
Research Article
A Data-Driven Hybrid Three-Stage Framework for Hospital Bed
Allocation: A Case Study in a Large Tertiary Hospital in China

Li Luo ,1 Jialing Li ,1 Xueru Xu ,1 Wenwu Shen ,2 and Lin Xiao 1

1Business School of Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, China
2West China Hospital of Sichuan University, No. 17 People’s South Road, Chengdu, China

Correspondence should be addressed to Xueru Xu; 18200291987@163.com and Wenwu Shen; wenwu_shen@163.com

Received 24 December 2018; Revised 6 March 2019; Accepted 2 April 2019; Published 2 May 2019

Guest Editor: Giedrius Vanagas

Copyright © 2019 Li Luo et al. 0is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Beds are key, scarce medical resources in hospitals. 0e bed occupancy rate (BOR) amongst different departments within large
tertiary hospitals is very imbalanced, a situation which has led to problems between the supply of and the demand for bed
resources. 0is study aims to balance the utilization of existing beds in a large tertiary hospital in China. We developed a data-
driven hybrid three-stage framework incorporating data analysis, simulation, and mixed integer programming to minimize the
gaps in BOR among different departments. 0e first stage is to calculate the length of stay (LOS) and BOR of each department and
identify the departments that need to be allocated beds. In the second stage, we used a fitted arrival distribution andmedian LOS as
the input to a generic simulationmodel. In the third stage, we built a mixed integer programmingmodel using the results obtained
in the first two stages to generate the optimal bed allocation strategy for different departments.0e value of the objective function,
Z, represents the severity of the imbalance in BOR. Our case study demonstrated the effectiveness of the proposed data-driven
hybrid three-stage framework. 0e results show that Z decreases from 0.7344 to 0.0409 after re-allocation, which means that the
internal imbalance has eased. Our framework provides hospital bed policy makers with a feasible solution for bed allocation.

1. Introduction

0e inherent difference between limited resources for
healthcare and steadily increasing demands occurs all over
the world and is particularly serious in developing countries.
According to a research report from the World Health
Organization (WHO) and World Bank Groups, at least 400
million people worldwide cannot receive one or more basic
health services [1].

0is differential is particularly apparent with respect to
bed resources. Although hospital bed numbers have in-
creased greatly in recent years, this increase cannot cope
with the growth rate of admission demand in China.
According to the report “Statistical Communique on the
Development of China’s Health and Family Planning Pro-
gram 2016” [2], the number of hospitalizations across the
nation’s medical and health institutions was 227.28 million
and the annual hospitalization rate was 16.5%. 0ere were
7.410 million beds in medical institutions across the country.

Amongst all of the medical institutions, China’s large ter-
tiary hospitals, classed as Class III according to the classi-
fication standards (Appendix), are facing the most serious
imbalance between admissions and bed resources (Table 1).
0e number of hospital beds and individuals hospitalized in
Class III hospitals increased to 2,213,718 and 76,860,000,
respectively. Bed occupancy rates (BORs) reached 98.8% in
2016.

We found that the imbalance between supply and de-
mand in large tertiary (Class III) hospitals is greater than
that in the other two classes of hospitals. Hospital managers
urgently need to find solutions to alleviate bed shortages.
Hospital administrators typically address this issue in two
ways: by improving utilization of existing beds or by
expanding capacity. 0e first involves the complex task of
strategically allocating the proper amount of beds for each
set of care types. A hospital that is unable to find an optimal
allocation may acquire additional beds. However, an ex-
pansion, which is desirable for one hospital, may not be
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advantageous from the perspective of the public planner [3]
and may even have some negative consequences, such as
doctor and nurse work overloads, decreases in medical care
quality, and aggravation of medical conflicts [4]. 0erefore,
from the perspective of the sustainability of medical re-
sources, the best option is to improve the utilization of bed
resources.

0e BOR of the Class III hospitals is usually as high as
98%. However, the utilization rate of beds in different de-
partments of a Class III hospital can be very different. West
China Hospital (WCH) is typical of such hospitals (see
Section 3.1 for more details). 0e availability of beds for
patient hospitalization services is excessive in some units and
scarce in others. 0is discrepancy between bed availability in
different departments leads to the overcrowding of some
departments and the idleness of other departments. 0is
internal imbalance has further worsened the shortage of
hospital resources.

A possible solution to this problem is to allocate the
number of beds among different departments in such a way
as to increase the utilization rate of beds and alleviate the
shortage of bed resources as much as possible. 0ere has
been considerable research into the allocation of bed re-
sources. 0e study of bed resource allocation can be divided
into two main approaches.

One approach is to assign the optimal number of beds in
a single department or care units, such as surgery units [5],
intensive care units [6, 7], and obstetrics departments [8].
For instance, Akkerman and Knip [5] planned the optimal
number of beds for cardiac surgery with the goal of reducing
patient waiting time. Oerlemans et al. [9] sent an online
questionnaire to all ICU physician members in 90 hospitals
of the Dutch Society for Intensive Care, the results of which
can be used to improve decision-making regarding alloca-
tion of ICU resources. Devapriya et al. [10] proposed the
strategic bed analysis model, which is a discrete-event
simulation model created after a thorough analysis of pa-
tient flow and data from Geisinger Health Systems (GHS).
Ridge et al. [11] investigated the problem of hospital bed
planning in the intensive care unit. Romanin-Jacur and
Facchin [12] studied the ward planning of the intensive
surgical department and the pediatric semiintensive care
unit.

Another approach to the problem focuses on the number
of hospital beds throughout the whole hospital. For example,
Akcali et al. [13] planned the best use of hospital beds in the
entire hospital with the goal of minimizing the total cost.
Utley et al. [14] determined the reasonable number of beds
for elective patients in the whole hospital in the case of a very
low rate of patient cancellation. However, there is little

research on the allocation of beds among different de-
partments or wards.

A range of operational research (OR) methods have been
developed and applied to problems of healthcare resource
allocation [15], especially bed resources. 0ese methods
include queuing theory [16, 17], simulation [18, 19], goal
programming [20, 21], and mathematical programming
[22–24]. Most of the current research uses a single method
for each study. However, the premise of queuing theory is
based on very strong assumptions, and it is difficult to apply.
Mathematical programming can flexibly add constraints and
change the objective function according to specific condi-
tions, and it is more popular. 0erefore, a hybrid of different
methods is more conducive to solving the problem. Simu-
lation and mathematical programming have become in-
creasingly popular approaches to allocate resources in health
care. Tontarski [25] utilized simulation-based optimization
and mathematical programming for solving complex nurse-
scheduling problems. Studies on the bed allocation problem
usingmathematical programming, especially combined with
simulation, are relatively few.

In short, research into bed allocation mostly focuses on
the study of the number of beds in a single department. 0e
problem of how to allocate beds in different departments has
not been fully studied. Furthermore, most of the current
research on bed allocation is based on a single method such
as queuing theory [26] or simulation [27]. 0ere are few
hybrid models which integrate data analysis, simulation, and
mathematical programming. We propose a solution to the
bed allocation problem at an operational level. We develop a
data-driven hybrid three-stage framework incorporating
data analysis, simulation, and mixed integer programming
(MIP) to determine the optimal bed allocation strategy. 0e
first stage is to select departments for allocation according to
the relationship between the number of beds and the BOR
and have this result approved by hospital management. In
the second stage, we used a simulation model to calculate the
BOR for different numbers of hospital beds. We thus derive
the functional relationship between the two variables. 0e
third stage is to find the best number of beds in five de-
partments using a MIP model. Our study aims to alleviate
shortage of beds by balancing the utilization of existing beds
without increasing the number of beds in a large hospital in
China. Overall, the contributions of this study are as follows:

(1) Our framework is data driven, making the allocation
strategy more rational. (i) Using real data from the
hospital, data analysis is used to determine the op-
timal department needs to allocate beds; (ii) the
simulation model is used to simulate the

Table 1: Hospital beds, hospitalization, and BOR of China’s large tertiary hospitals in 2015 and 2016.

Hospital level
Hospital beds Hospitalization BOR

2015 2016 2015 2016 2015 (%) 2016 (%)
Class III 2,047,819 2,213,718 68,290,000 76,860,000 98.80 98.80
Class II 2,196,748 2,302,887 71,210,000 75,700,000 84.10 84.20
Class I 481,876 517,837 9,650,000 10,390,000 58.80 58
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corresponding BOR under different bed allocation
scenarios.0e relationship between the hospital beds
and the BOR is derived from the data, thereby
providing data-driven personalized constraints for
each department.

(2) 0e objective function of the MIP model is tailored
to Chinese needs. Because the beds in large hospitals
in China have been overloaded, we are not blindly
reducing the BOR of beds but are keeping the
number of beds in a reasonable range.

(3) 0is paper provides a general framework for the
allocation of beds in the Chinese context. Different
hospitals can modify the objective function of the
model and appropriately add or reduce constraints
according to their needs. Our model provides a
reference for hospital management to effectively
manage hospital bed resources.

0e rest of the paper is organized as follows. In Section 2,
we briefly introduced the background of the case hospital
(WCH) and the process of the data-driven hybrid three-
stage framework. Taking WCH as a case study, we applied
the framework proposed in Section 2 to WCH, and these
analyses of the framework are shown in Section 3. In Section
4, we discuss the results of the paper. Finally, Section 5
concludes the paper and indicates some directions for future
research.

2. Materials and Methods

2.1. Study Hospital. From a macro perspective, the overall
BOR in China’s tertiary hospitals is very high. However, at
an individual level, the availability of hospital beds in dif-
ferent departments in individual hospitals is uneven. 0is
phenomenon exists in almost all of the tertiary hospitals in
China. It is particularly serious in WCH, a tertiary hospital
which is located in Chengdu, Sichuan province. In order to
rationally manage beds, the Admission Service Center
(ASC), a bed planning organization, was established in 2011.
It manages 2956 beds and 28 specialized care departments.
After our survey and data analysis (Figure 1), we found that
the allocation of beds among the 28 departments is not
balanced. For example, the BOR of W3 is as high as 122%,
while others, such as W12, are only 64.70%. 0e reason why
the BOR is over 100% is that the extra beds are involved in
the calculation process. When the number of inpatients
exceeds the number of fixed beds, the hospital will add
additional beds to meet the demand, and these beds are often
arranged in the corridor. 0is imbalance further leads to
inefficiency and waste of hospital bed space, which in turn
exacerbates the shortage of hospital beds.

We focus on balancing the BOR of departments by
redistributing beds to improve the utilization rate of resources.
0is study takes WCH as an example to provide a feasible
solution for the shortage of hospital beds in large hospitals.

2.2. Data Collection. 0is study used data from the Hospital
Information System of the ASC for the period from January

1 to December 31, 2013. It includes the time of each patient
admission and discharge, demographic information, and
department information and has a total of 243,685 admis-
sion registrations and 167,843 discharge records.

2.3.Methods. 0e aim of this research is to balance the BOR
of each department by allocating the hospital beds to de-
partments, using a fixed number of existing beds, and
keeping the bed utilization rate of each department at a
reasonable level. Hence, we proposed a data-driven hybrid
three-stage framework to solve this problem. 0e overall
approach is shown in Figure 2.

(1) Stage I (data preliminaries): we selected the key
departments by analyzing their current BOR and
number of beds.

(2) Stage II (construction of constraint conditions): Simio
software [28] was used to establish a simulation model
to obtain the different scenarios of the beds and cor-
responding BOR. We then determined the relationship
between the BOR and the number of beds through data
fitting, which is one of the constraints of the Stage III.

(3) Stage III (construction of model): we established a
MIP model to minimize the gap in BOR among
different departments. We applied the genetic al-
gorithm (GA) to solve this model, since GA is one of
the best tools for satisfactory solution with advan-
tages like good convergence, low computational
complexity, high robustness, and so forth [29].

2.3.1. Stage I: Data Preliminaries

(1) Calculation of Length of Hospital Stay. Length of hospital
stay (LOS) indicates the number of days the patient spent in
a hospital bed. Wemade the assumption that the LOS can be
considered as a constant [30]. We have got 243,685 ad-
mission records and 167,843 discharge records form ASC.
0e LOS is calculated as the discharge date for each patient
minus the date of admission registration in the ASC. 0e
sum of the days of all hospitalized patients is an important
parameter for calculating the BOR. 0is paper uses the data
from 2013 1/1 to 2013/12/31. We divided the patients into
three types by the discharge date as follows and calculated
the LOS in 2013 for each group.

(i) Type I: patients discharged during 2013. 0ose
patients registered in the ASC during or before 2013.
0eir actual LOS during the 2013 is called LOS1. For
example, the actual LOS of the patient who regis-
tered before 2013 is discharge date minus January 1,
2013.

(ii) Type II: those patients who left the hospital in 2014,
who registered before 2013 or during 2013. 0eir
LOS equals to December 1, 2013, minus registered
date or December 31, 2013, minus January 1, 2013,
which is named LOS2.

(iii) Type III: because some discharge data are missing,
there are patients who are recorded as having been
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discharged from hospital in 2013 but had no ad-
mission records. 0ese patients cannot be ignored.
Hence, the number of Type III patients is the total
number of discharged patients in one department
in 2013 minus the number of Type I. We cannot
directly calculate the LOS of Type III patients, so in
this study, we used the median of the LOS of Type I
patients as the value for the LOS of Type III pa-
tients, which we called LOS3.

(2)/e Calculation of BOR. We calculated each department’s
BOR according to the following formulas:

all patients’ LOS � LOS1 + LOS2 + LOS3, (1)

BOR �
all patients’ LOS

LOS that all beds can provide
. (2)

2.3.2. Stage II: Construction of Constraint Conditions.
0e Simio software was used to build simulation models
using data from different departments. Changes in the
number of beds, the number of hospitalized patients, and the
LOS of patients with different bed numbers were simulated
and used to calculate different BOR indexes.0e relationship
between hospital bed numbers and BOR was an important

constraint condition in building the mixed integer pro-
gramming model in Stage III. It proceeds in three steps:

(1) We used the EASY-FIT [31], a professional data
fitting software, to fit the patient’s arrival distribution
and LOS distribution of each department

(2) 0e fitted arrival distribution and LOS distribution
were used as the input to the simulation model,
which identified the relationship between the
number of beds and the BOR

(3) We fitted the relationship between the number of
beds and the BOR via IBM SPSS Statistics V21 and
obtained their functional relationship

2.3.3. Stage III: Construction of the Model. In order to
thoroughly understand the hospital bed allocation problem,
it is necessary to describe the characteristics of the problem
in order to implement them in an appropriate mathematical
model. We define parameters and variables of the model:

(1) Parameters
Kij: the ward type j for department i. 0ere are

three inpatient ward types.

Ki1: the number of single-bed wards in department i.
Ki2: the number of double-bedwards in department i.

Data source
Department 

selecting
Data 

preprocessing

Data fitting ISimulationData fitting II

LOS
BOR

Five departments

Bed
BOR

Mixed integer programming model

Stage I

Stage II

Stage III
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Figure 2: Methodology: process of the data-driven hybrid three-stage framework.
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Figure 1: Hospital beds and BOR of 28 departments in West China Hospital.
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Ki3: the number of three-bed wards in department i

Li: lower bound of number of beds in department i.
Ui: upper bound of number of beds in department i.
Ct: the total number of beds of all the departments.
BORi(Ci): the BOR of department i, when the

number of beds of department i is Ci. 0e re-
lationship functions between BORi(Ci) and Ci of
department i can be obtained from the results of
Stage II. Here, we assume that the two variables are
quadratic functions.

(2) Variable
Ci: the number of beds of department i and

Ci � Ki1 + 2Ki2 + 3Ki3; Ci is a positive integer.
0ere are n departments in WCH, but i de-

partments (i ∈ 1, 2, . . . , n) need to be allocated beds.
Our main decision variable is Ci, which represents
the number of beds for department i. Our goal was to
balance the BOR of each department; hence, our
objective function is to minimize the total gap be-
tween BOR of each department and their average
BOR. We developed a MIP model as follows:

(3) Objective function

min(Z) � 􏽘
n

i�1
BORi Ci( 􏼁− 􏽘

n

i�1

BORi Ci( 􏼁

n
⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (3)

(4) Constraints

BORi Ci( 􏼁 � βi + aiCi + biCi
2
, i � 1, 2, . . . n, (4)

􏽘

n

i�1
Ci � Ct, i � 1, 2, . . . n, (5)

Li ≤Ci≤Ui, i � 1, 2, . . . , n, (6)

Ci � Ki1 + 2Ki2 + 3Ki3, i � 1, 2, . . . , n, (7)

Kij ≥ 2, i � 1, 2, . . . , n, j � 1, 2, 3. (8)

Because of the imbalance between different specialty care
departments, we aimed to balance the BOR of various de-
partments without adding extra beds. In objective function
(3), (􏽐

n
i�1BORi(Ci))/n is the average BOR of n departments

and Z is the sum of the gap between the BOR of the n

departments and the average of their BOR. 0e purpose of
function (3) is to minimize the total gap in BOR between
different departments and average BOR.

0e constraint described by function (4) means the
functional relationship between BOR and the number of
beds, which is calculated in Stage II. Here, we assume
that the two are quadratic functions: BORi(Ci) � βi+

aiCi + biCi
2, where βi is a constant and ai and bi are co-

efficients (for more details, see Section 3.2); function (5)
means that the total number of beds of the n departments is

constant. Function (6) ensures that there will be an upper
limit and a lower limit for the beds in each department.
Functions (7) and (8) impose restrictions on the ward type
and patient gender. Each ward has either one, two, or three
beds. 0e distinction between male and female wards, and
the number of ward types in each department should not be
less than two. For example, a single-bed ward has at least two
wards so that a male patient can live in one room and a
female patient can live in another single room.0e other two
ward types have the same conditions. Both male and female
patients can decide which type of ward to live in, ensuring
the fair treatment of patients.

3. Results

3.1. Stage I: Data Preliminaries. 0e LOS of 28 departments
can be calculated by function (1), and the BOR of the 28
departments can be calculated by function (2). Table 2 shows
the number of beds and BOR in 28 departments of the
current WCH. 0e BOR varies from 60.7% to 195% among
the 28 departments. Some literature indicates [32, 33] that
the optimal range for BOR is between 85% and 90%. Based
on this estimation, we divided these departments into three
groups:

(1) Group A: BOR is less than 85%. For example, W9
owns 236 beds, but its BOR is only 75.2%.

(2) Group B: BOR is greater than 90%. For example, the
BOR of W6 reaches as high as 102%, but it only has
72 beds.

(3) Group C: BOR is between 85% and 90%. 0eir bed
numbers and BOR are within the normal range,
compared to groups A and B.

It is clear that there are serious imbalances in BOR
between departments. To solve this problem, we interviewed
a hospital manager, three other managerial assistants, and
medical physicians of the ASC. We choose five departments
(W9, W10, W19, W6, and W27) from groups A and B to
solve the problem of bed allocation by applying the
framework mentioned in Section 2.3.

3.2. Stage II: Construction of Constraint Conditions. After
perprocessing the data and selecting the departments, we
fitted the distribution of the patient arrival rate and LOS of
the five departments using EASY-FIT, and the results are
shown in Table 3.

We obtained the distribution of arrival rates for all five
departments. 0e fitting of LOS is not ideal. Five de-
partments do not display any distribution. We took the
median of the LOS as their distribution. We used W9 as the
example from which we can build the simulation model.
Figure 3 describes the simulation model of W9 in Simio.

We set up a patient entity, called Patients, and a patient
source called Source1, in the Simio software. We let Source1
associate with Patients and set the arrival rate to obey the
Johnson distribution (0.025, 0.803, −8.16, 85.98).

We built a Server1 to represent beds. Its Service capacity
was set to the current number of beds (236), and service time
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was set to 10 days. We calculated the proportion of hospi-
talizations (43%) based on the number of hospital admis-
sions (12712) and discharges (5478).

0ere are two leaving routes in the simulation model,
namely, Sink1 and Sink2. Sink1 represents the event that a
patient leaves the hospital after being served by Server1. 0e
weight from Source1 to Server1 is 43%. Sink2 indicates that a
patient who was not admitted to the hospital left the hospital
directly through Sink2; the weight from Source1 to Sink2 is
57%.

In order to validate the model, we run the model for a
simulated year. 0e result was that the total number of
discharges was 5984, and the BOR was 69.5%. Compared
with real data, the difference is 9.2% and 7.5%, respectively.
0e error was acceptable. 0en, we set different parameters

for the Server1 and calculated the BOR for different
scenarios.

BecauseW9 belongs to group A, we needed to reduce the
number of beds and increase the BOR. We should therefore
reduce the number of beds in Server1. In Table 4, we list the
number of beds and the corresponding BOR situation for
W9. 0e results of the other four departments are presented
in Tables 5–8.

We used the number of beds as an independent variable
and the BOR as the dependent variable based on the results
in Table 4. 0e graph of BOR changing with the number of
beds is shown in Figure 4. It is difficult to intuitively obtain
the relationship equation between the two from the graph, so
we selected eight kinds of curve functions—linear, loga-
rithm, quadratic, composite, power, growth, exponential,

Table 3: Results of arrival rate distribution and LOS.

Departments Department type Arrival rate LOS
W6 B Johnson SB (0.289, 0.983, −3.34, 35.11) Median� 9
W9 A Johnson SB (0.025, 0.803, −8.16, 85.98) Median� 10
W10 A Uniform (−0.72, 43.75) Median� 12
W19 A Uniform (−3.2, 92.36) Median� 10
W27 B Uniform (−3.2, 92.36) Median� 5

Figure 3: Simulation model of the W9.

Table 2: Department information summary.

A

Department W7 W8 W9 W10 W12 W15 W16 W17 W19
Beds 72 84 236 168 48 60 86 156 54

BOR (%) 83.4 75.7 75.2 71.8 64.7 70 60.7 71.1 70
Department W24 W23 W25

Beds 162 153 114
BOR (%) 75.60 84.40 67.60

B

Department W1 W3 W4 W5 W6 W11 W13 W18 W21
Beds 72 108 84 108 72 72 170 172 72

BOR (%) 94.0 122 110 91 102 95.8 93.5 100 167
Department W26 W27 W26

Beds 91 114 91
BOR (%) 195 137 195

C
Department W1 W2 W20 W28

Beds 84 66 72 114
BOR (%) 89.6 87.7 90 88.1
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and logistic—with which we can attempt to fit their func-
tional relationships. We used the value of R2 to determine
which relationship function between bed and BOR of W9
had the best fit (Table 9). Since the R2 value of the quadratic
function was the best, at 0.977, we decided that the quadratic
function best describes the relationship between the bed
numbers and the BOR in W9. We can derive the functional

relationship between BOR1(C1) and the bed C1 from
Table 9; the equation is: BOR1(C1) � 0.721 + 0.004C1 −
0.0000195C2

1.
Similar to the analysis process of W9, we obtained the

quadratic functional relationships between the BOR and the
bed number of the other four departments (Tables 10–13).
Hence, the relationship function between beds and BOR of
department i is expressed as follows:

BORi Ci( 􏼁 � βi + aiCi + biCi
2
, (9)

where BORi(Ci) represents the bed occupancy rate of de-
partment i, Ci is the number of beds in department i, βi is a
constant, and ai and bi are coefficients. We have obtained
five equations, respectively, for five departments. 0ey are

Table 5: Beds and corresponding BOR of W10.

Beds Discharge BOR (%)
68 2011 97.2
78 2301 97
88 2585 96.6
98 2865 96.1
108 3145 95.7
113 3201 93.1
118 3216 89.6
128 3246 83.4
138 3276 78
148 3299 73.3
158 3306 68.8
168 3306 64.7
178 3306 61.1

Table 4: Beds and corresponding BOR of W9 in the simulation
model.

Beds Discharge BOR (%)
92 3266 97.3
110 3896 97
123 4351 96.9
135 4771 96.8
148 5226 96.7
160 5646 96.68
172 5926 94.4
180 5982 91.1
185 5984 88.6
198 5984 82.8
210 5984 78.1
223 5984 73.5
236∗ 5984 69.5
250 5984 65.6
∗0e current number of hospital beds of W9.

Table 6: Beds and corresponding BOR of W6.

Beds Discharge BOR (%)
57 2279 98.6
62 2474 98.4
72 2864 98.1
82 3254 97.8
95 3756 97.4
100 3931 96.9
105 4106 96.4
110 4281 96
115 4438 95.1
120 4516 92.8
125 4538 89.5
130 4538 86.1
140 4538 80

Table 7: Beds and corresponding BOR of W27.

Beds Discharge BOR (%)
114 8196 98.50
130 9332 98.30
145 10345 97.70
149 10482 96.37
152 10527 94.90
160 10640 91.10
168 10674 87
175 10681 83.60
182 10688 80.40
190 10696 77.10
205 10711 71.60
220 10726 66.80

Table 8: Beds and corresponding BOR of W19.

Beds Discharge BOR (%)
30 995 97.2
35 1153 97
36 1189 96.8
39 1225 93
38 1165 90.3
40 1258 92.2
45 1246 80.9
47 1230 77.4
50 1246 73.05
52 1252 70.6
54 1274 68.9

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

80 100 120 140 160 180 200 220 240 260

BOR

Figure 4: BOR curve for different numbers of beds. 0e abscissa is
the number of beds, and the ordinate is BOR.
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Table 11: Relationship between beds and BOR in W6.

Function
Model Parameters

R2 F df1 df2 Sig. Constant b1 b2 b3
Linear 0.664 21.741 1 11 0.001 1.118 −0.002
Logarithm 0.558 13.883 1 11 0.003 1.616 −0.147
Quadratic 0.956 107.465 2 10 0.000 0.687 0.008 −4.932E− 5
Composite 0.645 19.978 1 11 0.001 1.140 0.998
Power 0.539 12.849 1 11 0.004 1.966 −0.161
Growth 0.645 19.978 1 11 0.001 0.131 −0.002
Exponential 0.645 19.978 1 11 0.001 1.140 −0.002
Logistic 0.645 19.978 1 11 0.001 0.877 1.002
Note. 0e higher the R2, the better the function model. When the W6 model is fitted, it has the same outcome as W9.0e quadratic curve is also selected. 0e
bed number of W6 is C3, and the bed rate is BOR3 (C3). According to the estimated value of the parameter, BOR3(C3) � 0.687 + 0.008C3 − 0.000049323C2

3.

Table 12: Relationship between beds and BOR in W27.

Function
Model Parameters

R2 F df1 df2 Sig. Constant b1 b2 b3
Linear 0.932 137.447 1 10 0.000 1.446 −0.003
Logarithm 0.882 74.410 1 10 0.000 3.673 −0.550
Quadratic 0.967 131.496 2 9 0.000 0.901 0.003 −2.007E− 5
Composite 0.964 119.131 2 9 0.000 1.094 0.000 −2.585E− 6 −3.039E− 8
Power 0.924 121.995 1 10 0.000 1.720 0.996
Growth 0.866 64.725 1 10 0.000 24.281 −0.655
Exponential 0.924 121.995 1 10 0.000 0.542 −0.004
Logistic 0.924 121.995 1 10 0.000 1.720 −0.004
Note. 0e higher the R2, the better the function model. In the W27 model fitting, the fitting of the quadratic curve is the best, and the quadratic curve is
selected. 0e bed number of W27 is C4, and the bed utilization rate is BOR4 (C4). According to the estimated value of the parameter,
BOR4(C4) � 0.901 + 0.003C4 − 0.000020066C2

4.

Table 9: Relationship between bed numbers and BOR in W9.

Function
Model Parameters

R2 F df1 df2 Sig. Constant b1 b2 b3
Linear 0.836 61.326 1 12 0.000 1.253 −0.002
Logarithm 0.724 31.538 1 12 0.000 2.550 −0.328
Quadratic 0.977 230.860 2 11 0.000 0.721 0.004 0.0000195
Composite 0.820 54.831 1 12 0.000 1.367 0.997
Power 0.704 28.548 1 12 0.000 6.455 −0.392
Growth 0.820 54.831 1 12 0.000 0.313 −0.003
Exponential 0.820 54.831 1 12 0.000 1.367 −0.003
Logistic 0.820 54.831 1 12 0.000 0.732 1.003

Table 10: Relationship between bed numbers and BOR in W10.

Function
Model Parameters

R2 F df1 df2 Sig. Constant b1 b2 b3
Linear 0.919 125.130 1 11 0.000 1.298 −0.004
Logarithm 0.837 56.598 1 11 0.000 2.813 −0.413
Quadratic 0.973 181.654 2 10 0.000 0.895 0.003 −2.854E− 5
Composite 0.907 107.562 1 11 0.000 1.468 0.995
Power 0.817 49.021 1 11 0.000 9.578 −0.513
Growth 0.907 107.562 1 11 0.000 0.384 −0.005
Exponential 0.907 107.562 1 11 0.000 1.468 −0.005
Logistic 0.907 107.562 1 11 0.000 0.681 1.005
Note.0e higher the R2, the better the function model. In theW10model fitting, the fitting degree of the quadratic curve is the best, and the quadratic curve is
directly selected. 0e bed number of W10 is C2, and the bed utilization rate is BOR2 (C2). According to the estimated value of the parameter,
BOR2(C2) � 0.895 + 0.003C2 − 0.00002854C2

2.
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used as constraints for the mixed integer programming
model in Stage III.

3.3. Stage III: A Mixed Integer Programming Model. After
data analysis and simulation in the first two stages, we
obtained the parameter values in equations (3)–(8), in-
cluding the five selected departments and established the
quadratic function relationship between the bed numbers
and the BOR.We then applied these parameters to equations
(3)–(8) to solve the model. 0e specific MIP model is as
follows:

Objective function

min(Z) � 􏽘
5

i�1
BORi Ci( 􏼁− 􏽘

5

i�1

BORi Ci( 􏼁

5
⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (10)

Constraints

BOR1 C1( 􏼁 � 0.721 + 0.004C1 − 0.0000195C
2
1, (11)

BOR2 C2( 􏼁 � 0.895 + 0.003C2 − 0.00002854C
2
2, (12)

BOR3 C3( 􏼁 � 0.687 + 0.008C3 − 0.000049323C
2
3, (13)

BOR4 C4( 􏼁 � 0.901 + 0.003C4 − 0.000020066C
2
4, (14)

BOR5 C5( 􏼁 � 0.911 + 0.012C5 − 0.0003054C
2
5, (15)

􏽘

5

i�1
Ci � 644, (16)

92≤C1 ≤ 210, (17)

68≤C2 ≤ 138, (18)

57≤C3 ≤ 140, (19)

114≤C4 ≤ 182, (20)

30≤C5 ≤ 182, (21)

Ci � Ki1 + 2Ki2 + 3Ki3, i � 1, 2, 3, 4, 5, (22)

Kij ≥ 2, i � 1, 2, 3, 4, 5, j � 1, 2, 3. (23)

Constraints (11)–(15) are quadratic functions of the
number of beds and the BOR of the five departments. After
we obtain the number of beds in each department, we can
calculate their BOR by formulas (11)–(15). Constraint (16)
states the total number of beds in five departments. Con-
straints (17)–(21) limit the upper bound and lower bound on
bed numbers of each department. Constraints (22) and (23)
restrict the ward type and patient gender. 0ere are three
ward types for each department in WCH. So, the number of
beds in department i is the sum of the total number of beds
from those three types. In order to distinguish the male and
female wards, the number of each department type must be a
positive integer and should not be less than two.We used the
genetic algorithm [34] to solve the MIP model. 0e genetic
algorithm is run on a personal computer with an Intel®Core™ i7-7700 CPU, a 3.60GHz z Intel processor, and
8.0GB RAM. 0e elapsed time is 77.652611 seconds.

We analyzed the results from three aspects:

(1) Initial bed allocations and optimal bed allocations
based on our model: as shown in Figure 5, the blue
histograms represent the Initial bed allocation,
which is the current hospital bed number. 0e op-
timal bed allocations from ourmodel are represented
by the yellow histograms. Figure 5 shows the optimal
bed allocation strategy: the bed of the W9 reduces
from 236 to 166, W10 from 168 to 121, and W19
from 54 to 44; W6 increases from 72 to 135 andW27
from 114 to 178.

(2) Initial BOR and optimal BOR: Figure 6 shows the
corresponding BOR after optimization. 0e W9
increases from 69.5% to 84.76%, W10 from 64.7% to
84.01%, W19 from 68.9% to 84.78%; on the contrary,
W6 decreases from 98.1% to 86.81% and W27 from
98.5% to 83.48%. Blue lines represent the original

Table 13: Relationship between beds and BOR in W19.

Function
Model Parameters

R2 F df1 df2 Sig. Constant b1 b2 b3
Linear 0.947 159.652 1 9 0.000 1.450 −0.014
Logarithm 0.915 96.619 1 9 0.000 3.011 −0.579
Quadratic 0.966 114.721 2 8 0.000 0.911 0.012 −3.054E− 5
Composite 0.964 108.277 2 8 0.000 1.095 0.000 −5.576E− 5 −1.687E− 6
Power 0.944 151.827 1 9 0.000 1.736 0.983
Growth 0.908 88.465 1 9 0.000 11.291 −0.695
Exponential 0.944 151.827 1 9 0.000 0.552 −0.017
Logistic 0.944 151.827 1 9 0.000 1.736 −0.017
Note. 0e higher the R2, the better the function model. In the W19 model fitting, the fitting of the quadratic curve is the best, and the quadratic curve is
selected. 0e bed number of W19 is C5, and the bed utilization rate is BOR5 (C5). According to the estimated value of the parameter,
BOR5(C5) � 0.911 + 0.012C5 − 0.0003054C2

5.
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BOR, and yellow lines represent the optimal BOR.We
found that the maximum and minimum BORs are
98.1% and 64.7%. 0e maximum difference of BOR is
33.8% but change to 2.80% after optimization.

(3) Objective function value: our objective value, Z,
represents the imbalance degree of bed utilization
between various departments. For baseline bed al-
location, the initial value of the objective function Z
is as high as 0.7344. After optimization, the optimal
value of Z is 0.0409, indicating that our optimization
reduced the severity of the imbalance.

Finally, we can get a combination of beds in different
wards based on the number of optimal beds (Table 14). In
formula (22), Ci depends on the value of Kij, that is to say,
the combinations of Kij produce different Ci values. For
example, the optimal number of beds for W9 determined by
our model is 166 (C1 � 166); there are many combinations
for single-bed wards (K11), double-bed wards (K12), and
triple-bed wards (K13), such as (26, 40, 20), (22, 42, 20), and
(36, 20, 30). 0is means that W9 can provide 26 single-bed
wards, 40 double-bed wards, and 20 triple-bed wards; 22
single-bed wards, 42 double-bed wards, and 20 triple-bed
wards; or 36 single-bed wards, 20 double-bed wards, and 30
triple-bed wards; and so on.

4. Discussion

Many tertiary hospitals in China are facing the same
problem as WCH, with respect to the imbalance in the

utilization of bed resources in different departments. 0e
availability of beds for hospital care is excessive in some cases
and scarce in others. 0is phenomenon has caused many
problems for hospitals. For example, some hospital wards
are always overcrowded, while others are underloaded. Some
scheduled patient admissions are delayed or even transferred
to other hospitals, and some patients are hospitalized in
inappropriate wards which are unsuited to their pathologies,
with the risk of a lower quality care and a greater chance of
infection [35].

To relieve this imbalance, we propose a data-driven
hybrid three-stage framework combining multiple
methods to produce a feasible bed allocation strategy since it
is difficult to allocate beds among all 28 departments in the
whole WCH. We selected five departments (W9, W10, W6,
W27, and W19) through data analysis and survey interview.
W9, W10, and W19 are departments that have many beds
with a low BOR while W6 and W27 have few beds with high
BOR. For Stage II, we developed a generic discrete-event
simulation model. We fitted the relationship function be-
tween BOR and beds of each wards via the simulationmodel.
In Stage III, we developed a MIP model to minimize the
imbalance in BOR. 0e results of Stage II are incorporated
into the MIP model as one of the key constraints. We also
considered other constraints, such as ward types (single,
double, and three-bed wards) and upper and lower bounds
on the number of beds.

Our data-driven hybrid three-stage framework produces
a flexible allocation strategy for hospital bed management.
Our research helps to improve the utilization of medical
resources and the quality of medical services by balancing
bed numbers and BOR between different departments. Our
model may be applied in two ways. Firstly, it can be extended
to other wards with different arrival rates and LOS distri-
bution. Secondly, our study can provide a reference for
dealing with the problem of hospital bed capacity to other
large general hospitals in China. Our research provides a
common framework for hospital bed allocation, so other
departments or hospitals can follow our three-stages
framework to realize their allocation of beds. Because the
data of each hospital and the actual situation are different
from those of WCH, different constraints or objective
functions may be generated. For example, other hospitals
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Figure 5: Initial bed allocation strategy and optimal bed allocation
strategy.
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Figure 6: Results of initial BOR and optimal BOR.

Table 14: Optimal number of beds and different combinations of
departments.

Department Optimal
number of beds

Different feasible combinations of
Kij : (Ki1, Ki2, Ki3)

W9 166 (K11, K12, K13) : (26, 40, 20), (22,
42, 20), (36, 20, 30), . . .

W10 121 (K21, K22, K23) : (21, 20, 20), (21,
35, 10), (31, 30, 10), . . .

W6 135 (K31, K32, K33) : (35, 20, 20), (20,
40, 7), (25, 10, 30), . . .

W27 178 (K41, K42, K43) : (78, 20, 20), (10,
39, 30), (40, 39, 20), . . .

W19 44 (K51, K52, K53) : (14, 6, 6), (4, 5,
10), (19, 5, 5), . . .
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can use data analysis to screen the departments that need to
allocate beds; then, they can follow the method described in
Stage II to fit the functional relationship between BOR and
bed. Different hospitals may have different functional re-
lationships because of their different data. Finally, hospitals
can redesign the model with more personalized objective
functions and constraints according to their own actual
situation.

5. Conclusions

We focused upon the problem of allocating beds among
different departments in a hospital. We took a large public
hospital in China, WCH, as a case study. To relieve im-
balances in BOR between departments, we proposed a three-
stage framework. In the first stage, we collected data and
identified departments of interest. In the second stage, we
identified the functional relationship between the number of
beds and the BOR. 0e third-stage MIP model provides the
best number of bed allocations for different departments. It
has proven to be a feasible method to ease the shortage of
beds.

Our research is based on real data, and hospital man-
agers can draw upon the results of this study to solve the bed
occupancy and capacity problem. 0e three-stage frame-
work can help bedmanagers adjust the allocation of beds in a
timely and dynamic manner. 0is approach can be applied
to the majority of other hospitals and may serve as a starting
point for the development of allocation models for other
service industries with similar conditions, such as the al-
location of beds or room types in hotels.

Future study can consider the following two aspects:
since this is the initial stage of bed allocation, the strategy can
be extended to more departments. In addition, the practice
will be a good reference for other large general hospitals in
China. More factors may be considered for inclusion in the
MIP model such as other ward resources (nurses and
doctors), infectious patients, and the undesirability of
mixed-sex rooms.

Appendix

General hospitals have been divided into three levels in
China, according to the hospital’s functions, tasks, facilities,
technology, medical services, and scientific management.

Class I hospitals (the number of beds is 100 or fewer):
primary hospitals and health centers that provide pre-
vention, medical care, health care, and rehabilitation services
directly to communities in a specific population.

Class II hospitals (101 to 500 beds): regional hospitals
that provide comprehensive medical and health services to
multiple communities and undertake certain teaching and
research tasks.

Class III hospitals (also called tertiary hospitals; authors’
hospital; more than 501 beds): regional or higher hospitals
that provide high-level specialized medical and health ser-
vices and perform higher education and scientific research
tasks in several areas. Tertiary hospitals are further sub-
divided into three grades based upon the technical strength

of the hospital, management levels, equipment conditions,
scientific research capabilities, and more. 0e West China
Hospital is one of the highest-grade hospitals among the
tertiary hospitals.
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[13] E. Akcali, M. J. Côté, and C. Lin, “A network flow approach to
optimizing hospital bed capacity decisions,” Health Care
Management Science, vol. 9, no. 4, pp. 391–404, 2006.

[14] M. Utley, S. Gallivan, T. Treasure, and O. Valencia, “Ana-
lytical methods for calculating the capacity required to operate
an effective booked admissions policy for elective inpatient
services,” Health Care Management Science, vol. 6, no. 2,
pp. 97–104, 2003.

[15] C. Lakshmi and S. A. Iyer, “Application of queueing theory in
health care: a literature review,” Operations Research for
Health Care, vol. 2, no. 1-2, pp. 25–39, 2013.

[16] U. Uzunoglu Kocer and S. Ozkar, “M/C2/c/K queuing model
and optimization for a geriatric care center,” Applied Sto-
chastic Models in Business and Industry, vol. 31, no. 6,
pp. 892–911, 2015.

[17] S. Belciug and F. Gorunescu, “A hybrid genetic algorithm-
queuing multi-compartment model for optimizing inpatient
bed occupancy and associated costs,” Artificial Intelligence in
Medicine, vol. 68, pp. 59–69, 2016.

[18] T. P. Roh, T. R. Huschka, M. J. Brown, and Y. N. Marmor,
“Data-driven simulation use to determine bed resource re-
quirements for the redesign of pre- and post-operative care
areas,” in Proceedings of the Winter Simulation Conference,
vol. 1, pp. 1168–1176, Washington, DC, USA, 2014.

[19] E.W. Hans and A. G. Leeftink, “Integral planning of operating
rooms and wards: tactical allocation of beds to reduce fluc-
tuations in bed utilization for Medisch Spectrum Twente,” in
Enschede, F. C. Smit, Ed., pp. 1–114, General Books LLC,
Memphis, TN, USA, 2015.

[20] J. T. Blake and M. W. Carter, “A goal programming approach
to strategic resource allocation in acute care hospitals,” Eu-
ropean Journal of Operational Research, vol. 140, no. 3,
pp. 541–561, 2002.

[21] M. M. Hossein, K. Sajad, and T. Mahya, “Reallocation of shafa
hospital beds in kerman using goal programming model,”
Electronic Physician, vol. 8, no. 8, pp. 2733–2737, 2016.

[22] I. Marques, M. E. Captivo, and M. Vaz Pato, “An integer
programming approach to elective surgery scheduling,” OR
Spectrum, vol. 34, no. 2, pp. 407–427, 2012.

[23] S. Y. Shin, Y. Brun, H. Balasubramanian, P. L. Henneman, and
L. J. Osterweil, “Discrete-event simulation and integer linear
programming for constraint-aware resource scheduling,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 48, no. 9, pp. 1578–1593, 2018.

[24] R. B. Bachouch, A. Guinet, and S. Hajri-Gabouj, “An integer
linear model for hospital bed planning,” International Journal
of Production Economics, vol. 140, no. 2, pp. 833–843, 2012.

[25] C. Tontarski, “Modeling and analysis of OR nurse scheduling
using mathematical programming and simulation,” Disser-
tations & 0eses—Gradworks, 2015.

[26] E. P. C. Kao and G. G. Tung, “Bed allocation in a public health
care delivery system,” Management Science, vol. 27, no. 5,
pp. 507–520, 1981.

[27] M. B. Dumas, “Simulation modeling for hospital bed plan-
ning,” Simulation, vol. 43, no. 2, pp. 69–78, 1984.

[28] J. A. Joines and S. D. Roberts, SimulationModeling with Simio:
A Workbook, Simio LLC, Sewickley, PA, USA, 2013.

[29] Q. Xiao, L. Luo, S.-Z. Zhao, X.-B. Ran, and Y.-B. Feng,
“Online appointment scheduling for a nuclear medicine
department in a Chinese hospital,” Computational and
Mathematical Methods inMedicine, vol. 2018, no. 10, pp. 1–13,
2018.
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