axonal loss is 

irreversible and may be the basis of neurological dysfunction in chronic MS. 

Traditionally, there are four clinical forms of MS: relapsing-remitting MS (RRMS), secondary 

progressive MS (SPMS), primary progressive MS (PPMS), and progressive relapsing MS (PR). There 

is also another form of MS known as clinically isolated syndromes (CIS). These patients present with a 

single attack of the disease but are not yet diagnosed with MS. The most common form of MS is 

RRMS, which is associated with acute inflammatory episodes and a reduction in neurological 

functions [4]. Patients may experience some recovery between relapses, but 80% of RRMS patients 

progress to SPMS, which is associated with gradual loss of neurological functions and ascending 

paralysis [4].  

In MS, remyelination and restoration of neuronal functions can be achieved by promoting 

endogenous mechanisms of neuronal repair or by transplanting exogenous myelinating cells [8]. 

However, long-term neuronal functional recovery requires regulation of the immunopathogenic 

process. The current treatments for MS are not completely effective because there is no effective 

therapy that can inhibit the functions of autoreactive T cells while inducing the remyelination and 

regeneration processes of neurons and thus prevent disability and irreversible axonal/neuronal  
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damage [9,10]. In addition, there is no effective therapy for MS that can significantly modulate the 

functions of the cells of the CNS.  

The pathogenic process of MS can be divided into inflammatory and degenerative phases. 

Therefore, to efficiently treat MS, it is necessary to develop a therapy that can specifically regulate the 

immune responses and that can also induce neuron regeneration. This will provide an effective 

regimen of immunomodulation and neuroprotection in MS patients. Several studies have shown many 

lines of evidence of neurodegeneration in MS, including the accumulation of amyloid precursor 

protein in neurons [11]; a reduction in the N-acetyl aspartate/creatine ratio, which reflects the degree of 

disability [12]; the finding of transected axons, which reflects the degree of inflammation within the 

active lesions [13]; damage to mitochondrial DNA and mitochondrial enzyme complexes [14]; and a 

reduction in axonal density in the white matter and spinal cords of MS patients [15,16]. 

Stem cell transplantation is a potential approach that can be used as a therapy to modulate the 

immunopathogenic process in MS to lead to neuron regeneration and treatment of the disease. 

Generally, stem cells can differentiate into various cell lineages with the ability to repair damaged 

tissue by reconstructing the tissue with new cells. The result is a recovery of lost functions, such as 

nerve conduction in patients with MS. Stem cells can perform their repair function by engrafting into 

the target tissue or by secreting paracrine factors that can trigger the repair pathways in the damaged 

tissue. Therefore, the utilization of stem cells in treating MS will rely on their ability to engraft into 

CNS tissues and then differentiate into neuron-like cells to replace the defective neurons or by 

secreting molecules that mediate the neuro-repair process in the CNS.  

Generally, it is agreed that MSCs, which are derived from adult tissues, can attenuate the 

encephalitogenic manifestation of MS by suppressing the encephalitogenic T cells that mediate 

neuronal inflammation and damage [17–28]. The use of MSCs in EAE, the mouse model of MS, has 

shown that MSCs are able to modulate the immunopathogenesis of EAE and are also able to induce 

neuroprotection in EAE. Therefore, we will discuss the use of MSCs in EAE mice to investigate their 

effectiveness in attenuating the encephalitogenic process, possibly by inhibiting the functions of 

encephalitogenic T cell-mediated neuronal inflammation, neuronal demyelination and axon damage. 

2. Experimental Autoimmune Encephalomyelitis (EAE) 

The hypothesis that MS is an autoimmune disease was mainly based on the similarities observed 

between MS and its animal model, EAE. EAE is a demyelinating disease of the CNS that shares 

similar clinical and pathological features with MS. EAE is induced by immunizing animals with one of 

the myelin-derived antigens, such as proteolipid protein, myelin oligodendrocyte glycoprotein (MOG), 

or myelin basic protein (MBP) [29]. EAE is mediated by myelin-specific helper T cells, which are 

activated in the periphery and then translocate to the CNS, following permeabilization of the BBB 

[30,31]. Upon entering the CNS, T cells are reactivated by local and infiltrating active antigen 

presenting cells (APCs), such as dendritic cells, macrophages and microglia, resulting in inflammation 

and then subsequent neuronal demyelination and axonal damage [30,31]. 

Depending on the immunization protocol and the background of the mice, EAE can be induced in 

either an acute chronic progressive form or a relapsing-remitting form [32]. In addition, EAE can be 

induced by the adoptive transfer of activated myelin-specific helper T cells from EAE mice into naive 
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recipient mice [33]. The EAE model is a useful tool with which to understand the immunopathogenesis 

of neuronal damage in EAE mice as well as to develop a therapy for MS [34,35].  

2.1. Immune Cells in the Experimental Autoimmune Encephalomyelitis (EAE) Model 

The inflammation present in MS and in its animal model, EAE, is largely mediated by autoreactive 

T cells that attack the CNS tissues. Dendritic cells that have been exposed to myelin-derived antigens 

secrete cytokines that induce the differentiation of naive T cells into effector T cells (Figure 1) in the 

lymph node. The differentiation of T helper 1 cells requires the presence of interferon-γ (IFN-γ) and 

IL-12, while IL-4 promotes the development of T helper 2 cells. In the mouse, the differentiation of 

Th17 cells is promoted by transforming growth factor-β (TGF-β), IL-6 and IL-21, whereas IL-1, IL-6 

and IL-23 initiate Th17 differentiation in humans. The differentiation of regulatory T cells (Tregs) 

requires TGF-β [36].  

Figure 1. The differentiation of naïve T cells into different subtypes of T cells under the 

influence of cytokines. Interferon-γ (IFN-γ) and IL-12 convert naïve T cells into T helper 1 

cells, whereas IL-4 promotes the development of T helper 2 cells. The differentiation of 

Th17 cells is promoted by IL-1, IL-6 and IL-23, and the differentiation of regulatory 

T cells requires TGF-β.  

 

However, it is still not clear how the inflammatory response is triggered in MS and EAE. It is 

possible that myelin antigens trigger the expansion of autoreactive lymphocytes in secondary lymphoid 

organs of susceptible MS patients and EAE mice. These immune cells then move from lymphoid 

organs into the circulation [37]. The expansion of inflammatory responses is also enhanced in MS 

patients and EAE mice due to poor Treg functioning [38]. Then, inflammatory cells adhere to and 

migrate across the BBB to infiltrate the tissues of the CNS, causing the characteristic inflammatory 

lesions surrounded by an area of neuronal demyelination and axonal loss [39]. There is evidence to 

suggest that the pathological heterogeneity in MS lesions is possibly a result of multiple distinct 
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myelin-reactive effector T cells [40]. In addition, it has been noted that cytotoxic T-cells, which are 

present in MS lesions in significant numbers [41], may also contribute to tissue damage by attacking 

oligodendrocytes and by transecting axons [42,43]. 

2.1.1. T Helper 1 (Th1) and T Helper (Th17) Cells 

The inflammatory role of Th1 cells in MS and EAE has been established. It has been reported  

that Th1 cells secrete inflammatory cytokines in the peripheral blood and in the CNS of affected 

subjects [44,45]. In addition, microglia activate Th1 cells in the CNS, which in turn activate 

macrophages to mediate myelin damage through the release of toxic mediators, such as tumor necrosis 

factor-alpha (TNF-α) [46]. Moreover, the adoptive transfer of myelin-specific CD4+ Th1 cells into 

naïve recipient mice can induce EAE in these mice [47–54]. Therefore, MS research was primarily 

based on IFN-γ-producing T cells because myelin-specific CD4+ Th1 cells were sufficient to induce 

EAE in mice. Several studies have demonstrated that altering IFN-γ production in the myelin-specific 

T cells prior to their transfer into recipient mice could decrease the encephalitogenic capacity of these 

CD4+ Th1 cells [52,55,56].  

The essential role of IFN-γ in autoimmune encephalomyelitis was further assessed. It was shown 

that IFNγ-deficient mice were susceptible to EAE, and the disease appeared to be more severe in these 

mice as compared to control mice [57–59]. This result was further confirmed by using antibodies to 

neutralize IFN-γ [58,60]. In addition, the number of myelin-specific CD4+ T cells was shown to be 

increased in IFN-γ-deficient mice [61]. These results suggest that CD4+ Th1 cells can also induce EAE 

via a mechanism that is independent of IFN-γ. Thus, other cytokines may influence the pathogenic 

capacity of T cells.  

Therefore, the focus of EAE research was shifted to investigations of the role of IL-12 in EAE 

because it is essential for the differentiation of Th1 cells. The p40 and p35 proteins, which together 

comprise IL-12, were deleted in mice, and EAE was then evaluated. It was shown that  

IL-12p40-deficient mice failed to develop EAE; however, EAE was induced in IL-12p35-deficient 

mice [62,63]. Because IL-12p40 is also a component of IL-23, the role of IL-23 was also evaluated in 

EAE mice. Because IL-23 also includes the p19 protein, the role of this protein in EAE pathogenesis 

was also evaluated in EAE mice. Interestingly, IL-12p40- and IL-12p19-deficient mice were resistant to  

EAE [64]. Accordingly, this result demonstrates that IL-23 and not IL-12 is crucial for the induction of 

EAE. In addition, IL-23 was found to promote the expansion of myelin-specific IL-17+ T cells, and these 

IL-17+ T cells were found to induce EAE [65]. Moreover, these Th17 cells produce IL-17, IL-21, IL-9, 

IL-22 and TNF-α and promote inflammation in EAE [53,65–67]. These findings led to the speculation 

that myelin-specific Th17 cells were the primary encephalitogenic T cell population in EAE and, 

possibly, in MS.  

Several studies further confirmed the substantial role of Th17 cells in mediating neuronal 

immunopathogenesis in MS patients and in EAE mice. It has been reported that the number of Th17 

cells increases in both the peripheral blood and the brain of MS patients [68,69]. In addition, it was 

shown that the brain endothelium of MS patients expresses high levels of the IL-17 receptor, and its 

ligand, IL-17, increases the permeability of the BBB to inflammatory cells [70]. Moreover, recent 

studies on EAE suggest that the initial inflammatory event in the CNS involves the migration of Th17 
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cells from the peripheral blood to the spinal fluid [71]. Subsequently, Th17 cells activate the BBB and 

allow the entry of Th1 cells into the CNS. The blockade of IL-17 was shown to reduce disease severity 

in EAE [72,73]. In addition, it was demonstrated that the disease severity of EAE was markedly 

reduced in IL-17-defective mice [74,75]. Moreover, it was reported that Th17 may induce EAE in 

mice via IL-9 because it was found that the neutralization of IL-9 can attenuate EAE [76]. 

Furthermore, the Th17 cells that induce EAE in mice were also found to be dependent on IL-1 because 

IL-1R-defective mice exhibited impaired Th17 cell activity and were also resistant to EAE  

induction [77].  

Collectively, these studies demonstrated the significant roles of both Th1 and Th17 responses in 

mediating the immunopathogenesis of MS and its animal model, EAE. Therefore, Th1 and Th17 cells 

could be potential targets for the development of therapies for MS that modulate the immunopathogenic 

process to induce neuron regeneration. 

2.1.2. T Helper 9 (Th9) Cells 

TGF-β and IL-4 induce the development of T helper 9 cells, which produce IL-10 and IL-9 [78,79]. 

Although Th9 cells produce IL-10, they do not perform immunosuppressive functions. Th9 cells are 

different from Th1, Th17, and Foxp3-inducible Treg cells [78]. Recently, it was reported that IL-9 

contributes to the induction of allergy and asthma [80]. In addition, it was shown that T helper 9 cells can 

also induce colitis and peripheral neuritis [6]. Moreover, MOG-specific Th9 cells were also shown to 

induce EAE and peripheral neuritis. Furthermore, IL-9, which is produced by the MOG-specific Th9 

cells, can also activate mast cells, which induce demyelination [41].  

2.1.3. γδ T Cells 

γδ T cells provide the first line of defense against infection at mucosal sites. γδ T cells directly 

recognize ligands induced by stress, inflammation or infection. γδ T cells are also involved in both 

innate and adaptive immunity, and they play a role in both MS and EAE. The detection of γδ T cells in 

acute MS brain lesions has confirmed their potential role in the neuroimmunopathogenic process in 

MS [81]. This was further confirmed by the finding of these cells in the cerebrospinal fluid of MS 

patients [82]. Recently, IL-17 was shown to be produced by γδ T cells during infection [83,84]. In 

addition, these IL-17-producing γδ T cells were also reported to be present at high frequency in the 

brains of mice with EAE, and these cells increased the susceptibility of mice to EAE [85]. Thus, these 

studies confirmed the pathogenic role of γδ T cells in EAE. However, these cells exhibited both 

protective and pathogenic roles in the EAE model [86–93]. These conflicting results were attributed to 

the use of different mouse strains and the methods used to deplete γδ T cells. 

2.1.4. Regulatory T Cells (Tregs) 

Regulatory T cells (Tregs) include natural and inducible Treg cells. Natural Tregs (nTregs) are 

CD4+CD25+ T cells, which develop in the thymus and then migrate to the periphery to perform their 

key role in immune homeostasis [94–96]. Adaptive Tregs, including Tr1, Th3 and various subsets of 
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CD8+ Tregs (as discussed below), are derived in the periphery from naive T cells stimulated by antigen 

under the influence of the immunosuppressive cytokines IL-10 and TGF-β [97].  

Various types of Treg cells were shown to play crucial roles in the regulation of autoimmune 

inflammation in MS patients and in EAE mice. It was reported that Tr1 responses and the frequency of 

nTreg cells are reduced in MS patients [98–101]. In mice, Tregs can control the development and 

severity of EAE. In addition, it was reported that transgenic mice expressing a T cell receptor specific 

for myelin antigen develop EAE, whereas non-transgenic CD4+ T cells prevented EAE, suggesting a 

suppressive role for CD4+ Treg cells [102,103]. Moreover, the transfer of CD4+CD25+ T cells into 

EAE mice can reduce the severity of the disease [104].  

2.1.5. CD8+ T Cells  

Several studies demonstrated that CD8+ T cells have a crucial role in the pathogenesis of MS  

and EAE. CD8+ T cells were found in significant numbers in MS patients, as well as in EAE  

mice [41,105,106]. In addition, these cells contribute to tissue damage by attacking oligodendrocytes 

and by transecting axons [42,43]. However, a regulatory role for CD8+ T cells was also demonstrated 

in EAE mice. It was demonstrated that EAE is more severe in mice deficient in CD8+ T cells [106], 

and distinct subpopulations of CD8+ Treg cells, including CD8+ CD28- and CD8+ CD122+ Treg cells, 

which can regulate EAE, were also identified [107,108].  

Recently, CD8+CD28− regulatory T cells have been characterized in humans. It has been shown for 

the first time that there is a population of CD8+CD28− suppressor T cells that can suppress the 

alloreactivity of T helper cells [109–113]. The role of CD8+CD28− regulatory T cells in a chronic 

model of EAE was also investigated, and it was shown that CD8+ T cells lacking CD28 expression are 

responsible for the regulatory functions of CD8+ T cells in EAE mice. These regulatory T cells  

can inhibit the activation of APCs and thus inhibit the activation of the encephalitogenic CD4+ Th1  

cells [107].  

The role of CD8+CD122+ regulatory T cells in EAE was also established. CD8+CD122+ regulatory 

T cells, which produce IL-10, can directly control CD8+ cells by suppressing CD8+ T cell production 

of IFN-γ, as well as by inhibiting the proliferation of CD8+ T cells [114,115]. It was demonstrated that 

the depletion of CD122+ cells can increase the duration of EAE symptoms in affected mice, while the 

transfer of CD8+CD122+ regulatory T cells into EAE mice can dramatically diminish the symptoms in 

EAE mice, thus demonstrating the protective role of CD8+CD122+ T cells in EAE [108]. In addition, 

in β2 microglobulin−/− mice, where CD8+ T cells do not develop due to MHC I deficiency, a regulatory 

role for CD8+ T cells was demonstrated in EAE [116]. Moreover, CD8+ T cells isolated from  

EAE-recovered mice specifically inhibit MBP-activated CD4+ T-cells in vitro, and their depletion was 

also followed by recurrence of EAE. The suppressive function of these CD8+ T cells is restricted by 

the MHC I-like Qa-1 molecule (murine homologue of the human HLA-E), and the adoptive transfer of 

these cells prevented disease in MBP-immunized mice [117–119]. The failure of resistance to EAE in 

Qa-1-deficient mice is associated with the escape of Qa-1-deficient CD4+ cells from CD8+ T-cell 

suppression [120]. The suppressive role of CD8 T cells was further confirmed. It was shown that CD8+ 

Tregs, which express latency-associated peptide (LAP), can suppress myelin oligodendrocyte 

glycoprotein-specific immune responses in EAE via a mechanism that requires both IFN-γ and  
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TGF-β [121]. These results provide evidence that CD8+ T cells are important in both inducing 

resistance to EAE and in abrogating recurrent relapsing episodes of pathogenic autoimmunity in vivo.  

These studies demonstrated the essential roles that T cells may play in the immunopathogenesis of 

MS and its animal model, EAE. Therefore, T cells, including Th1, Th17, Th9, γδ T, CD4 regulatory T 

cells, CD8 T cells and CD8 regulatory T cells, are potential targets for the development of therapeutic 

strategies that aim to control T cell mediation of autoimmune processes in the EAE mouse model. Such 

therapeutic can be further developed into effective treatments for MS. However, recent studies revealed 

that MS is not only a T cell disease, as B cells were shown to significantly contribute to the disease. An 

increasing number of reports have demonstrated that B lymphocytes have an important role in the 

pathogenesis of MS. This includes the presence of B cells, plasma cells, autoantibodies and complement 

deposition in the blood, CSF and in CNS lesions in the majority of MS patients [122,123]. Most 

importantly, these autoantibodies contributed to the demyelination process [124–127], and they were 

reactive against myelin proteins and neurons [128,129]. In addition, a complement-mediated lysis of B 

cells effectively reduced MS disease activity, thus further confirming the pathogenic role of B cells in 

MS [130].  

In addition, B cells function as APCs by presenting antigen to helper T cells. It was shown that B cells 

act as APCs in the periphery in MS patients [131]. Therefore, B cells may support the response of  

T helper cells in the periphery by activating naïve autoreactive cells and subsequently allowing them to 

enter the CNS. Thus, B cells may also have a regulatory function through direct contact with T cells. The 

costimulatory pathway, including CD154-CD40 and CD28-B7, is essential to inhibit the proliferation of 

T cells through the release of cytokines, such as IL-10 and TGF-β. It was reported that IL-10-producing 

B cells are deficient in MS patients [132]. Therefore, B cells can be one of the potential targets in MS 

research for the development of an effective therapy. Simply stated, we can inhibit the functions of naïve 

T cells via a mechanism that is dependent on the control of B cell functions.  

Dendritic cells, which are a group of professional APCs, modulate adaptive immune responses [133]. 

Generally, inflammatory conditions induce the maturation of dendritic cells, which then induce T cell 

polarization [134]. Human immature dendritic cells can induce IL-10-producing Tregs and can also 

induce T-cell anergy [135]. Additionally, regulatory dendritic cells, which have a phenotype different 

from that of immature DCs, can promote peripheral tolerance and regulatory T cell development [135]. 

In MS, dendritic cells are among the cells that can infiltrate the CNS [136]. In addition, in SPMS, 

patients have high numbers of circulating mature dendritic cells compared with RRMS patients [137]. 

Therefore, dendritic cells are another potential therapeutic target for MS research with regard to the 

regulation of their functions, which will result in the modulation of the functions of autoreactive T cells, 

thereby improving or curing the disease. 

Macrophages are also important in MS pathogenesis. Perivascular CNS macrophages can be activated 

by T helper 1 cytokines in MS lesions [138]. Macrophage activation can be either proinflammatory or 

anti-inflammatory, depending on the cytokine exposure. Macrophages exposed to IFN-γ are classified as 

proinflammatory M1 macrophages and are likely to contribute to myelin damage by phagocytosis and 

the release of neurotoxic mediators. Myelin- and neuroantigen-containing APCs were described in the 

cervical lymph nodes of healthy individuals, and these CNS antigen-containing APCs are increased in 

MS patients. These data suggest that myelin and neuronal antigens released from damaged CNS tissue 

may be captured by the CNS APCs and migrate into the cervical lymph nodes. Interestingly, neuronal 
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antigens are presented by proinflammatory APCs, whereas myelin antigens are presented by  

anti-inflammatory APCs. Thus, pathogenic and regulatory CNS-specific T cells may be differentiated in 

the cervical lymph nodes [139]. These data provide another therapeutic pathway that can be pursued in 

the development of MS treatment. The modulation of macrophage functions would aid in regulating the 

autoimmune response of T cells, which would offer direct or indirect suppressive mechanisms by which 

to control the autoimmune responses and neuronal damage in MS patients. 

Clearly, B cells, dendritic cells and macrophages can all contribute to the pathogenesis of MS; 

therefore, they are potential targets that should be pursued to develop effective therapies for MS. 

However, there is limited information regarding the modulating effects of MSCs on the functions of B 

cells, dendritic cells and macrophages in EAE. Therefore, our focus in this review will be on the 

effectiveness of MSCs in attenuating the encephalitogenic manifestation of EAE by suppressing the 

functions of the autoreactive T cells that mediate neuronal inflammation and damage.  

3. Mesenchymal Stem Cells (MSCs) 

Stem cells are specialized cells that are capable of self-renewal and multilineage differentiation. 

They fall into the two broad categories of embryonic stem cells (ESCs) and adult stem cells (ASCs). 

ESCs are pluripotent and differentiate into cell derivatives of the three germ layers: endoderm, 

ectoderm and mesoderm. ESCs are derived from the inner cell mass of the blastocyst; therefore, their 

use in cell-based therapy is controversial because of blastocyst destruction [140–143]. In contrast, the 

use of ASCs in cell-based therapy is less controversial because they are obtainable from a wide range 

of tissues, such as bone marrow, adipose tissue, placenta and umbilical cord. One important subset of 

ASCs is MSCs, which are multipotent cells that differentiate into mesenchymal cell lineages,  

including adipocytes, osteocytes, chondrocytes and myocytes [144,145]. However, MSCs can 

“transdifferentiate” and thereby cross lineage barriers, differentiating into different cell types, such as 

neurons (see below).  

Mesenchymal stem cells have immunosuppressive properties that make them a therapeutic option 

that can be used to modulate the immunopathogenesis of multiple sclerosis and its animal model, EAE. 

Therefore, the effectiveness of MSCs in attenuating the encephalitogenic manifestation of EAE by 

suppressing the functions of the autoreactive T cells that mediate neuronal inflammation and damage 

has been examined.  

Immunosuppressive Characteristics of Mesenchymal Stem Cells 

Several studies have confirmed the immunosuppressive characteristics of MSCs. It was found that 

MSCs express MHC-I but lack the expression of MHC-II and costimulatory molecules [146–161]. In 

addition, MSCs suppress the immune responses of allogeneic lymphocytes [162,163]. In a mixed 

lymphocyte reaction, baboon or human bone marrow derived MSCs (BMMSCs) can inhibit the 

proliferation of allogeneic lymphocytes (Figure 2) [162,163]. In addition, human BMMSCs can also 

suppress the proliferative functions of T cells stimulated by antibodies to CD3 or CD28 [164]. 

Moreover, murine and human BMMSCs can inhibit the proliferation of lymphocytes stimulated with 

anti-CD3, IL2, IL7 or IL15 in vitro [165,166]. This inhibitory effect was shown to be partially 

mediated by IFN-γ [166]. Similarly, human placental MSCs and amniotic membrane MSCs can 
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suppress the proliferation of allogeneic lymphocytes [146,148,149,167–170]. Furthermore, fetal liver 

MSCs can inhibit mitogen-stimulated lymphocytes [171,172], and it was similarly demonstrated that 

adipose-derived MSCs can inhibit T cell proliferation [18]. Moreover, it was shown that dental pulp 

MSCs (DP-MSCs) can suppress the proliferation of peripheral blood mononuclear cells [161]. 

Collectively, these studies showed that MSCs derived from different sources are immunosuppressive 

through the inhibition of the proliferation of allogeneic lymphocytes. 

Figure 2. Immunomodulatory effects of MSCs on immune cells, including T cells, 

NK cells, B cells, monocytes and dendritic cells (DCs). MSCs can inhibit the proliferation 

and the cytotoxic functions of T and NK cells. MSCs can also modulate the functions of 

B cells. In addition, the differentiation of monocytes into immature DCs is inhibited by 

MSCs. Moreover, the maturation of DCs and their ability to activate T cells are also 

affected by MSCs. 

 

In addition, it was shown that MSCs can modulate the functions of both T and B lymphocytes. 

MSCs can inhibit the production of TNF-α and IFN-γ by CD4+ T and CD8+ T cells, whereas they can 

upregulate the expression of IL-10 and restore the secretion of IL-4 by CD4+ and CD8+ T cells [173] 

(Figure 2). In addition, fetal liver MSCs can down-regulate the production of IFN-γ and can increase 

the secretion of IL-10 in stimulated T cells [172]. Similarly, it was reported that MSCs derived from 

adipose tissues can enhance the secretion of IL-4, IL-5, and IL-10 by T cells [18]. In contact cultures, 

human MSCs were shown to suppress the ex vivo expansion of γδ T cells without modulating their 

cytotoxic function [174].  

In addition, BMMSCs were found to selectively suppress the proliferative activities of both T and B 

lymphocytes via a mechanism that is mediated by programmed death 1 inhibitory molecule (PD-1) and 

its ligands PD ligand-1 (PD-L1) and PD ligand-2 (PD-L2) [175,176]. Moreover, BMMSCs can 

suppress the immune function of B cells stimulated by anti-CD40 or IL-4 [177]. This inhibitory effect 

of BMMSCs on B cells was also confirmed in other studies. It was shown that human BMMSCs can 

suppress the proliferation, differentiation and chemotactic activities of B cells [178,179]. Similarly, 
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human placental MSCs can also suppress the immune responses of different populations of immune 

cells, including CD4+ and CD8+ T cells [148].  

CD8+ cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are effector cells with cytotoxic 

activities that can eliminate cancer or infected cells. CTLs are stimulated following their interaction 

with antigenic peptides expressed on MHC class I molecules. Human BMMSCs are recognized as 

targets by pre-stimulated alloreactive CTLs, and they can suppress the differentiation of CTL 

precursors into CTL effectors through the secretion of suppressive factors [180,181].  

NK cells that are constitutively cytotoxic against allogeneic cells cannot lyse MSCs [148,181]. 

However, NK cells that are stimulated with IL-2 can lyse MSCs [182,183]. In addition, NK cells 

stimulated with IL-2 and IL-15 can lyse MSCs [184]. Therefore, these data on the ability of NK cells 

to lyse MSCs are contradictory. In addition, a recent study showed that CD8+ T and NK cells can lyse 

allogeneic MSCs [185]. Therefore, more research is necessary to study the susceptibility of MSCs to 

lysis by immune cells because this knowledge is indispensable for the development of an effective and 

safe MSC therapy. However, it is possible that MSCs have a transient effect on the inflammatory 

milieu in graft versus host disease (GVHD) because it was shown that MSCs can have long-lasting 

effects by passing on some of their effects to other cell types, such as regulatory T-cells [186,187]. 

Thus, this result indicates that the long-term effectiveness of MSCs would not be diminished if MSCs 

are lysed soon after infusion. 

In addition, human BMMSCs can inhibit the proliferation of NK cells and the cytolytic activity of 

NK cells [188]. Moreover, Human BMMSCs can inhibit the production of IFN-γ by NK cells [188]. 

However, another study showed that human BMMSCs can significantly increase the secretion of IFN-γ 

by NK cells [183]. This inconsistency was attributed to the different effects that MSCs could have on 

NK cells. This possibility may depend on whether NK cells are triggered by IL-2 [183]. Another 

possibility is that the ratios of NK cells to MSCs used in different experimental settings may have 

differential activating or inhibitory effects on NK cells by MSCs. It is difficult to determine in vivo 

whether one or many NK cells interact simultaneously with an individual stem cell or vice versa.  

Regarding the mechanism underlying the immunosuppressive function of MSCs, several reports 

suggest that cell-cell contact is not a compulsory requirement for the suppression of immune cell 

functions by MSCs [189–191]. Therefore, MSCs must produce soluble factors that mediate their 

immunosuppressive functions on immune cells. Several soluble factors were detected in the culture 

medium of MSCs, including stem cell factor (SCF), IL-6, IL-8, IL-10, IL-12, IFN-γ,  

PGE2 (prostaglandin E2), vascular endothelial growth factor (VEGF), macrophage colony-stimulating 

factor (M-CSF), hepatocyte growth factor (HGF) and transforming growth factor -β1  

(TGF-β1) [146,161,188,192,193].  

The immunosuppressive capacity of MSCs in vivo was also confirmed in various studies [191]. It 

was reported that the intravenous injection of MSCs can prolong the survival of an allogeneic skin 

graft in baboons [162]. Likewise, the injection of murine BMMSCs into mice can stimulate the 

survival of allogeneic skin grafts in mice [194]. In addition, it was shown that MSCs were not rejected 

following their transplantation into allogeneic immunocompetent mice [190]. However, the subcutaneous 

injection of melanoma cells resulted in tumor growth in allogeneic recipients only when MSCs were 

co-injected [190]. Although the possible side effects of immunosuppression induced by MSCs need to 

be investigated in more detail, the effectiveness of MSCs for many therapeutic applications remains of 
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great interest. Recently, it was revealed that the injection of mouse MSCs prolonged the survival of 

skin transplants in mice [195]. In addition, the immunosuppressive effect of human MSCs on the 

severity of bleomycin-induced inflammation and fibrosis in an animal model was evaluated. The 

presence of transplanted MSCs reduced the neutrophil infiltration and significantly decreased the 

inflammation, as well as the severity of lung fibrosis, in mice treated with allogeneic or xenogeneic 

placenta-derived cells [196].  

The therapeutic efficacy of MSCs in the murine model of MS, EAE, was also reported (see below). 

In addition, the intravenous injection of baboons with autologous or allogeneic baboon MSCs together 

with hematopoietic progenitor cells facilitated a faster hematopoietic recovery [197]. This result was 

further confirmed by a recent study showing that allogeneic BMMSCs can reduce the severity of  

GVHD in an F1 model of acute GVHD [198]. 

Therefore, the immunosuppressive features of MSCs, together with their ability to differentiate into 

neuronal lineages, support the use of MSCs in EAE to modulate the immunopathogenic process 

underlying the neuronal damage, as well as to offer neuroprotection in EAE, to develop therapeutic 

strategies for MS. 

4. The Use of MSCs in Clinical Experimental Autoimmune Encephalomyelitis (EAE) 

4.1. Immune Modulatory Effect of MSCs in EAE 

Several studies showed that MSCs exert immunoinhibitory functions on immune cells in vitro and  

in vivo [191]. These characteristics, together with the ability of MSCs to differentiate into neuron-like  

cells [199] and migrate to the CNS [200], promoted the use of MSCs in EAE treatment. Several studies 

confirmed the differentiation of MSCs into neurons. Rat and human BMMSCs were shown to 

differentiate into neurons in vitro [201,202]. The differentiated cells expressed a variety of neuron-specific 

markers, including neuron-specific enolase, tau, neurofilament M, neuron-specific nuclear protein,  

β-III-tubulin, and synaptophysin [202,203]. Pioneering studies also demonstrated the differentiation of 

BMMSCs into neural cell types in vivo. The transplantation of MSCs into mouse ventricles or striatum 

resulted in their expression of astrocytic traits [199,204]. It was shown for the first time that after the 

injection of mouse BMMSCs into the lateral ventricle of neonatal mice, MSCs migrated throughout the 

forebrain and cerebellum and differentiated into astrocytes in the striatum, the hippocampus and the 

reticular formation of the brain stem [199]. In addition, MSCs were found within neuron-rich regions and 

within the cerebellum [199]. The differentiation of MSCs into neurons was further confirmed in a study 

of the differentiation of mouse BMMSCs into phenotypic neural cells in ischemic animals [205]. 

Similarly, human BMMSCs implanted into ischemic rats, increased neurogenesis in these rats [206]. In 

addition, it was shown that human BMMSCs can differentiate into neural cells following their 

implantation in the brain of ischemic rats [207]. Moreover, the differentiation of MSCs into neurons was 

also demonstrated in the embryonic rat brain [208], and the stereotactic implantation of mouse MSCs 

into the brain of rats demonstrated the differentiation of implanted MSCs into mature neurons [209]. 

Recently, the transplantation of human placental MSCs into the striatum in a rat model of Parkinson’s 

disease also confirmed the ability of MSCs to differentiate into neurons [210]. Collectively, these studies 

support the ability of MSCs to differentiate into neurons. 
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The ability of BMMSCs to modulate the immunopathogenic process, leading to neuroprotection  

in EAE, was also demonstrated in several studies. It was shown that BMMSCs can improve  

neuronal recovery in EAE, possibly by stimulating oligodendrogenesis and reducing the inflammatory  

infiltrates, demyelination and axonal loss in the CNS of EAE mice by inhibiting autoreactive T cell  

responses [20,28,211,212]. In addition, the accumulation of BMMSCs in the tissues of the CNS and 

lymphoid organs of EAE mice reduced the severity of the disease by modulating the functions of  

T cells, as demonstrated by the following: (1) decreased inflammatory cytokine (INF-γ and IL-17) 

secretion by Th1 and Th17 cells; (2) increased numbers of Th2 cells and regulatory T cells and their 

secretion of anti-inflammatory cytokines; (3) decreased numbers of Th1 and Th17 T cells; and 

(4) increased numbers of oligodendrocytes in the CNS tissues of EAE mice (Figure 3) [17,21,26,27,213].  

Figure 3. Mesenchymal stem cells can induce neuron recovery in multiple sclerosis via a 

mechanism that stimulates oligodendrogenesis and decreases the numbers of Th1 and Th17 

cells and their secretion of inflammatory cytokines while increasing the numbers of Th2 

and Treg cells and their secretion of anti-inflammatory cytokines. 

 

The neuroprotective effect of MSCs in EAE mice was further confirmed. It was shown that the 

administration of MSCs to EAE mice suppressed the clinicopathological manifestations of EAE and 

prevented axonal damage [23]. In this study, intraventricularly injected BMMSCs were detected in the 

inflamed CNS tissues of the EAE mice, and these MSCs exhibited features of neuronal lineages [23]. 

In addition, the intravenously injected MSCs migrated to the lymph nodes, which were associated with 

immunomodulatory effects, as demonstrated by the decrease in the immune cell infiltrate in the  

CNS [23]. Other studies confirmed the neuroprotective property of MSCs. The treatment of EAE mice 

with human endometrial MSCs significantly reduced EAE manifestations as a result of a reduction in 

Th1 and Th17 cell infiltrates in the CNS tissues of EAE mice [214]. This reduction in the target organ 

was probably a result of MSC-induced regulatory mechanisms in the periphery, as demonstrated by the 

up-regulation of IL-10, IL-27, immune suppressive enzyme, indoleamine-2,3-dioxygenase (IDO), and 

Foxp3 expression, thus indicating a higher percentage of putative Tregs [214]. In addition, BMMSCs 

that were transplanted intracerebroventricularly into EAE mice delayed the onset of symptoms and 

increased animal survival via mechanisms that possibly involved both immunomodulation and 

neuroprotection [215]. 
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Recently, it was shown that with the intravenous administration of adipose-derived MSCs to EAE 

mice before disease onset, MSCs homed into lymphoid organs and migrated inside the CNS. These 

MSCs reduced the severity of EAE by immune modulation and decreased spinal cord inflammation 

and demyelination [18]. In addition, the administration of these adipose-derived MSCs to animals with 

chronic EAE ameliorated the disease course and reduced both demyelination and axonal loss while 

inducing Th2-type cytokine production [18]. Moreover, the infiltration of these MSCs within 

demyelinated areas was accompanied by increased numbers of endogenous oligodendrocyte 

progenitors [18]. The potential neuroprotective role of MSCs in EAE mice was also further confirmed. 

It was shown that human BMMSCs can migrate into the spinal cord in mice with EAE and that this 

significantly reduced the clinical disease severity [216]. The injected MSCs accumulated in the 

demyelinated areas, and these cells expressed neural markers [216]. In addition, the number of spinal 

cord white matter lesions and areas of white matter demyelination were reduced and were associated 

with decreased inflammatory infiltration after treatment with MSCs [216]. A recent study further 

confirmed the modulatory effects of MSCs on the immunopathogenic process in EAE. The transplantation 

of human placental MSCs into EAE mice yielded a decrease in disease severity in the transplanted 

animals via a mechanism that depends on the anti-inflammatory protein TNF-α-stimulated gene/protein 

6 (TSG-6) [217]. 

These results demonstrate that MSCs have the therapeutic potential of suppressing the autoimmune 

response in early phases of disease and of inducing local neuroregeneration by endogenous progenitors 

in animals with established disease. In addition, MSCs were also shown to ameliorate the disease 

severity in EAE mice by the secretion of PGE2, which is dependent upon IDO for its 

immunosuppressive function [25]. The role of soluble factors in modulating the pathogenesis of EAE 

was confirmed in a recent study demonstrating that conditioned medium from human MSCs can reduce 

the functional deficits in EAE mice and can also promote the development of oligodendrocytes and 

neurons [218]. In agreement with this finding, it was found that human BMMSCs produce soluble 

factors that are important for mediating axon outgrowth and recovery in rats with injured spinal  

cords [219]. In addition, it was shown that BMMSCs can induce oligodendrocyte differentiation via 

factors produced by MSCs [220]. Moreover, when neural progenitor cells (NPCs), which were  

pre-differentiated in vitro by MSC-derived soluble factors, were transplanted in situ together with MSCs 

into hippocampal slice cultures, the grafted NPCs survived, and the majority of them differentiated into 

oligodendrocytes and neural progenitors [221]. Therefore, there is a general agreement regarding the 

effects of MSCs on improving the clinical manifestations of EAE in mice. However, the 

immunomodulatory properties of MSCs are not the only mechanisms that could explain their therapeutic 

plasticity. MSCs express a broad spectrum of regulatory proteins that may mediate their therapeutic 

functions. In addition, the ability of MSCs to respond to injuries depends on their microenvironment, 

regardless of whether they have a low engraftment rate in vivo [222]. MSCs produce cytokines and a 

variety of soluble factors that regulate several biological activities [191]. This suggests that MSCs can 

promote the survival of other cells and thus play a major role in the maintenance of tissue  

homeostasis [223]. 
  



Int. J. Mol. Sci. 2012, 13 9312 

 

4.2. Neuroprotective Properties of MSCs 

The ability of MSCs to home to injured tissues and to transdifferentiate into multiple cell types  

in vivo was disputed by recent observations demonstrating that only small numbers of the injected 

MSCs can engraft into tissues and that the supernatant of MSC culture is sufficient to block hepatic 

failure [224,225]. In addition, several in vitro studies demonstrated that MSCs exert significant 

biological effects on target cells without the need for cell contact. Therefore, these and other in vitro 

and in vivo studies generated the hypothesis that the therapeutic effects of MSCs depend significantly 

on soluble factors secreted by MSCs and that these factors may mediate the MSC induction of  

tissue repair.  

A number of in vitro studies showed that MSCs have the potential to rescue neurons from  

apoptosis [226–228]. Thus, this anti-apoptotic function of MSCs, together with their immunomodulatory 

properties, explain the reduction in axonal loss observed in EAE mice treated with MSCs [20,23,212]. 

In addition, MSCs secrete neurotrophic molecules, which would further explain how MSCs can induce 

remyelination in EAE mice [18,211,229]. 

The neuroprotective property of MSCs in EAE as discussed above was supported by several studies 

utilizing experimental models of stroke and spinal cord injury. For example, after the direct injection 

of BMMSCs into demyelinated spinal cords, they promoted remyelination [230]. In another study 

involving the transplantation of MSCs into the subarachnoid space of the lumbar spine, the MSCs 

infiltrated into the spinal cord parenchyma and then differentiated into immature neurons or glial cells. 

This was followed by complete transection and motor improvement [231]. In addition, BMMSCs were 

shown to improve the survival of motor neurons following their transplantation into the lumbar spinal 

cord in an animal model of human amyotrophic lateral sclerosis [232].  

In a model of stroke, the intravenous administration of MSCs increased the expression of basic 

fibroblast growth factor, reduced apoptosis, promoted endogenous neurogenesis, and improved 

functional recovery [233]. MSCs can directly promote the plasticity of damaged neurons or stimulate 

glial cells to secrete neurotrophins (e.g., brain-derived neurotrophic factor (bDNF) and nerve growth 

factor (NGF)), reduce apoptosis in the penumbral zone of the lesion and support the proliferation of 

the endogenous cells in the subventricular zone [234]. In addition, the implantation of BMMSCs in the 

hippocampus of immunodeficient mice stimulated the proliferation, migration and differentiation of 

the endogenous neural stem cells, which survived as differentiated neural cells via their secretion of 

various trophic factors, including NGF, vascular endothelial growth factor (VEGF), ciliary 

neurotrophic factor (CNTF), basic fibroblast growth factor (FGF-2) and BMI-1 [235].  

This indirect effect of MSCs on the improvement of neurogenesis was further supported in a mouse 

model of global ischemia, where MSCs improved neurological function and prevented neuronal cell 

death in the hippocampus via a mechanism that was mediated by the local microglia, which expressed 

high levels of neuroprotective factors, such as insulin-like growth factor 1 (IGF-1) [236]. This 

neuroprotective effect of MSCs on microglia was further confirmed. It was shown that MSCs can inhibit 

the production of inflammatory factors, including nitric oxide (NO), tumor necrosis factor, IL1-β and 

reactive oxygen species (ROS), by activated microglia, thus preventing neuronal damage via the 

production of neurotrophic factors, which are likely to be involved in neuroprotection [237]. In 

agreement with these results, it was reported that the cell death of dopaminergic neurons induced by 
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activated microglia can be inhibited by MSCs [220,238]. In addition to the neuroprotective effects of 

MSCs on activated microglia, MSCs can significantly inhibit the up-regulation of molecules involved 

in oxyradical detoxification occurring in EAE [239]. Similarly, MSCs can resolve the increase of 

oxidative stress-associated proteins in neurons exposed to H2O2 [239]. This result suggests that MSCs 

can inhibit the neuroinflammatory process that is mediated by proinflammatory and oxidative stress 

molecules secreted by macrophages and microglia. However, microglia are not the only neural cell 

type targeted by MSCs; it was shown that MSCs can also inhibit the differentiation of neural precursor 

cells (NPCs) into astrocytes in vitro [220,229].  

MSC transplantation represents an attractive therapeutic approach for MS treatment. However, 

many questions are essential to be answered before the use of MSCs in MS patients to determine their 

therapeutic potential. For example, it is essential to know the effect of ageing on MSC biology, since 

several studies indicate that ageing can affect the proliferation and differentiation capacities of MSCs. 

It has been shown that MSCs undergo replicative senescence, loss of differentiation capacity and 

ultimate growth arrest with increasing time in culture [240–250]. However, another study showed that 

aged MSCs have a higher proliferation rate than young MSCs [251] while another study did not find 

differences in the proliferation potential between aged and young MSCs [247]. These controversial 

results were attributed to species, gender and donor age of animals used in these studies and also to 

differences in the conditions of cell culture. However, these studies suggest that aging may change but 

not block the proliferation of MSCs. Regarding the differentiation potential of MSCs, the majority of 

studies reported an age-related reduction in the osteogenic potential [244,246,249–251]. In addition, 

this decrease in osteogenic capacity was associated with increased ability of aged MSCs to 

differentiate into adipocytes [244]. Since, these studies demonstrated that aging has an effect on the 

biological behaviours of MSCs following their long expansion time in culture; therefore this would not 

prevent their use in cell based therapies. More studies are necessary in order to determine the effects of 

aging on the immune- suppressive and neuroprotection functions of MSCs in vitro and in vivo before 

the use of MSCs in MS patients. It would be essential to compare the capacity of young versus aged 

MSCs in providing neuroprotection and neuroregeneration effects in EAE mice. 

5. Conclusions 

Evidence is increasing in support of the use of MSCs in treating neurological diseases, such as MS, 

via modulating the immunopathogenic process and promoting the repair of damaged neurons. In 

addition, the current data available in the literature suggest that the neurotherapeutic effect of MSCs is 

possibly mediated via a direct contact between MSCs and damaged neuronal cells or via soluble 

factors that are secreted by MSCs. MSCs secrete anti-inflammatory, anti-apoptotic and neurotrophic 

factors. These soluble factors can induce protective phenotypic features in other cells, such as 

microglia, and can also induce the remyelination process, thus maintaining the neuroprotective effects 

observed in experimental animal models of MS and other neurological disorder models. Therefore, 

these immunomodulatory and protective properties of MSCs may provide the basis to translate the 

neurotherapeutic effects of MSCs seen in animal models into humans in well-designed and carefully 

controlled clinical studies. 
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