
Heliyon 10 (2024) e33090

Available online 14 June 2024
2405-8440/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Review article 

Machine learning-based diagnosis and prognosis of IgAN: A 
systematic review and meta-analysis 

Kaiting Zhuang a, Wenjuan Wang b, Cheng Xu a, Xinru Guo b, Xuejing Ren c, 
Yanjun Liang a, Zhiyu Duan a, Yanqi Song a, Yifan Zhang a, Guangyan Cai a,* 

a Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical 
Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China 
b School of Medicine, Nankai University, Tianjin, 300071, China 
c Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Key Laboratory of Kidney Disease and Immunology, Academy 
of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450003, China   

A R T I C L E  I N F O   

Keywords: 
Machine learning (ML) 
Prognosis 
Diagnosis 
IgAN 
Meta-analysis 
Systematic review 

A B S T R A C T   

Purpose: Plenty of studies have explored the diagnosis and prognosis of IgA nephropathy (IgAN) 
based on machine learning (ML), but the accuracy lacks the support of evidence-based medical 
evidence. We aim at this problem to guide the precision treatment of IgAN. 
Methods: Embase, Pubmed, Cochrane Library, and Web of Science were searched systematically 
until February 24th, 2024, for publications on ML-based diagnosis and prognosis of IgAN. Sub-
group analysis or meta-regression was conducted according to modeling method, follow-up time, 
endpoint definition, and variable type. Further, the rank sum test was applied to compare the 
discrimination ability of prognosis. 
Results: A total of 47 studies involving 51,935 patients were eligible. Among the 38 diagnostic 
models, the pooled C-index was 0.902 (95 % CI: 0.878–0.926) in 27 diagnostic models. Of the 162 
prognostic models, the C-index for model discrimination of 144 prognostic models was 0.838 (95 
% CI: 0.827–0.850) in training. The overall discrimination ability of prognosis was as follows: 
COX regression > new ML models (e.g. ANN, DT, RF, SVM, XGBoost) > traditional ML models 
(logistic regression) > Naïve Bayesian network (P < 0.05). External validation of IIgAN-RPT in 19 
models showed a pooled C-index of 0.801 (95 % CI: 0.784–0.817). 
Conclusions: New ML models have shown application values that are as good as traditional ML 
models, both in diagnosis and prognosis. In addition, future models are desired to use a more 
sensitive prognostic endpoint (albuminuria), improve predictive ability in moderate progression 
risk, and ultimately translate into clinically applicable intelligent tools.   

1. Introduction 

Immunoglobulin A nephropathy (IgAN) is the most prevalent primary glomerulonephritis that coincides with the ‘multiple hits’ 
theory and is characterized by the presence of mesangial deposition of IgA [1]. A recent epidemiology study found a 50 % risk of 
end-stage renal disease (ESRD) in patients with IgAN within 5–10 years [2]. The renal pathological changes of IgAN may predate 
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functional decline. Therefore, early diagnosis and identification of the progression are essential for developing personalized treatment 
strategies, facilitating patient-informed clinical decision-making, and guiding the rational recruitment of clinical trial participants. 

Numerous researchers have attempted to apply machine learning (ML) to nephropathy, including diagnostic assistance, prognosis, 
alerting, and guiding treatment in recent years [3]. ML outperforms traditional statistical methods due to its robustness to data noise, 
ability to learn from multiple data modules, accuracy in identifying key variables, clarity in complex modeling relationships, and 
improved predictive performance [4]. Recently, Ramspek CL. et al. [5] have conducted a systematic review and meta-analysis of ML in 
identifying the kidney failure risk in patients with chronic kidney disease (CKD). Nonetheless, different etiologies of CKD may lead to 
significant heterogeneity in prediction. Therefore, as an important cause of CKD, it is necessary to comprehensively analyze the 
application of ML in IgAN. Unveiling the predictive performance of ML in IgAN can help guide personalized treatment, determine 
follow-up frequency, and minimize unnecessary use of immunosuppressants in low-risk patients. Accurate prediction tools are 
especially important for heterogeneous diseases like IgAN. 

Previous studies have demonstrated that ML has ideal application value in the diagnosis and prognosis of IgAN, and it can be used 
as an auxiliary tool for clinicians. As early as 1998, Geddes, CC. et al. [6] first found that artificial neural networks (ANN) outperformed 
experienced pathologists in predicting the occurrence of progressive IgAN. However, individual and geographic differences result in 
heterogeneity in the diagnosis and prediction of IgAN. The inherent complexity and specificity of ML also affect its accuracy in 
diagnosing IgAN. Therefore, more and better types of ML have been developed to make diagnoses using specific or easily accessible 
variables. The Oxford Classification of IgAN was separately modeled before it was included as the predictor of the ML model. In this 
case, the prediction model performed well [7]. In addition, crescent calculators were developed to identify the formation of active 
crescent [8]. The specific pathological details in IgAN such as immunocomplex deposition are also captured by ML [9]. In addition to 
diagnosis, ML has been applied for prognosis, complication prediction [10,11], even timing of drug intervention [12], and response to 
treatment [13]. Several studies have compared the predictive power of multiple model types [14]. IgAN prediction models have been 
developed in ML prognostic studies that combine genetic, proteomic, imaging, metabolic, and microbiome data and clinical and 
histopathological information, the widely excavated possibility of urine, serum, and fecal metabolites as modeling variables [15], and 
the hard endpoints to the composite outcome. Due to the dynamic nature of renal outcomes, prognostic prediction is as challenging as 
shooting at a moving target. To this end, efforts have been made to develop models to predict the time to ESRD [16–19]. Moreover, to 

Fig. 1. Flow chart of literature screening.  
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deal with the difficulty of limited long-term follow-up, long-term risk prediction models have also received attention [20,21]. 
After exploration for 20 years, nephrologists formally develop an adult International IgAN renal prognosis tool (IIgAN-RPT) in 2019 

[22]. The researchers also updated it over time [23] and drew samples from the pooled cohort used in IIgAN-RPT for internal vali-
dation [15,24]. Based on this model, a pediatric prognostic model was subsequently established [25]. Although adult IIgAN-RPT has 
been established [22], its regional applicability remains controversial, and imperfect risk-scoring systems force us to learn from 
previous models. Thus, this study performed the first comprehensive analysis of ML for the diagnosis and prognosis of IgAN, as well as 
the external validation of IIgAN-RPT. This will provide evidence-based medical support for the development of precision medicine. 

2. Materials and methods 

The present study was reported following the Preferred Reporting Guidelines of the Systematic Review (PRISMA 2020) (Table S1). 
The study protocol has been registered on PROSPERO, and the registration number is CRD42022343310. 

2.1. Search strategy 

Pubmed, Web of Science, Cochrane, and Embase databases were searched for relevant studies published before June 20, 2022. No 
restrictions were imposed on region or language. The search terms were designed according to a combination of medical subject 
headings (MeSH) and entry terms. Based on the two subject words, “ML” and “IgA nephropathy”, the search strings were adjusted for 
each database. The specific search strategy is displayed in Table S2. In addition, to reduce the risk of missing newly published 
literature, the search of each database was updated on February 24th, 2024. 

2.2. Literature screening 

The retrieved articles were imported into Endnote X9 for management. After duplicates were eliminated, the titles and abstracts 
were scanned to exclude irrelevant studies (Fig. 1). 

2.3. Eligibility criteria for meta-analysis 

The inclusion criteria were as follows:  

(1) The subjects of the diagnostic model were patients with fully recorded predictive variables, while the subjects of the prognostic 
model were patients with IgAN confirmed by renal biopsy.  

(2) RCTs, case-control studies, cohort studies, case-control studies, and case-cohort studies.  
(3) An ML model for the diagnosis of IgAN or IgAN renal progression (ESRD and its alternative endpoint) was completely 

constructed.  
(4) Research on different ML methods published based on the same data set.  
(5) Literature published in English. 

Meanwhile, the following studies were excluded:  

(1) Meta-analyses, reviews, guidelines, expert opinions, etc.  
(2) Only risk factor analysis was carried out, and no risk model was constructed.  
(3) ML model accuracy evaluation indicators (AUC, C-index, sensitivity, specificity, accuracy, recall rate, accuracy rate, confusion 

matrix, diagnostic 2 × 2 tables, F1 score, calibration curve) are missing.  
(4) Studies with few samples (<50 cases).  
(5) Studies that focused only on the validation of a clinical scale. 

2.4. Data extraction 

Before the meta-analysis, we extracted important statistics, including the total number of samples and the number of events in the 
training and validation sets, the C-index and their 95 % confidence intervals (95%CI) or standard errors (SE), sensitivity, specificity, 
accuracy, calibration slope, net reclassification index (NRI), and integrated discrimination improvement (IDI). Two researchers 
(Kaiting Zhuang and Wenjuan Wang) independently extracted the data and cross-checked their results. If there were any disagree-
ments, a third researcher (Cheng Xu) was invited to assist in the final decision. 

2.5. Risk of bias (quality) assessment 

The Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the risk of bias in the included studies. The 
PROBAST tool involves four domains, including participants, predictors, outcomes, and statistical analysis. The overall risk of bias was 
rated as low when all domains were considered low-risk; otherwise, the overall risk of bias was considered high. Two investigators 
(Yifan Zhang and Yanjun Liang) independently conducted the risk of bias assessment and cross-checked their results. Any 
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Table 1 
Variable distribution in diagnostic study.   
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Gao2011            ✓      ✓   
Ducher2013 ✓ ✓   ✓ ✓ ✓ ✓   ✓  ✓   ✓     
Takahashi2021                 ✓    
Pan2021                 ✓    
Park2021 ✓ ✓  ✓       ✓   ✓     ✓  
Hou2022 ✓       ✓ ✓ ✓ ✓    ✓ ✓     
Yang2022                 ✓    
Zhang, L2021                 ✓    
Zhang, D2022                  ✓   
Qin2023        ✓        ✓     
Fan2023                 ✓    
Mavrogeorgis2023                     
Fu2024                  ✓   

Note: UPCR = urinary protein to creatinine ratio, BMI = body mass index, eGFR = estimated glomerular filtration rate. 
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disagreements were resolved by discussing them with a third reviewer to reach a consensus (Yanqi Song). 

2.6. Data synthesis 

We calculated the effect sizes by combining the indicators (C-index, sensitivity, and specificity) for model evaluation of ML. If the C- 
index lacked a 95 % confidence interval (95 % CI) or standard error (SE) in the included studies, we estimated it according to the 
following formula proposed by Debray TP et al. [26]. 

SE(c) ≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

c(1 − c)
[

1 +
n∗(1− c)

2− c + m∗c
1+c

]

mn

√
√
√
√
√

n: number of observed events. m: total sample size. n∗ = m∗ = m+n
2 − 1. c: C-index. 

Given the differences in the variables included in ML models and the inconsistent parameters, a random-effects model was pref-
erable for our meta-analysis. Furthermore, subgroup analyses were performed according to model type, variable type (e.g., including 
drug use, crescent, pathologic information or not), endpoint definition, and follow-up time. Moreover, in terms of the strengths and 
weaknesses of model types, the Kruscal-Wallis H rank sum test was adopted to compare the C-index of all types of models. In terms of 
subgroups with more than 10 models, meta-regression analysis of follow-up time and C-index was performed. This meta-analysis was 
performed using R4.2.0 (R Development Core Team, Vienna, http://www.R-project.org). 

3. Results 

3.1. Literature screening 

A total of 1053 papers were searched. After excluding papers with irrelevant topics, 1 studies [27] with fewer than 50 cases, 6 [9, 
15,18,24,28,29] with insufficient statistics, and 5 [30–34] reported in Child were excluded according to a full-text review, the 
remaining 47 [7,14,20–23,35–75] studies were eligible for meta-analysis. Of the 47 eligible studies, 12 and 27 [7,14,20–23,44–63,74] 
studies constructed diagnostic and prognostic models, respectively. Additionally, one [70] study constructed models both in diagnosis 
and prognosis, and another 7 [64–69,75] studies conducted external validation of IIgAN-RPT. The meta-analysis of IgAN diagnosis, 
IgAN prognosis, and IIgAN-RPT validation involved 7270, 36659, and 8006 patients with 38, 162, and 19 models, respectively. The 
included studies in the meta-analysis of IgAN diagnosis, IgAN prognosis, and IIgAN-RPT validation were from 6, 20, and 5 countries 
and were mainly published between 2021 and 2024, 2018 to 2023, and 2020 to 2024, respectively. Notably, the prediction of crescent 
formation in IgAN has received increasing attention in the last two years. 

Table 2 
Basic information of included diagnostic study.  

Study Patient 
source 

IgAN 
No. 

Sum Study design Validation 
method 

Variable 
selection 

Modeling Model discrimination 

Gao, J.2011 China, USA 120 276 case control cross validation U + M SVM a, sen, spe 
Ducher, M.2013 France 44 149 retrospective 

cohort 
random split M The best: BN sen, spe, C-index 

Takahashi, K.2021 Japan 162 422 retrospective 
cohort 

random split N/A CNN sen, spe 

Sai Pan2021 China 655 1608 retrospective 
cohort 

random split M CNN a, r, p, F1 score, C- 
index 

Park, S.2021 Korea 201 497 prospective cohort bootstrap U + M LR C-index 
Hou, J.2022 China 212 730 case control random split U + M The best: 

ANN 
C-index, sen, spe 

Yang2022 China 51 258 retrospective 
cohort 

random split N/A CNN a, r, p, F1 score, AUC 

Zhang, L2021 China 198 623 cross-sectional random split M The best: RF sen, spe, AUC, a 
Zhang, D2022 China 33 53 case control random split M LR a, r, p, AUC 
Qin2023 China 54 120 prospective random split U + M Deep 

learning 
sen, spe, AUC, a 

Fan2023 China 186 370 retrospective 
cohort 

random split N/A Deep 
learning 

AUC, a, Yoden 

Mavrogeorgis2023 Germany 737 1850 retrospective 
cohort 

random split M SVM C-index, a 

Fu2024 China 78 314 cross-sectional random split N/A The best: RF ROC 

Note: U = univariable analysis, M = multivariable analysis, SVM=Support Vector Machine, BN=Bayesian Network, CNN=Convolutional Neural 
Network, LR = Logistic Regression, ANN= Artificial Neural Network, sen = sensitivity, spe = specificity, a = accuracy, r = recall, p = precision. 
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Table 3 
Basic information and methodology of included prognostic study.  

Study EPV Study 
Design 

Model 
presentation 

Risk 
stratification  

Data processing  Model evaluation 

Model missing 
value 

Shrinkage Variable 
screen 

Validation 
method 

Discrimination Calibration Reclassification 

Goto2008 11.33 prospective decision tree yes, 4 class The best: 
DT 

multiple 
impute 

N/A U + M CV, BT c N/A N/A 

Goto2009 31.50 prospective risk chart yes, 4 class COX N/A N/A M RS, BT c N/A N/A 
Xie2012 16.75 retrospective equation yes, 3 class COX N/A uniform U + M EV c, sen, spe N/A N/A 
Tanaka2013 31.60 retrospective risk chart no COX delete N/A U + M EV c Hosmer- 

Lemeshow test 
N/A 

Diciolla2015 40.17 prospective online 
calculator 

yes, 2 class The best: 
ANN 

delete uniform M CV, post 
pruning 

a, p, r, f N/A N/A 

Noh2015 17.89 retrospective N/A no The best: 
LR 

delete N/A M RS, BT, EV c, sen, spe N/A N/A 

Barbour2016 23.14 prospective N/A no COX delete N/A M BT c, IDI calibration plot NRI 
Liu2017 24.00 retrospective nomogram no COX N/A N/A U + M EV c calibration plot N/A 
Liu, L.2018 19.33 prospective nomogram yes, 2 class COX delete N/A U + M RS, BT c calibration plot N/A 
Liu, Y.2018 1.90 retrospective N/A no RF delete N/A U + M RS, out of 

bagging, BT 
c, f N/A N/A 

Xie2018 42.40 retrospective equation no COX N/A N/A U + M EV c N/A N/A 
Zhang2018 30.14 retrospective nomogram no COX N/A N/A U + M BT c, sen, spe N/A N/A 
Han2019 8.68 retrospective N/A no The best: 

RF 
delete N/A U + M CV a, sen, spe, c N/A N/A 

Barbour2019 50.36 prospective online 
calculator 

yes, 4 class COX delete N/A M EV c, IDI calibration plot NRI 

Chen2019 5.22 retrospective Risk chart yes, 4 class The best: 
XGB 

multiple 
impute 

lasso U + M EV c Hosmer- 
Lemeshow test. 

N/A 

Li2020 unclear prospective online 
calculator 

no XGB average 
impute 

lasso U + M EV c N/A N/A 

Yang2020 10.89 prospective N/A no COX delete N/A U + M EV c, IDI N/A NRI 
Schena2021 19.42 retrospective online 

calculator 
yes, 4 class ANN delete N/A U + M CV, RS, EV c, sen, spe May-Hosmer 

test 
N/A 

Zhai2021 9.20 retrospective nomogram yes, 2 class COX delete N/A U + M BT c, a calibration plot N/A 
Park2021 2.64 prospective N/A no COX N/A N/A U + M BT c N/A NRI 
Barbour2022 36.29 prospective online 

calculator 
yes, 4 class COX multiple 

impute 
N/A M RS, BT c, IDI ICI, calibration 

plot 
NRI 

Haaskjold2022 12.20 retrospective risk chart yes, 4 class COX N/A N/A U + M BT c calibration plot N/A 
Wen2022 13.44 retrospective N/A yes, 3 class COX delete N/A U + M Unclear c, IDI N/A NRI 
Xu2023 11.759 Prospective decision tree no The best: 

XGBoost 
multiple 
impute 

N/A M CV c, sen, spe, AUC calibration plot N/A 

Haaskjold2023 3.3623 retrospective decision tree no RF multiple 
impute 

N/A M N/A c N/A N/A 

Tian2023 19.962 cross- 
sectional 

N/A no cox N/A N/A U + M bootstrap a, AUC, p, r, F1 
score 

calibration plot N/A 

Kim2023 8.1824 retrospective N/A yes, 3 class RF multiple 
impute 

N/A M CV c, sen, spe, N/A N/A 

Schena2023 11.759 retrospective online 
calculator 

yes, 3 class RF N/A N/A M N/A sen, spe, N/A N/A 

Note: EPV = sample size/variable number, SVM = support vector machine, BN = bayesian network, CNN = convolutional neural network, LR = logistic regression, ANN = artificial neural network, COX 
= cox regression, XGB = eXtreme Gradient Boosting, RF = random forest, DT = decision trees, U = univariable analysis, M = multivariable analysis, sen = sensitivity, spe = specificity, c = C-index, a =
accuracy, r = recall, p = precision, f = f-measure, NRI = net reclassification index, IDI = integrated discriminant index, EV = external validation, CV = cross validation, BT = bootstrap, RS = random split. 
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Table 4 
Variable distribution in prognostic study.   
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Goto2008     ✓          ✓       ✓ ✓  ✓       
Goto2009 ✓ ✓   ✓          ✓      ✓ ✓ ✓  ✓       
Xie2012     ✓                ✓ ✓    ✓      
Tanaka2013                ✓     ✓ ✓          
Diciolla2015 ✓ ✓            ✓ ✓     ✓  ✓          
Noh2015 ✓ ✓         ✓  ✓   ✓  ✓   ✓     ✓      
Barbour2016     ✓          ✓      ✓ ✓          
Liu2017     ✓           ✓      ✓          
Liu, L2018               ✓    ✓  ✓ ✓          
Liu, Y2018 ✓ ✓            ✓ ✓     ✓  ✓     ✓     
Xie2018 ✓ ✓                   ✓ ✓    ✓      
Zhang2018      ✓     ✓     ✓    ✓  ✓    ✓      
Han2019 ✓ ✓   ✓ ✓ ✓ ✓      ✓ ✓    ✓ ✓ ✓ ✓ ✓  ✓       
Barbour2019 ✓ ✓ ✓ ✓ ✓  ✓ ✓       ✓      ✓ ✓          
Chen2019 ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  ✓  ✓ ✓ ✓ ✓ ✓  ✓       
Li2020 ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  ✓  ✓ ✓ ✓ ✓ ✓  ✓       
Yang2020 ✓ ✓ ✓ ✓ ✓  ✓ ✓       ✓      ✓ ✓      ✓  ✓  
Park2021 ✓ ✓   ✓  ✓ ✓       ✓      ✓   ✓      ✓  
Schena2021 ✓ ✓     ✓ ✓      ✓ ✓     ✓  ✓          
Zhai2021              ✓  ✓    ✓      ✓   ✓   
Barbour2022     ✓                ✓ ✓          
Haaskjold2022               ✓                 
Wen2022 ✓ ✓   ✓  ✓        ✓      ✓ ✓         ✓ 
Xu2023 ✓    ✓           ✓   ✓  ✓       ✓    
Haaskjold2023                ✓     ✓ ✓  ✓        
Tian2023              ✓  ✓      ✓          
Kim2023                ✓                
Schena2023       ✓ ✓        ✓     ✓ ✓          

Note: UPE = urinary protein excretion, SP = systolic pressure, DP = diastolic pressure, MAP = mean arterial pressure, RASB = renin-angiotensin system inhibitor. 
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3.2. Characteristics of the included studies 

We have shown the distribution of variables (Table 1) and the specific characteristics (Table 2) of the 13 diagnostic studies. Of the 
13 diagnostic studies, 4 [36,40,42,72] compared the predictive performance of different ML methods. In addition, 4 [39,41,71,73] of 
the included diagnostic studies explored digital pathology. 

The basic information and methodology of the 27 prognostic studies are shown in Table 3, independent external validation was 
performed in 10 prognostic studies [14,21,22,50,51,53,55,58,60,61]. Among them, three studies [16,17,19] also made Time-to-ESRD 
predictions, which was helpful for dynamically adjusting clinical decision-making. We have shown the distribution of predictors across 
studies (Table 4) and sorted the top 20 variables (Fig. 2). It’s worth noting that three studies [20,21,53] introduced new pathological 
variables (tubular necrosis and arteriole lesion) into modeling. Six studies [47,51,70,76–78] of them added additional variables after 
the introduction of IIgAN-RPT, and the study [51] that included urine biomarkers and serum Gd-IgA1 achieved the highest NRI (0.82 
[0.50–1.14]). Table 5 shows the basic information about the external validation of IIgAN-RPT. Two studies [65,75]pointed out the 
shortcomings of IIgAN-RPT for moderate-risk patients. 

3.3. Risk of bias assessment 

The risk of bias scores for the diagnosis and prognosis of IgAN, as well as the validation of IIgAN-RPT are shown in Fig. 3a, b, and 3c, 
respectively. Except for the subjects, applicability items in the others showed a high overall bias. Diagnostic studies were all single- 
center studies, lacked model calibration, and did not process missing values. Besides, there are several shortcomings in the meth-
odology of prognostic studies. The inevitable use of single-factor analysis to screen predictive factors is one of the data processing 
defects. Only three prognostic studies [23,53,63] processed missing values of original data by using multiple imputations, and only 3 
studies [59,70,79] performed dimension reduction analysis. Overall, 14 prognostic studies [22,23,45–50,53,57,59,61–63] used risk 
stratification of patients with IgAN and found that ML models could only accurately identify high-risk patients in most cases. 

3.4. Meta-analysis 

Our meta-analysis was divided into three parts: diagnosis of IgAN, prognosis of IgAN, and external validation of the IIgAN-RPT. 
Among the 38 diagnostic models, 27 provided a C-index, and 15 provided sensitivity and specificity. The pooled C-index of the 27 
diagnostic models was 0.902 (95 % CI: 0.878–0.926) in the training set and 0.851 (95 % CI: 0.808–0.894) in the validation set (Fig. 4). 
The overall sensitivity and specificity were 0.82 (95 % CI: 0.78–0.86) and 0.81 (95%CI: 0.71–0.88) in the training set, and 0.82 (95 % 
CI: 0.78–0.86) and 0.81 (95 % CI: 0.71–0.88) in the validation set, respectively (Fig. S1). Subgroup analysis according to model types 
and variables showed that the C-index of ANN was up to 0.966 and the sensitivity was 0.85. Diagnostic models based solely on 
pathological variables had similar predictive abilities to those based on the combination of clinical parameters and biomarkers. 

In addition, there were 162 prognostic models included in the meta-analysis of prognosis. The meta-analysis showed that the 
available C-index was pooled to be 0.838 (95 % CI: 0.827–0.850) in the training cohort (Fig. 5) and 0.817 (95 % CI: 0.801–0.833) in the 
validation cohort (Fig. S2). The overall sensitivity and specificity of models that provide sensitivity and specificity were 0.81 (95 % CI: 

Fig. 2. Top 20 variables in prognostic models.  
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Table 5 
External validation of IIgAN-RPT.  

Study Patient source Multi Time EPV Total 
No. 

Study design Overfitting Risk Model evaluation 

racial solution stratification Discrimination Calibration Reclassification 

Zhang, J.2020 China no 2.4 y 13.29 1373 retrospective bootstrap yes, 4 class C-index Calibration plot NRI, IDI 
Zhang, Y.2020 China, Argentina yes 3.8 y 12.93 1275 prospective N/A yes, 4 class C-index Calibration plot N/A 
Ouyang, Y.2021 China no 2.5 y 20.57 2300 prospective N/A yes, 2 class C-index Calibration plot NRI 
Hwang, D.2021 Korea no 3.6 y 3.79 545 retrospective N/A no C-index Calibration plot NRI, IDI 
Papasotiriou2022 Greece no 8.5 y 3.79 264 prospective N/A yes, 4 class C-index Calibration slope N/A 
Joo,Y. S.2022 Korea no 3.8 y 25.21 2064 retrospective bootstrap no C-index Calibration plot NRI, IDI 
Hu2024 China no 5.1 y 10.27 185 retrospective N/A yes, 4 class C-index Calibration plot N/A 

Note: NRI = net reclassification index, IDI = integrated discriminant index, EPV=Sum/variable number. 
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0.76–0.85) and 0.87 (95 % CI: 0.83–0.90) in the training set (Fig. S3), and 0.88 (95 % CI: 0.78–0.93) and 0.88(95%CI: 0.82–0.92) in 
the validation set (Fig. S4). The 87 survival models (COX regression) had a C-index of 0.826 (95 % CI: 0.815–0.837) in the training set 
and 0.828 (95 % CI: 0.810–0.845) in the validation set, indicating that survival models had favorable discriminative ability. In the rank 
sum test for non-survival models (Fig. 6), the present study revealed that the logistic regression model (C-index = 0.840 (95 % CI: 
0.785–0.989)) did not outperform other ML methods except the Naïve Bayesian model (C index = 0.653 (95 % CI: 0.543–0.763)) (P <
0.05). Subgroup analysis of variable composition found that the models with higher performance often included pathological variables 
and did not contain immunosuppressant (IS) or renin-angiotensin system blocker (RASB). More specifically, in the training set, the C- 
index of biomarker-based models was significantly lower than that of the models based on clinical parameters + pathologic infor-
mation or clinical parameters + pathologic information + biomarkers, indicating the necessity of introducing other variables into 
prediction models. According to the subgroup analysis with a 5-year cut-off and the time-dependent meta-regression analysis 
(Figs. S5–9), the model’s efficiency did not change over time either in overall estimation or subgroup of more than 10 models (cox 
regression and random forest model). 

The meta-analysis of the external validation of IIgAN-RPT (19 models) showed a pooled C-index of 0.801 (95 % CI: 0.784–0.817) 
(Table S3). Whether the modeling variable included race or not made no statistical difference in the C-index between the two sub-
groups. Three studies [65,67,68]verified that the model’s performance was improved after race was included in the modeling vari-
ables, and their NRI was 0.52 (95 % CI: 0.33–0.72), 0.13 (95 % CI: 0.08–0.29), and 0.49 (95%CI: 0.41–0.59), respectively. In addition, 

Fig. 3. Risk of bias assessment (a) diagnosis (b) prognosis (c) external validation of IIgAN-RPT.  
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the Cox regression prognostic models (C index = 0.826 (95 % CI: 0.815–0.837)) that were created formerly were not superior to the 
COX regression-based international tool (IIgAN-RPT) in 2019. 

4. Discussion 

4.1. Principal findings 

Collectively, ML models showed favorable performance in the diagnosis and prognosis of IgAN. Except for the Naïve Bayesian 
model, new ML methods were superior to traditional ML methods in terms of prognosis. Predicting smaller details of IgAN, such as 
crescent activity, also yielded great performance. Previously constructed prognostic models were not superior to IIgAN-RPT. However, 
due to racial homogeneity in the external validation population of IIgAN-RPT, its generalization remained limited. 

Fig. 4. Forest plot of C-index in diagnostic study (training and validation set).  
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Fig. 5. Forest plot of C-index in prognostic study (training set).  

Fig. 6. Rank sum test for non-survival prognostic models.  
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4.2. Diagnostic ability in IgAN 

The diagnostic meta-analysis of IgAN indicated that ANN seemed to be an ideal model for IgAN diagnosis, with acceptable 
sensitivity. However, due to the limited number and heterogeneity of the included studies, its value needs to be further explored. 
Subgroup analysis showed that the prediction power of the models based on clinical parameters and biomarkers was similar to those 
based only on pathological information (>0.9). Their similar prediction power suggests that the models based on clinical parameters 
and biomarkers have the potential as a diagnostic alternative for healthcare facilities without renal biopsy capability, which needs to 
be widely validated. The application of ML to digital pathology is an auxiliary means of pathological diagnosis. The technique can 
automatically quantify glomerular injury and pick up details missed by the naked eye, thereby saving manpower and time and 
improving diagnostic accuracy. Additionally, image texture segmentation and 3D reconstruction are useful for accurately identifying 
higher-level features, and avoiding interference caused by inconsistent slice staining. Despite the high accuracy of deep learning 
models, they have not been applied to practical work, and their translational research deserves attention. 

4.3. Prognostic ability in IgAN 

IgAN patients have a much lower proteinuria threshold associated with eGFR loss (1 g/d) than most other kidney diseases (3.5 g/d), 
which makes it unique. Therefore, proteinuria may be a more sensitive endpoint of renal progression than ESRD. This finding is 
underpinned by the meta-analysis of Inker, L. A. et al. [80]. Proteinuria has been used as an endpoint in clinical trials [81]. Recently, 
two prognostic studies [45,46] of IgAN considered proteinuria as an outcome definition in ML. However, due to the limited number of 
studies, we could not determine the utility of proteinuria in the outcome definition. 

The predictive value for outcome events is controversial among various ML methods. Our meta-analysis unveiled the performance 
of different models as follows: COX regression > new ML models (e.g., ANN, DT, RF, SVM, XGBoost) > logistic regression > NB. The 
meta-analysis of prognosis shows that the discrimination ability of RF and KNN is greater than 0.9, significantly higher than that of 
COX regression. Seemingly, RF and KNN are the most accurate in prognosis without regard to the occurrence time, but their sensitivity, 
which is more important for non-survival models, is not better than that of COX regression. Time considerations are particularly 
important in chronic diseases, and COX regression can handle missing records during follow-up [82]. Hence, survival models (COX 
regression) are still our first choice. In addition, although traditional ML models (logistic regression) can visualize risk equations and 
nomograms, which is convenient to apply, new ML methods with higher discrimination ability are of great importance for us to apply 
to clinical work. 

4.4. Variable analysis in prognosis 

For ML in clinical practice, predictors are the key to accuracy improvement. At present, the modeling variables in ML for IgAN 
mainly include clinical parameters, pathologic information, and biomarkers. Unlike diagnostic models, prognostic models should 
consider clinical variables that change over time to update the prediction. Another notable clinical variable is the treatment history. 
Current models still cannot adequately predict the effects of IS and RASB on prognosis. Moreover, tonsillectomy, an immunological 
intervention, was only included as a variable in two studies [21,53]. The effect of these interventions on renal outcomes remains 
controversial and needs to be further explored. 

The crescent, a newly added pathological variable in the updated Oxford classification [83], showed no significant improvement in 
model performance. This result is consistent with the latest authoritative study [23]. This may be attributable to racial differences and 
the fact that most crescents occur in the early stage of IgAN. However, a multi-center, high-quality study [84] confirmed its prognostic 
value of the crescents. Hence, it is necessary to explore a modeling method suitable for the updated Oxford classification. Of concern, 3 
studies [8,85,86] reported the prediction of crescent formation in IgAN. The C-index for prediction of crescent activity in IgAN was up 
to 0.976 [86]. These models that accurately identify the crescent are preferred before the crescent is included as a prognostic variable. 

For the biomarkers, subgroup analysis showed a significant increase in specificity, but the sensitivity remained almost unchanged. 
This finding indicates that existing biomarkers cannot meet the demand for improving discrimination. A urine test is advisable because 
it is completely non-invasive, and some glomerular sediments are excreted into urine. Furthermore, components encapsulated in 
urinary exosomes are stable for prediction due to the escape of bio-enzymatic degradation. Candidate biomarkers include 
pathogenesis-related complement systems (C3, C5, galactose-deficient IgA1) [87,88], amino acid, microbes, humoral morphological 
features (e.g., macrophage count), and inflammatory markers (e.g., microhematuria). In the absence of medication history, biomarkers 
such as urinary MMP-7 with stable predictive accuracy regardless of intervention [51] may help in decision-making. In a word, 
minimally invasive, efficient, and easy-to-collect markers are preferable. 

4.5. Temporal analysis and external validation of prognostic models 

Longer time frames are critical for assessing slow-progressing diseases such as IgAN. Due to the limitation of irregular outpatient 
visits, it is often challenging to conduct long follow-up visits as required. Therefore, it is important to determine the long-term pre-
dictive power in prognostic models. In our study, neither meta-regression nor subgroup analysis showed a decline in the prognostic 
ability over time, which was consistent with the findings in a recent authoritative study [23]. Specifically, IIgAN-RPT was validated 
one year after the biopsy, and no decline in model performance was observed. Similarly, Schena, FP et al. [50] reported no difference in 
the dynamic discrimination of ESRD one year and two years after biopsy. These results suggest that prognostic models can still be 
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applied to long-term forecasting of IgAN. 
The external validation of IIgAN-RPT reported a relatively well-discriminant ability but limited in number. In addition, inconsistent 

treatment measures in different countries (such as the widespread use of tonsillectomy in Japan) might result in risk underestimation. 
Furthermore, due to the limited number, there is a need to develop models that add genetic variables and validate international 
pediatric models. Therefore, it is essential to develop tailored models for different populations and improve the generalization. 

4.6. Strength and limitation 

This is the first meta-analysis on the application of ML in IgAN, including the studies on diagnosis, prognosis, and IIgAN-RPT 
validation. Moreover, our analysis pointed out the methodological deficiencies in the included studies, which can help subsequent 
studies construct more reliable models that apply to a variety of clinical settings. Nonetheless, this study has several limitations. Above 
all, the confidence interval of the C-index of some models is unknot clear, or a complete diagnostic 2 × 2 table cannot be obtained. 
Therefore, we only reviewed them, which may bias our meta-analysis results. Secondly, the risk of bias in the included studies was 
high, which is almost inevitable given the rigorous requirements for the use of existing quality assessment tools to evaluate the quality 
of ML-related studies. 

4.7. Future direction 

Above all, raw data processing needs to be optimized, such as handling missing values through patient similarity learning and 
dimensionality reduction analysis based on unsupervised learning. Aiming at the problems of overfitting, inconvenient use, and weight 
enlargement of tightly-correlated variables caused by excessive modeling variables, interaction tests or covariate screening can be 
applied to combine or select them. Additionally, in most studies, only NRI was used to assess the improvement of models that added 
new predictors to the IIgAN-RPT, whereas IDI, a more accurate indicator, was rarely used. It is essential to address potential errors in 
physician-generated data and the challenges in processing unstructured data. A favorable prediction model should consider both 
sensitivity and specificity. Furthermore, external validation of pediatric international prognosis tools needs to be extended. In addition 
to immunosuppressants, the history of tripterygium glycosides should also be checked. 

5. Conclusion 

ML can help physicians to diagnose IgAN and assess the subsequent prognosis. Expanding the application of three-dimensional 
reconstruction techniques in diagnostic models, using albuminuria as a more sensitive prognostic endpoint, enhancing moderate- 
risk prognosis, extending the racial validation scope and pediatric validation of international tools, and translating the model into 
clinical calculators will be the future direction. 
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