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Pan-cancer analysis reveals distinct clinical,
genomic, and immunological features of the LILRB
immune checkpoint family in acute myeloid leukemia
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Leukocyte immunoglobulin (Ig)-like receptor Bs (LILRBs), a
family of type I transmembrane glycoproteins, are known to
inhibit immune activation. Here, we comprehensively evalu-
ated the molecular, prognostic, and immunological character-
istics of LILRB members in a broad spectrum of cancer types,
focusing on their roles in acute myeloid leukemia (AML). We
showed that LILRBs were significantly dysregulated in a num-
ber of cancers and were associated with immune-inhibitory
phenotypes. Clinically, high expression of LILRB1-LILRB4 pre-
dicted poor survival in six independent AML cohorts. Geneti-
cally, LILRB1 was associated with more mutational events
than other LILRBmembers, and multiple genes involved in im-
mune activation were deleted in LILRB1high patients. Epigenet-
ically, LILRB4was significantly hypomethylated andmarked by
MLL-associated histone modifications in AML. Immunologi-
cally, LILRBs were positively associated with monocytic cells,
including M2 macrophages, but were negatively associated
with tumor-suppressive CD8 T cells. Importantly, patients
with higher LILRB expression generally showed a better
response to immune checkpoint blockade (ICB) in five inde-
pendent immunotherapy cohorts. Our findings reveal critical
immunological and clinical implications of LILRBs in AML
and indicate that LILRBs may represent promising targets for
immunotherapy of AML.
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INTRODUCTION
Acute myeloid leukemia (AML) is a highly fatal hematopoietic malig-
nancy marked by various cytogenetic and molecular abnormalities
and variable responses to treatment.1–3 Currently, the mainstay of
treatment for AML is cytotoxic chemotherapy,4 yet chemoresistance
and relapse are commonly seen in clinical practice. Some novel regi-
mens, such as hypomethylating agents (HMAs), Bcl-2 inhibitors,
Fms-like tyrosine kinase 3 (FLT3), and isocitrate dehydrogenase
(IDH) inhibition, have shown promising results in certain subsets
of patients with AML.5,6 Since 2017, the US Food and Drug Admin-
istration (FDA) has approved some new agents, such as enasidenib
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for patients with relapsed/refractory IDH2-mutated AML, gilteritinib
for FLT3-mutated AML, and liposomal cytarabine-daunorubicin
CPX-351 for therapy- and myelodysplastic syndrome (MDS)-related
AML.7 However, there still remains an urgent need to develop novel
effective therapies for various subsets of AML.

Of note, immune checkpoint inhibitors (e.g., anti-PD-1 and anti-PD-
L1 antibodies) have revolutionized cancer treatment during the past
decade in treating cancers such as non-small cell lung carcinoma
and melanoma;8 however, the transfer of immunotherapy to AML
has been less successful than to other cancers.9 Indeed, the AML
microenvironment is predominantly immunosuppressive. For
example, we have previously demonstrated that M2 macrophages, a
classical immunosuppressive component, were preferentially en-
riched in AML than other hematological malignancies and normal
controls.10 Also, a recent single-cell RNA sequencing (RNA-seq)
study has identified proportionally fewer T cells and cytotoxic T lym-
phocytes (CTLs) in AML than normal controls, and the function of
these T cells is profoundly impaired, probably mediated by CD14+
monocyte-like cells.11,12 Moreover, Noviello et al. found that bone
marrow (BM) T cells at AML relapse showed an exhausted pheno-
type, which was absent in patients maintaining long-term complete
response.13 These findings suggest encouraging therapeutic opportu-
nities by modulating the immune environment in AML.
Author(s).
//creativecommons.org/licenses/by-nc-nd/4.0/).
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Leukocyte immunoglobulin (Ig)-like receptor subfamily B (LILRB)
proteins are a group of type I transmembrane glycoproteins with
extracellular Ig-like domains that bind ligands and intracellular im-
munoreceptor tyrosine-based inhibitory motifs (ITIMs).14 This
group of receptors contains 5 members (LILRB1–LILRB5) mainly ex-
pressed in hematopoietic cells and also various types of tumors.14 As
these proteins negatively regulate immune activation,15–17 they are
often considered as immunosuppressive components in the tumor
microenvironment (TME). In AML, the TME-modulating role of
LILRBs has recently come into focus, especially for LILRB4. Gui
et al. demonstrated that LILRB4 facilitates tissue infiltration of
AML cells by substantially suppressing T cell activities, while blocking
LILRB4 activity efficiently inhibited AML development in vitro and
in vivo.18,19 In addition, LILRB1 was found to be more highly ex-
pressed in dysfunctional CD8+ T cells from AML than T cells from
healthy controls.20 Interestingly, a non-immunological AML-pro-
moting role was reported for LILRB2, which binds ANGPLT2 to
maintain stemness of normal stem cells and support leukemia devel-
opment by inhibiting differentiation of AML cells.21 Despite the func-
tional importance of LILRBs in AML, there lacked a systematic study
to explore the expression patterns, clinical implications, and immu-
nological features of all LILRB members in AML. Therefore, in this
study, drawing on rich multi-omics data in the public domain, we
comprehensively evaluated the transcriptional levels and prognostic
significances of LILRBmembers in a broad spectrum of cancer types,
focusing on its role in AML. In addition, we systematically character-
ized the genomic and immune landscape in patients with AML with
altered LILRB expression.

RESULTS
Landscape of genetic and expression alterations of LILRBs

across cancer types

We first determined the expression patterns of LILRBs in different hu-
man tissues based on reads per kilobase of transcript per million map-
ped reads (RPKM) values using Genotype-Tissue Expression (GTEx;
http://www.GTExportal.org/home/).22 We observe that LILIBs were
highest expressed in the spleen, followed by blood and the lung tissue,
while weakly expressed in other tissues (Figure S1). Importantly, the
preferential enrichment of LILRBs in spleen was further validated in
the FANTOM5 and Human Protein Atlas (HPA) dataset (Figures S2
and S3).Next, usingCancerCell Line Encyclopedia (CCLE), we showed
thatLILRBswere relativelyhighly expressed inmalignant hematological
cell lines from AML, acute lymphocytic leukemia (ALL), lymphomas,
and multiple myeloma (MM) (Figure S4). Moreover, we observed a
strong protein expression of LILRB1–LILRB4 in monocytes via Human
Proteome Map (https://www.humanproteomemap.org/) (Figure S5).
Together, these findings indicated cellular-, tissue-, and disease-specific
LILRB expression. Combining the normal tissue of the GTEx dataset as
controls, we then systematically compared LILRB expression between
tumor and adjacent normal tissue across 28 cancer types (9,465 tumor
and 7,831 normal samples). Surprisingly,LILRBswere significantly dys-
regulated in almost all cancer types (Figures 1A and S6). For LILRB1,
LILRB2, and LILRB4, increased expression in tumors was more
commonly seen, whereas LILRB3 and LILRB5 were significantly
down-regulated in the majority of cancer types (Figures 1A and 1B).
For LILRB1–LILRB4, the most remarkable difference was observed be-
tween AML and normal counterparts (Figures 1A and S6). We also
investigated genetic alteration (including mutations, amplifications,
and deletions) frequencies of LILRBs across pan-cancers. The average
alteration frequencies of five genes are summarized in Figure S7, and
the oncoprint is present in Figure S8A. The highest mutation loads of
LILRBs were observed in skin cutaneous melanoma (SKCM) (Fig-
ure 1C). Overall, LILRB1 was the most highly mutated and LILRB3
the least; the most frequent genomic variants were missense mutations
for five genes (Figures 1D and S8B). Amplifications were more
commonly seen in cancers such as adrenocortical carcinoma (ACC)
and uterine carcinosarcoma (UCS), while deletions were mostly found
inbrain lower grade glioma (LGG) (Figures 1E andS7).By analyzing the
methylomedataofLILRBs across30cancer typeswithmatchedcontrols
through the human disease methylation database Diseasemeth v.2.0
(http://bio-bigdata.hrbmu.edu.cn/diseasemeth/), we found that LILRB
members were significantly hypomethylated in almost all cancer types
analyzed compared with normal samples (Figure 1F). Furthermore,
the level of methylation was negatively associated with the level of
mRNA expression in most cancer types (Figure S9A). Analyzing the
relation between methylation and survival revealed that hypomethyla-
tion of LILRBs predicted worse survival in most cancers (Figure S9B).
Finally, Cox regression analyses were used to explore the association
between LILRB expression and overall survival (OS) in TCGApan-can-
cer datasets. Overall, we found that the significance and direction of the
prognostic significances varied, dependingon the cancer types analyzed.
For example, increased expression ofLILRB familymemberswas gener-
ally associated with worse OS in kidney renal clear cell carcinoma
(KIRC), LAML, LGG, thymoma (THYM), and uveal melanoma
(UVM), while in SKCM, the reverse was observed (Figure 1G).

Association between LILRB expression and immune responses

in cancers

LILRB family genes have been known for their immune inhibitory
functions in cancers. For example, LILRB4 has been shown to sup-
press T cell activation and support tissue infiltration of AML cells.18

We hypothesized that theymight be associated with specific immuno-
logic programs in cancers. Previously, Thorsson et al. have identified
six immune subtypes across cancers: C1 (wound healing), C2 (INF-r
dominant), C3 (inflammatory), C4 (lymphocyte depleted), C5
(immunologically quiet), and C6 (tumor growth factor beta [TGF-
b] dominant).23We found that all LILRBmembers exhibit the highest
expression in C6 (Figure 2A), a highly immunosuppressive subtype
displaying increased M2 macrophage infiltration, and conferred the
worst prognosis in respective tumors. Recent research has developed
four distinct TME subtypes conserved across a broad array of cancers:
(1) immune enriched, fibrotic (IE/F), (2) immune enriched, non-
fibrotic (IE), (3) fibrotic (F), and (4) immune depleted (D).24 We
found that patients with high LILRB expression possessed primarily
subtypes IE/F and IE, whereas patients with low LILRB expression
were mainly concentrated in the D subtype (Figure 2B). Next, we
investigated the association between LILRBs and 29 TME signature
scores calculated using TCGA pan-cancer data.24 We observed strong
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Figure 1. Landscape of genetic and expression alterations of LILRBs across cancer types

(A) Heatmap of differential expression profiles of LILRBs between tumor and normal tissue samples, combining data from TCGA and GTEx databases. The color depicts the

log2-transformed fold change (Log2FC) between tumor and normal tissues. (B) Bar plot showing genes significantly up- and down-regulated (p < 0.05) across different can-

cer types. Red, up-regulated expression; blue, down-regulated expression. (C) Heatmap showingmutation frequencies of LILRBs across different cancer types. Numbers on

the cells represent mutation percentages. (D) Bar plot showing the percentages of various mutation types for five LILRB genes. (E) Pie plots showing the percentages of

various copy-number alteration (CNA) types for five LILRB genes. (F) Heatmap of differential methylation profiles of LILRBs between tumor and normal samples, using

data from the Diseasemeth database. The color depicts methylation differences between tumor (T) and normal (N) tissues. (G) Association between LILRB expression

and patient prognosis across 33 cancer types as determined by the Cox regression model. *p < 0.05; **p < 0.01; ***p < 0.001. See also Figures S1–S9.
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positive correlations between LILRB expression with both anti-tumor
and tumor-promoting immune processes (especially checkpoint inhi-
bition) but weak correlations with stromal components and cancer
cell properties (Figure 2C).

Validation of the prognostic significance of LILRBs in AML

Our data, along with previous studies, reflect an AML-specific expres-
sion pattern of LILRBs.18,19 In this study, we focus on LILRBs in
AML. Cox analyses in TCGA data showed that LILRB1–LILRB4
90 Molecular Therapy: Oncolytics Vol. 26 September 2022
negatively impact the survival of patients with AML. It is of particular
interest to validate the prognostic value of LILRBs using Kaplan-Meier
methods in larger patient cohorts of AML. To this end, we collected
five independent datasets from GEO; X-tile was used to determine
the optimal thresholds for each LILRB member in TCGA and GEO
datasets. First, we were able to validate the adverse prognostic impact
for LILRB1–LILRB4 in the TCGA cohorts, whereas high LILRB5 was
associated with a favorable outcome (Figure S10). Importantly, the
prognostic value of LILRB1–LILRB4 also extended to the event-free
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Figure 2. Association of LILRB family gene expression with tumor microenvironment factors

(A) The expressions of LILRBs within different immune infiltrate subtypes across pan-cancers tested with ANOVA. C1: wound healing, C2: INF-r dominant, C3: inflammatory,

C4: lymphocyte depleted, C5: immunologically quiet, and C6: TGF-b-dominant.(B) Sankey diagram showing the links between LILRB expression and TME subtypes across

pan-cancers. IE/F, immune-enriched, fibrotic; IE, immune-enriched, non-fibrotic; F, fibrotic; D, immune-depleted. LILRB expression statuses were stratified by the median

expression value of respective genes. (C) Correlation matrix plots showing the association between expressions of LILRBs and 29 TME signature scores calculated using

TCGA pan-cancer data. Spearman correlation was used for testing.
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survival (EFS) endpoint and cytogenetically normal (CN) AML
subsets (Figures S11A–S11C). Furthermore, the adverse prognostic
impact of LILRBs was validated in TCGA microarray data (n = 183)
(Figure S11D) and five other independent cohorts of patients with
AML (GEO: GSE10358, n = 304; GSE37642 [U133A], n = 422;
GSE37642 [U133plus2], n = 140; GSE106291, n = 250; GSE71014,
n = 104) (Figures 3A–3E and S12A), although in some cases, only a
trend for shorter OS was observed. However, LILRB5 showed opposite
prognostic effects in the GEO: GSE37642 (U133A) and GSE71014
datasets compared with that of TCGA, and no statistically significant
associations were detected in the other three datasets (Figures S12A
and S12B).

LILRB expression correlates with distinct genomic alterations in

AML

We then examined the associations between LILRB expression and
the clinical and genetic characteristics in the TCGA AML cohort.
We found an association between LILRB expression and the
French-American-British (FAB) classification of AML: a higher per-
centage of myelomonocytic or monocytic morphology (M4/M5
Molecular Therapy: Oncolytics Vol. 26 September 2022 91
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Figure 3. Independent validation of the prognostic significance of LILRBs in five GEO datasets

(A–E) Kaplan-Meier curves representing OS of five AML cohorts from GEO (GEO: GSE10358, n = 304; GSE37642 [U133A], n = 422; GSE37642 [U133plus2], n = 140;

GSE106291, n = 250; GSE71014, n = 104) based on the expression of indicated LILRBmembers (LILRB1–LILRB4). The optimal cutoff of each gene was determined by the

X-tile method. See also Figures S10–S12.
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Figure 4. LILRB expression correlates with distinct genomic alterations in AML

(A) Heatmap showing association between LILRB expression and clinical characteristics in the TCGA AML cohort (top panel). Pie charts showing the chi-squared test of

clinicopathologic factors for LILRB1 status using the median expression as the cut off (bottom panel). (B) Bubble plot showing associations between the expression of

LILRB1–LILRB5 (as stratified by the median expression value of respective genes) and common mutational events in the TCGA dataset (top panel). Bubble size indicates

-log10 (Fisher test p value). Color signifies log10 (odds ratio [OR]), positive association is indicated with red circles, negative with blue circles, and non-association with gray

circles. LILRB1 expression stratified by RUNX1 mutation status, and LILRB5 expression stratified by TP53 mutation status (bottom panel). (C) Co-bar plots showing the

comparison of mutational profiles between patients with high and low LILRB1 expression (as stratified by the median expression value) in the TCGA dataset. (D) GISTIC

analyses identified recurrent CNAs in patients with AML with high LILRB1 expression. (E) The CNV variation frequency of indicated oncogenes and tumor-suppressor genes

in patients with AML with high LILRB1 expression. The height of the column represented the alteration frequency. Yellow dot indicates the amplification frequency; blue dot

indicates the deletion frequency. See also Figure S13.
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subtypes) and a lower percentage of FAB M2/M3 were observed in
patients with high LILRB expression (Figure 4A). Moreover, high
LILRB expressers were more likely to be >60 years old and less likely
to present with favorable cytogenetics (Figure 4A).

We hypothesized that altered LILRB expression would have an
impact on the mutation landscape of AML patients. To determine
whether LILRB1–LILRB5 correlated with distinct mutational profiles
characterized for AML, we identified significantly mutated genes that
occurred in patients with high and low LILRB1–LILRB4 expression
(as stratified by the median expression value of respective genes) us-
ing curated mutational data from TCGA. Overall, we found LILRB1
and LILRB5 expression was associated with more mutational events
than the other three genes (Figure 4B). As shown in Figure 4C, pa-
tients with high LILRB1 expression had a higher frequency of muta-
tions in U2AF1 (7% versus 1%) and RUNX1 (14% versus 4%), while
IDH1 (14% versus 4%) was more frequently mutated in those with
low LILRB1 expression. High LILRB5 expression was positively
Molecular Therapy: Oncolytics Vol. 26 September 2022 93
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correlated with TP53 mutations and negatively correlated with FLT3
and WT1 mutations (Figure S13A). In addition, RUNX1-mutated
AML highly expressed the LILRB1 gene, and TP53 mutations were
linked to higher LILRB5 expression (Figure 4B). For the other three
genes, LILRB2 was associated with mutations in IDH1 and STAG2,
LILRB3 with WT1, and LILRB4 with RUNX1 (Figure 4B).

We also considered the possibility that specific regions of the
genome may be preferentially focally amplified or deleted in patients
with high or low LILRB expression. We therefore performed GIS-
TIC2.0 analysis of TCGA copy-number data and assessed copy-
number variations (CNVs) in two patient groups. We focused on
LILRB1, as it was consistently dysregulated and showed the greatest
mutational events in patients with AML. Interestingly, LILRB1low

patients had no somatic copy-number alterations (Figure S13B),
whereas LILRB1high patients had 14 significantly deleted regions
and four significantly amplified regions (false discovery rate
[FDR] = 0.25) (Figure 4D). Interestingly, the majority of genes
deleted in LILRB1high patients were involved in inflammatory re-
sponses (including cytokines and genes essential for microbial
killing and antigen processing and presentation; see Table S1 for de-
tails). Also, a number of genes belong to the cadherin (CDH), pro-
tocadherin (PCDH) family (e.g., CDH1, PCDH1, and PCDH12), and
cyclin-dependent kinase (CDK) inhibitors (e.g., CDKN1B, CDKN2A,
and CDKN2B), which often exert tumor-suppressive functions,25,26

were significantly deleted. In contrast, LILRB-high patients with
AML had recurrent amplification at loci essential in AML pathogen-
esis, including KMT2A and ERG (Figure 4E).27,28

LILRB4 is aberrantly overexpressed inMLL-rearranged AML and

may be a target of MLL fusion proteins

We next asked whether LILRB expression could be associated with
specific molecular subtypes in AML. To this end, we examined the
expression differences of LILRBs across published transcriptomic
subtypes in the Hemap dataset (including AML, pre-B-ALL, diffuse
large B cell lymphoma [DLBCL], and MM).29 As expected, all
five LILRB members were more highly expressed in monocyte-like
AML, while their expressions were relatively weak in the other
three malignancies (Figure 5A). One exception to this overall trend
was the strong enrichment of LILRB4 in MLL-rearranged AML
(monocyte-like MLL) and ALL (KMT2A) (Figure 5A). This agreed
favorably with previous findings that LILRB4 was correlated with
MLL-rearranged leukemia.30,31 To further confirm this observation,
we subsequently analyzed the transcript levels of LILRB4 in 15 leuke-
mia cell lines with or without MLL rearrangements from the CCLE
database. Leukemia cell lines with the presence of MLL fusion genes
exhibited markedly higher LILRB4 expression than those lack MLL
fusion genes, whether LILRB4 expression was detected by RNA-seq
(Figure 4B) or Affymetrix microarray (Figure S14A). Accordingly,
analysis of three large primary patient datasets (BeatAML, TCGA,
and GSE13159) revealed consistently higher LILRB4 expression in
MLL-rearranged AML compared with other cytogenetic/clinicopath-
ologic leukemia entities (Figures 5C, S14B, and S14C). To further
confirm the relevance of LILRB4 expression in MLL-rearranged
94 Molecular Therapy: Oncolytics Vol. 26 September 2022
AML, we collected four MLL-rearrangement-related gene signatures
from MSigDB and computed ssGSEA scores of these signatures for
each sample in the TCGA dataset. Then, we compared the ssGSEA
scores computed for high LILRB4-expressing samples with those in
low LILRB4-expressing samples. We found gene sets down-regulated
in MLL-rearranged AML (MULLIGHAN_MLL_SIGNATURE_
1_DN) showed significantly lower ssGSEA scores in LILRB4-high pa-
tients than in LILRB4-low patients, whereas for gene sets up-regulated
in MLL-rearranged AML (MULLIGHAN_MLL_SIGNATURE_1_
UP), the opposite was seen (Figure 5D). Also, the ssGSEA scores of
two MLL-rearranged-governed signatures (ROSS_AML_WITH_
MLL_FUSIONS and VALK_AML_WITH_11Q23_REARRANGED)
were significantly up-regulated in high LILRB4 expressers
(Figure S14D).

It has been shown that target genes of MLL fusions were often hypo-
methylated.32,33 Consistently, significantly hypomethylated pro-
moters of LILRBs were observed in both the Diseasemeth (AML,
n = 271; normal, n = 10) and GSE63409 dataset (AML, n = 44; normal,
n = 30) (Figures S15A and S15B). Moreover, the expression of
LILRB2, LILRB3, and LILRB4 correlated negatively with promoter
methylation, and the most significant correlation was observed for
LILRB4 (Figure S15C). This observation is consistent with a previous
report that decitabine (DAC; a demethylating agent) treatment with
AML cells remarkably promoted the expression of LILRB family
members, especially LILRB4.34 Also, promoters of MLL fusion target
genes were often enriched with transcription activation-associated
histone markers (H3K79me2, H3K27ac, and H3K4me3).35 To deter-
mine whether LILRB4 expression could be directly regulated by the
MLL fusion gene, we analyzed a published chromatin immunoprecip-
itation (ChIP)-seq dataset (GEO: GSE79899) of MLL fusion proteins
H3K79me2, H3K27ac, and H3K4me3 for MV4-11 (MLL-AF4) and
THP-1 (MLL-AF9) cell lines. We found a significant enrichment of
MLL-N proteins in the promoter regions of LILRB4 gene for both
cell lines, while punctuated binding peaks of H3K79me2, H3K27ac,
and H3K4me3 were observed in both the promoter and gene body
of LILRB4 (Figure 5E). Importantly, a similar enrichment of the
three epigenetic marks was seen in five other ChIP-seq datasets
(H3K79me2 from GEO: GSE82116 and GSE71779; H3K27ac from
GEO: GSE89336 and GSE71776; H3K4me3 from GEO: GSE61785
and GSE82116) (Figure 5F). Overall, these results suggest that MLL
fusion proteins may be a direct regulator of LILRB4 expression.

Correlations between LILRBs and tumor immune infiltrating

cells (TIICs) in AML

Considering that LILRBs might play important roles in the TME, we
further explored the correlations between LILRBs and the level of im-
mune cell infiltration in the TCGA AML cohort. It is noteworthy
that, among the 22 cell types, monocytes had the highest positive corre-
lations with LILRB1–LILRB4, while only a weak correlation was
observed between LILRB5 and monocytes (Figure 6A), consistent
with the previous findings that LILRBs were preferentially expressed
in monocytic AML.19,31 This monocytic preference was also confirmed
in two recently published single-cell RNA-seq (scRNA-seq) datasets of
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Figure 5. LILRB4 is aberrantly overexpressed in MLL-rearranged AML and is likely a direct target of MLL fusion proteins

(A) Expression differences of LILRB genes in molecular subtypes of AML and pre-B-ALL, DLBCL, and MM. The expression FC between each subtype and the remaining

samples in the same disease were compared using theWilcoxon rank-sum test. The color of the dots indicates FCs (log2), and size indicates the FDR values. The FDR values

were categorized into six groups based on significance cutoffs for visualization (0.05, 0.01, 0.001, 1 � 10-5, 1 � 10-16). (B) Bar plot showing LIRB4 expression (RNA-seq) in

non-MLL-rearranged (HEL, MEG01, KASUMI1, KG1, NB4, K562, HL60, U937) and MLL-rearranged (SEM, MONOMAC6, NOMO1, RS411, MOLM13, THP1, MV411) cell

lines from the CCLE database. The dotted line represents the mean expression of LILRB4 across all cell lines analyzed. (C) Comparison of LILRB4 expression among human

primary AML cases with MLL rearrangements and those without MLL rearrangements in the BeatAML dataset. (D) Box plots showing ssGSEA scores of two MLL-related

gene signatures (MULLIGHAN_MLL_SIGNATURE_1_DN and MULLIGHAN_MLL_SIGNATURE_1_UP) between patients (TCGA dataset) with high and low LILRB4 expres-

sion (as stratified by the median expression value). (E) ChIP-seq tracks for MLL fusion proteins, H3K79me2, H3K27ac, and H3K4me3 at LILRB4 gene loci in MV4-11 and

THP-1 cell lines. ChIP-seq data were obtained from GEO: GSE79899. (F) ChIP-seq tracks for H3K79me2, H3K27ac, and H3K4me3 at LILRB4 gene loci in MV4-11- and

MLL-AF9-transformed blast cells. ChIP-seq data were obtained fromGEO: GSE82116, GSE71779, GSE89336, GSE71776, and GSE61785. See also Figures S14 and S15.
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Figure 6. The relation between LILRBs expression with immune cell infiltration and immune checkpoints

(A) Correlation matrix plot showing correlations between LILRBs and tumor immune infiltrating cells (TIICs). The overall immune cell compositions were estimated by

CIBERSORT in the TCGA dataset. (B) Dot plot showing expression pattens of LILRBs and selected immune checkpoint genes in annotated cell types from 16 AML

scRNA-seq samples (Van Galen AML scRNA). The color of the dots indicates average expression, and size indicates percentage of cells with detectable expression. (C)

Heatmap showing LILRB expression in normal cell populations from the Hemap dataset. (D) Correlogram showing correlations between the expression of LILRBs and

selected immune checkpoint genes in the TCGA dataset. Positive correlation was marked with orange and negative correlation with blue. See also Figure S16.
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AML (Van Galen AML scRNA, Figure 6B, and FIMM AML scRNA,
Figure S16A). Interestingly, LILRB4 was exclusively correlated with
M2 macrophages (Figure 6A), a high immunosuppressive component
in the TME. By contrast, LILRB1–LIRB4 were negatively correlated
with the infiltrating levels of tumor-suppressive immune cells, such as
resting memory CD4 T cells, CD8 T cells, memory B cells, plasma cells,
and resting natural killer (NK) cells (Figure 6A). Similar results were
found by analyzing the CIBERSORT estimates in the GEO:
96 Molecular Therapy: Oncolytics Vol. 26 September 2022
GSE10358 and GSE6891 datasets (Figures S16B and S16C).
Importantly, when other methods were used for calculating the relative
fractions of TIICs, positive associations between LIRB1–LILRB4 and
monocytes were consistently seen, while negative associations between
LILRB1–LILRB4 and CD8 T cells were proved for most, if not all,
methods in all three datasets (Figures S16D–S16F). Further analysis
of normal cell populations from the Hemap dataset revealed
that LILRBs were highly expressed in myeloid lineage immune cells
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(monocytes,macrophages, dendric cells, myeloid progenitors, and neu-
trophils), with consistent low expression in T cells (CD4+ T cells and
T/NK cells) (Figure 6C). Collectively, these findings further confirmed
the immunosuppressive roles of LILRBs in cancer TME.

Correlation between LILRBs and immune checkpoints in AML

Given that immune checkpoints have been proven to be promising
therapeutic targets for cancer treatment, we therefore evaluated the
relationship between LILRBs and a collection of checkpoint genes
describe by De Simone et al.36 Results from Spearman correlation an-
alyses are given in Table S2. As shown in the correlogram, LILRB1–
LILRB3 all showed strong positive correlations with CD48, CD86,
PD-L2, TIM-3, and VISTA (Figure 6D), while relatively weaker asso-
ciations were observed between LILRB4/5 and these checkpoints.
Moreover, analysis at the single-cell level revealed that CD86 and
VISTA, which, like LILRBs, were preferentially expressed in mono-
cytes (Figures 6B and S16A). In contrast, LILRBs did not show any cor-
relations with PD-1, and only weak correlations between CTLA-4 and
LILRBs (except for LILRB4) were observed (Figure 6D). These results
further highlight LILRBs potentially as major signaling pathways
involved in immunosuppression in the AML microenvironment.

LILRB expression predicts responses to immunotherapy

Considering the strong connection between LILRB expression and im-
mune response,we next askedwhetherLILRB expression can be utilized
as a tool to predict response to immune checkpoint blockade (ICB).We
first used Tumor Immune Dysfunction and Exclusion (TIDE; http://
tide.dfci.harvard.edu/) to assess the potential of LILRBs as new bio-
markers by comparing their predictive power with that of existing bio-
markers. Surprisingly, we found that LILRBs had an area under the
curve (AUC) of >0.5 in 17 of the 22 (77%) ICB subcohorts, comparable
to the predictive performance of TIDE (18 out of 25, 72%). It also
showed a higher predictive value than tumor mutational burden
(TMB),T clonality, andB clonality (Figure S17).Moreover, our analyses
revealed thatLILRBs could predict patients’ survival infive independent
immunotherapy cohorts, including twomelanoma cohorts treatedwith
anti-PD-1 therapy (Liu2019_PD1_Melanoma and Gide2019_PD1_
Melanoma), two melanoma cohorts treated with anti-CTLA-4 therapy
(Nathanson2017_CTLA4_Melanoma_Post and VanAllen2015_CTL
A4_Melanoma), and one clear cell renal cell carcinoma (ccRCC)
cohort with anti-PD-1 monotherapy (Miao2018_ICB_Kidney_Clear).
Remarkably, LILRBs exhibited the highest predictive value in three of
the five datasets (Figure 7A). In the Gide2019_PD1_Melanoma and
Nathanson2017_CTLA4_Melanoma_Post cohorts, the percentage of
responders (complete response [CR] or partial response [PR]) to ICB
was generally higher in patients with high LILRB expression than those
with low LILRB expression (Figure 7B). Similar findings could be
extended to other cancer types (lung cancer and gastric cancer) with
ICB treatment (Jung2019_PD1/PDL1_ Lung and Kim2018_PD1_
among indicated ICB cohorts between patients with high and low LILRB expression (

showing the association between LILRB expression with T cell-dysfunction and T cell-

dysfunction and evasion (TIDE) method. (D) Violin plots comparing the expression of LI

AML, as predicted by the TIDE algorithm. Significances were calculated by Wilcoxon ra
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Gastric) and melanoma patients treated with adoptive T cell therapy
(ACT) (Lauss2017_ACT_Melanoma) (Figure S18). In addition, high
LILRB expressions were generally correlated with PD-1/CTLA-4 up-
regulation in cohorts treated with respective antibodies (Figure S19A).
To test the potential of LILRBs in predicting ICB response in patients
with AML, we checked the relationship of LILRBs with expression sig-
natures for predicting ICB response in theTCGAAMLdataset. Surpris-
ingly, we found a negative correlation of LILRBs with T cell-exclusion
signatures, including myeloid-derived suppressor cells (MDSCs), M2
subtype of tumor-associated macrophages (TAMs), exclusion, and
TIDE (except for LILRB5) score but a positive correlation with the
T cell dysfunction score, interferongamma (IFNG), andmerck18 signa-
tures (Figure 7C). These observations indicate that LILRBs might
contribute to immune evasion through the induction of T cell dysfunc-
tion. In the TCGA AML cohort, we found that LILRBs (except for
LILRB5) showed significantlyhigher expression inpredicted responders
than non-responders (Figure 7D), suggesting that AML with high
LILRB expressionmay benefit more from ICB treatment.While no dif-
ferences in PD-1 expression between low and high LILRBs expressers
were observed, patients with high LILRBs showed an obviously high
expression of CTLA-4 in the TCGA AML cohort (Figure S19B).

The biological significance of LILRB expression in AML

We then sought to investigate the biological features associated with
LILRBs in AML. Since the expressions of five LILRB members were
highly correlated, a comparison of gene expression profiles of patients
with high and low LILRB1 expression (as determined by the median
expression value) was performed. Overall, 799 genes (490 up- and 309
down-regulated; adjusted p < 0.05; log2 fold change [FC]% -1.5 orR
1.5) were differentially expressed in LILRB1high versus LILRB1low pa-
tients (Figure 8A; Table S3). Among the genes positively correlated
with LILRB1 were, as expected, the other members of the LILRB fam-
ily (Figure 8A). Also, genes associated with the presence of mono-
cytes/macrophages (CD14, CD68) or M2 macrophage polarization
(MSR1, MRC1, CD163) were significantly up-regulated in high
LILRB1 expressers (Figure 8A), in line with our previous findings.
Next, we used the STRING database to construct a protein-protein
interaction (PPI) network of the differentially expressed genes
(DEGs), with a confidence score >0.90. Genes interacting with
LILRB1 and their subnetworks were shown through Cytoscape soft-
ware (Figure 8B). We found 12 genes directly interacting with
LILRB1: PILRA, TLR8, SIGLEC7, CD300C, FCGR2A, FCGR2B,
FCGR3A, CD86, FGR, HCK, IL10, and ITGAX. Among them,
CD300C, FCGR2A, FCGR2B, and FCGR3A also had connections
with the other four LILRBmembers (Figure 8B). GeneMANIA results
also revealed that genes of the FCGR and CD300 family were closely
correlated with LILRBs. These genes were mainly involved in negative
regulation of leukocyte-mediated immunity and negative regulation
of the immune-system process (Figure S20A).
as stratified by the median expression value of respective genes). (C) Correlogram

exclusion signatures in TCGA AML cohort, as determined using the tumor immune

LRBs between patients who benefitted and did not benefit from immunotherapy in

nk-sum tests. See also Figures S17–S19.
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(A) Volcano plot showing differentially expressed genes (DEGs) between high and low LILRB1 expressers (as stratified by the median expression value). (B) Cytoscape
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www.moleculartherapy.org
We then performed Gene Ontology (GO) analysis using these
DEGs, and the top 10 significant terms of biological process (BP),
molecular function (MF), and cellular component (CC) enrichment
analysis were shown (Figure 8C). Notably, in terms of BP, immune-
response-related processes were significantly enriched, such as
inflammatory response, immune-system process, and immune
response. Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Reactome Pathway analyses also revealed immune-response
pathways, including cytokine-cytokine receptor interaction, cytokine
signaling in immune system, innate immune system, antigen process-
ing-cross presentation, and adaptive immune system, were mainly
enriched (Figures 8D and S20B).

Finally, gene set enrichment analysis (GSEA) was conducted in the
LILRB1high and LILRB1low cohorts. For the C2 collection of curated
gene sets from the MSigDB, the VALK_AML_CLUSTER_5 gene
set (96% of the samples are FAB M4 or M5 subtype) was predomi-
nantly enriched in the LILRB1high group. Also enriched were gene
sets of MLL fusion and NPM1 mutation, two distinct entities often
associated with monocytic features of AML (Figure S21A). For the
C7 immunologic collection, the LILRB1high group had principal
enrichment in genes up-regulated in monocytes compared with other
immune cells (Figure S21B), and multiple immune activities were
enriched in the LILRB1high group for HALLMARK gene sets
(Figure S21C).

DISCUSSION
The LILRB family members LILRB1–LILRB5 are a group of proteins
containing the immune-inhibitory ITIM motifs that negatively regu-
late immune cell activation.14 Here, using RNA-seq data of normal
Molecular Therapy: Oncolytics Vol. 26 September 2022 99
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tissues from GTEx, FANTOM5, and HPA, we showed that LILRB
members were predominantly enriched in the spleen, consistent
with their immune-modulatory functions. In cancer cell lines, LILRBs
showed relatively high expression in cell lines of malignant hemato-
logical origin, in line with the selective expression of LILRBs in he-
matopoietic lineage cells. Indeed, abnormal expression of LILRBs
has been documented in various cancers, such as lung cancer,37 hepa-
tocellular carcinoma (HCC),38 and certain types of subtypes of adeno-
carcinoma.39 In this study, based on combined datasets from TCGA
and GTEx, we comprehensively analyzed LILRB expression between
tumor and adjacent normal tissue across 28 cancer types (9,465 tumor
and 7,831 normal samples). Our data showed that LILRBs were
significantly dysregulated in the majority of tumor types. For
LILRB1–LILRB4, the most striking difference was seen between
AML and its normal counterparts. We also observe a strong enrich-
ment for LILRB1–LILRB4 in the monocytic lineage; this observation
was confirmed in mass spectrometry proteomic data, single-cell tran-
scriptomics of immune cells, immune cell abundances estimated us-
ing bulk TCGA samples, and GSEA of monocyte-related gene sets, in
agreement with previous reports.19,21,31,40 One limitation is that many
of the findings were based on correlation analyses; the results could,
therefore, be biased by normalization methods and statistical analyses
along the way. Future functional immunological data and prospective
validation will still be required before these in silico approaches can be
used in a clinical setting.

Despite being positively correlated with monocytes, LILRB1–LILRB4
were negatively correlated with the density of CD8+ T and NK cells,
which are considered essential for effective anti-tumor immunity.29 It
has been shown that activated LILRB4 on monocytic AML cells re-
cruits SHP-2 and upregulates nuclear factor kB (NF-kB), leading to
increased ARG1 and uPAR accompanied by a concomitant suppres-
sion of T cell activity.18,19 This might provide a potential mechanistic
explanation to our observations. It should be noted that BM T cells in
AML are often functionally impaired,11–13,41 possibly mediated by
malignant monocyte-like cells from AML.11,19,20,42 Further research
aimed at unraveling the underlying molecular mechanisms is clearly
warranted, as this may provide opportunities for the identification of
new drug targets and therapeutics that can circumvent the T cell-sup-
pression state in AML.

Immunosuppressive factors, such as indoleamine 2,3-dioxygenase 1
(IDO1), CD200, and TIM-3 were reported to be closely associated
with a poor outcome in AML.43–45 In a preliminary analysis, Deng
et al. studied the prognostic relevance of several co-stimulating and
co-inhibitory receptors in the TCGA AML dataset, including
LILRB1–LILRB4.19 Here, we independently validated the prognostic
significances of LILRB members in five independent datasets. Strik-
ingly, we showed that LILRB1–LILRB4 adversely impacted survival
in almost all analyzed datasets. Of interest, we also noticed that
LILRB4 was significantly associated with M2 macrophage abun-
dances. This observation raises the possibility that LILRB4 might
contribute to leukemogenesis through M2 macrophages. Our group
has recently reported that M2 macrophage fractions were more
100 Molecular Therapy: Oncolytics Vol. 26 September 2022
selectively up-regulated in AML than the other four hematological
malignancies and normal controls.10 Importantly, we also demon-
strated superior predictive performance of the M2 marker CD206
(MRC1) than classical prognosticators in AML. Interestingly, in this
study, we found that CD206 was significantly up-regulated in high
LILRB1 expressers. As CD206+ and/or LILRB4+ monocytes could
suppress T cell proliferation and create an immunosuppressive
microenvironment in AML,19,42 it could be hypothesized that at least
part of the prognostic value of LILRBs could be attributed to the im-
mune-suppressive TME it contributed. Acute monocytic leukemia
often harbors mixed-lineage leukemia (MLL) rearrangements, an
aggressive phenotype with limited treatment options and poor sur-
vival rates, which might also explain the observed result. Indeed, we
demonstrated that LILRB4 was aberrantly overexpressed in MLL-re-
arranged AML and might be a direct target of the MLL fusion
proteins.

In a recent pan-hematological-malignancies study, the authors found
that LILRB2 could distinguish lymphoma and leukemia subtypes with
high immune infiltration from those harboring lower cytolytic
score.29 We consistently found multiple genes involved in immune
activation (including cytokines and genes essential for microbial
killing and antigen processing and presentation) were deleted in
LILRB1high patients, indicating a delicate balance between immune
activation and suppression in the TME.

Indeed, an integrated analysis of transcriptomic and proteomic data
has uncovered and ranked LILRBs among the top potential chimeric
antigen receptor (CAR) targets in AML.46 Gui et al. also found that
blocking LILRB4 activation effectively reversed T cell suppression
and inhibited AML cell infiltration.18 Given that LILRBs are selec-
tively dysregulated in AML, it is tempting to speculate that AML
positive for these proteins might be good candidates for immuno-
therapy. Indeed, we found that LILRBs showed comparable or
even superior predictive power for ICB response than other bio-
markers reported in the literature, as quantified both by AUC and
Z score in the Cox proportional hazard (PH) regression. This agreed
favorably with our observation that patients with high LILRB
expression possessed primarily immune-enriched subtypes, which
were characterized by highly abundant lymphocytes, increased
PD-L1 expression, and amplifications of PD-L1 and PD-L2 genes,24

suggesting an environment with dampened anti-tumor immunity
that could benefit from immunotherapy. Also, we found high LILRB
expressers often exhibited increased PD-1/CTLA-4 expression in
ICB cohorts. Our findings were in line with previous observations
that LILRB2 was co-expressed with CTLA-4 and that patients re-
sponding to anti-PD-1 ICB showed an enriched expression of
LILRB4.47,48 Importantly, Chen et al. reported that LILRB2 blockade
substantially enhanced the efficacy of anti-PD-1 treatment in a hu-
man lung cancer model.49 We also demonstrated the predictive po-
tential of LILRBs in AML immunotherapy. Although we observed
no correlations between LILRBs and PD-1 expression in AML,
LILRB agonism could reprogram TAMs into a non-suppressive
and immunostimulatory phenotype, thereby enhancing the
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therapeutic efficacy of ICB treatment.49 Future cancer immuno-
therapy clinical trials will be critical to further validate these
findings.

In this study, we provided a comprehensive analysis of the expres-
sion patterns and clinical significances of LILRBs across pan-can-
cers, focusing on their role in AML. We also analyzed the associ-
ation of LILRB expression with genomic features and tumor
immunity in AML. Our data revealed up-regulated expression of
LILRBs in AML and that higher expression levels of these genes
predicted worse outcomes. In addition, LILRBs were associated
with an immune-suppressive TME in AML. Overall, these findings
suggest important immunological and clinical implications of
LILRBs in AML, which warrants further clinical investigation
with immunotherapy specifically targeting AML with LILRB
dysregulations.

MATERIALS AND METHODS
Analysis of gene-expression data

Briefly, the mRNA expression data of the LILRB family in normal tis-
sues were obtained from the GTEx project (www.gtexportal.org/).50

Datasets used to assess the expression patterns of LILRBs in normal
tissues and cell lines are described in detail in the supplemental
methods. To determine the expression patterns of LILRBs between
tumor and adjacent normal tissues across a broad range of cancer
types, we systematically analyzed the gene-expression data of 9,465
tumor and 7,831 normal samples based on RNA-seq data from the
TCGA and GTEx projects. All these datasets were downloaded
from the UCSC Xena project and were normalized between arrays
using the limma package.51 These studies were approved by the
respective institutional review boards with written informed consent
obtained from all patients.

Analysis of AML scRNA-seq data

For scRNA data analysis, previously published scRNA-seq data from
16 AML samples at diagnosis consisting of 30,712 BM cells (Van Ga-
len AML scRNA) were downloaded from GEO (GEO: GSE116256).11

Another scRNA-seq data for 8 patients consisting of 30,579 AML BM
cells (FIMMAML scRNA) were retrieved via the Synapse Web Portal
(https://www.synapse.org and https://doi.org/10.7303/syn21991014).
Data were processed and visualized using custom scripts provided by
Dufva et al.29

Analysis of genetic alteration data

The genetic alterations of LILRBs from TCGA PanCancer Atlas
studies (10,967 patients), including somatic mutations, amplification,
and deep deletion, were assessed through the cbioportal for Cancer
Genomics (http://www.cbioportal.org). Procedure details are pro-
vided in the supplemental methods.

Analysis of gene-methylation data

For comparison of methylation status of LILRBs between tumor and
normal samples, beta values of Illumina 450k probes at the promoter
region of five genes were retrieved by the DiseaseMeth v.2.0 web portal
(http://bio-bigdata.hrbmu.edu.cn/diseasemeth/analyze.html). Proced-
ure details are provided in the supplemental methods.

Analysis of the association between LILRB4 and MLL

rearrangement

We used the Hemap dataset to analyze the association between LILRB
expression and common molecular subtypes.29 Datasets used to
determine the association of LILRB4 expression with MLL rearrange-
ment and analysis of ChIP-seq data are described in detail in the sup-
plemental methods.

Survival analysis

We investigate the association between the expression of LILRBmem-
bers and clinical outcomes across 33 cancer types. The association be-
tween transcript levels of LILRBmembers and OS across cancers were
assessed by univariate Cox regression. To confirm the prognostic value
ofLILRBs inAML,we further obtained five independentGEOdatasets
(GEO: GSE10358, n = 304; GSE37642 [U133A], n = 422; GSE37642
[U133plus2], n = 140; GSE106291, n = 250; GSE71014, n = 104)
with available survival information. Patients with AML from these da-
tasets and the TCGAdataset were divided into thosewith high and low
gene expression, according to the optimal cutoff determined by the
X-tile method.52 We then performed Kaplan-Meier analysis (log
rank test) to compare the survival differences of two groups regarding
OS (six datasets) and EFS (only in TCGA dataset).

Immune-response analysis

The relative abundances of 22 immune cell populations in patients
with AML were estimated using the CIBERSORT algorithm, as pre-
viously described.10 As CIBERSORT may not be suitable for the
use of the RNA-seq data,53 this algorithm was exclusively applied to
the TCGA LAML microarray dataset. For validation purposes, the
relative fractions of immune cells were also estimated in two relatively
large GEO datasets, GEO: GSE10358 and GSE6891. In addition, we
used other deconvolution methods to quantify the proportions of
monocytes (quanTIseq, MCP-counter, CIBERSORT abs, and xCell)
and CD8 T cells (EPIC, TIMER, quanTIseq, MCP-counter,
CIBERSORT abs, and xCell). These methods have been integrated
as a unified interface by Sturm et al. and are freely available through
the TIMER 2.0 web portal (http://timer.comp-genomics.org/).54 We
evaluated the relationship between LILRBs and several notable im-
mune checkpoint genes.36 Spearman correlation analysis was used
to test the association between LILRB expression and these parameter
estimates. Immunotherapy-associated dataset collection and analyses
are provided in the supplemental methods.

Differential gene-expression analysis and functional enrichment

analysis

Differential gene-expression analysis for RNA-seq data was performed
using the raw read counts with the R/Bioconductor package “DESeq2,”
controlled for the FDR by the Benjamini–Hochberg procedure. GO
analysis and KEGG pathway analysis of LILRB1-co-expressed genes
were performed using the STRING database (http://www.string-db.
org/). GO and KEGG terms with FDR-corrected p values less than
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0.05 were considered significantly enriched. For displaying purposes,
the top 10 GO terms of each three GO categories—BP, CC, and
MF—and the top 10 KEGG pathway terms were visualized as bar plots.

PPI-network analysis

We applied STRING (http://string.embl.de/) to construct a PPI
network of the DEGs. We chose a confidence score >0.9 as the judg-
ment criterion. Cytoscape visualization software (v.3.6.1) was used to
present the LILRB1-related subnetwork.

GSEA

GSEA was performed on the TCGA dataset using GSEA v.4.1.0 soft-
ware (http://www.broad.mit.edu/gsea). Procedure details are pro-
vided in the supplemental methods.

Statistical analysis and visualization

All statistical analyses and visualizations were performed using either
indicated web servers or R v.4.0.4. For details, see the supplemental
methods.

Data and code availability

The datasets analyzed in this study are available in the following open
access repositories: GTEx, www.gtexportal.org/; HPA, https://www.
proteinatlas.org/; CCLE, https://www.broadinstitute.org/ccle; Human
ProteomeMap, https://www.humanproteomemap.org/; TCGA, https://
portal.gdc.cancer.gov/; UCSC Xena, https://xena.ucsc.edu; cBioPortal,
http://www.cbioportal.org; GEO, https://www.ncbi.nlm.nih.gov/geo/
(GEO: GSE13159, GSE116256, GSE63409, GSE79899, GSE82116,
GSE71779, GSE89336, GSE71776, GSE61785, GSE10358, GSE37642,
GSE106291, and GSE71014); FIMM AML scRNA data, https://www.
synapse.org (https://doi.org/10.7303/syn21991014); DiseaseMeth,
http://bio-bigdata.hrbmu.edu.cn/diseasemeth/analyze.html; TIMER
2.0, http://timer.comp-genomics.org/; and TIDE, http://tide.dfci.
harvard.edu/.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
1016/j.omto.2022.05.011.
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