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ABSTRACT

Motivation: Genome-wide association studies (GWAS) have identified

many loci implicated in disease susceptibility. Integration of GWAS

summary statistics (P-values) and functional genomic datasets

should help to elucidate mechanisms.

Results: We extended a non-parametric SNP set enrichment method

to test for enrichment of GWAS signals in functionally defined loci to a

situation where only GWAS P-values are available. The approach is

implemented in VSEAMS, a freely available software pipeline. We use

VSEAMS to identify enrichment of type 1 diabetes (T1D) GWAS asso-

ciations near genes that are targets for the transcription factors IKZF3,

BATF and ESRRA. IKZF3 lies in a known T1D susceptibility region,

while BATF and ESRRA overlap other immune disease susceptibility

regions, validating our approach and suggesting novel avenues of re-

search for T1D.

Availability and implementation: VSEAMS is available for download

(http://github.com/ollyburren/vseams).

Contact: chris.wallace@cimr.cam.ac.uk

Supplementary information: Supplementary data are available

at Bioinformatics online.
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1 INTRODUCTION

Genome-wide association studies (GWAS) have been successful

in identifying loci associated with many phenotypes (Welter
et al., 2014), and summary statistics in the form of a list of

single, single nucleotide polymorphism (SNP) P-values for each
marker tested are increasingly becoming available in the public

domain (Burren et al., 2011; Okada et al., 2014). In tandem with
this, large amounts of functional genomic data across a wide

variety of tissues and conditions are increasingly available

through public repositories. Integrative methods that combine
genome-wide genetic and genomic data have the potential to

highlight functional genomic categories suitable for further
study in relation to a given phenotype. This is particularly im-

portant in type 1 diabetes (T1D) where of the 49 susceptibility

loci currently described (http://immunobase.org, accessed March

15, 2014), only 12 are consistent with a non-synonymous coding

SNP as the causal variant. This is in accord with previous re-

search (lari et al., 2012; Schaub et al., 2012), and indicates a

central role for gene regulatory SNPs in the modulation of com-

plex disease, where integrative methods have utility.
One such integrative approach is to modify gene set enrich-

ment analyses methods (GSEA) developed for microarray path-

way analysis (Subramanian et al., 2005) for use with GWAS

study datasets (Wang et al., 2007). These approaches partner

SNPs to genes based on public annotations and then test for

differences in evidence of association between SNPs assigned to

two sets of genes. There are several limitations with existing

approaches. First, most methods require access to raw genotype

data to correct for inter-SNP correlation due to linkage disequi-

librium (LD). Raw genotype data are typically not available in

the public domain, and this problem is compounded for meta-

analysis–based GWAS, which combines multiple datasets.

Second, the permutation-based approaches usually used to

adjust for correlation are computationally expensive. Finally,

classical gene set enrichment analysis is typically based on tests

derived from the Kolmogorov–Smirnov, which is under pow-

ered. A need for simpler and more powerful methods has been

identified (Irizarry et al., 2009), but the proposed alternative, a t-

test, has been criticized because it cannot cope with strong cor-

relation between genes (Tamayo et al., 2012).
We have previously used a Wilcoxon-based GSEA method to

demonstrate enrichment for T1D association to a gene network

driven by the transcription factor IRF7 (Heinig et al., 2010). The

Wilcoxon test was used as a more powerful alternative to a

Kolmogorov–Smirnov test, but the approach still required per-

mutation to correct for the effects of LD. In this article, we de-

scribe an approximate method, that allows such tests to be

performed with greater computational efficiency and, crucially,

without access to raw genotype data, by extending an approach

by Liu et al. (2010). We implement this extended approach in a

freely available software pipeline VSEAMS. Although we have

chosen the Wilcoxon test, the pipeline would be easily adaptable

to any test of location such as a t-test.
Given previous evidence for the involvement of a network of

genes linked to the transcription factor IRF7 (Heinig et al., 2010)

in (T1D), we hypothesized that networks of genes dependent on*To whom correspondence should be addressed.
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other transcription factors might also show enrichment for T1D

association. We used VSEAMS to test for enrichment of T1D

association among the targets of 59 transcription factors identi-

fied through knock-down experiments in lymphoblastoid cell

lines (Cusanovich et al., 2014).

2 METHODS

2.1 Outline of existing Wilcoxon-based approach

Given two sets of genes (test and control), our task is to decide whether

GWAS-association signals for a given trait differ between SNPs near test

and control genes—a comparison of two distributions of P-values. We

use a non-parametric test, the Wilcoxon rank sum test, to test a null

hypothesis that these two distributions have equal medians, but any

test of location could be used. The test statistic is denoted W. Its mean

is known theoretically, but its variance is inflated when SNPs are in any

degree of LD. To address this, Heinig et al. (2010) repeatedly permuted

case/control status in a GWAS dataset to generate replicates of W under

the null. A Z-score can be derived

Z=
ðW� �0Þ

ffiffiffiffi

V
p ; ð1Þ

where W is the observed test statistic, �0 is its theoretical mean, and V is

its empirical variance derived from the replicates of W. V is problematic

to compute because the univariate tests of association between SNPs are

slow to compute and require access to raw the genotype data, which are

not always available.

2.2 Approximation of V by V*

VSEAMS removes the need to access the raw data by instead approx-

imating V by V*. Given a matrix of pairwise genotype correlations at

SNPs of interest, S, which may be derived from public data, we repeat-

edly sample Z��Nð0;SÞ, from which P-values can be derived in the usual

manner. The link between correlation of genotypes and correlation of

Z-scores is not entirely obvious and is derived in the supplementary in-

formation. These P-values can be combined in the same way as the

observed data to give replicates of W, with V* equal to the empirical

variance of these replicates. The full VSEAMS pipeline is described in

Figure 1 and Supplementary Information.

2.3 Validation analyses

To validate the method, we used T1D GWAS data from the T1DGC

study (see Supplementary Information) for which we have raw genotype

data,� 4000 cases and 4000 controls drawn from the UK population to

compute and compare V and V* under different scenarios. SNP testing

was conducted using the R package snpStats. To examine how VSEAMS

performance is affected by gene set, we selected a random set of 200

protein coding genes (Supplementary Table S3) and generated 100 sets

of 100 control and 100 test gene sets by randomly sampling from these

200 genes. For each set, we computed an enrichment Z-score using

(i) VSEAMS and summary P-values and (ii) permuted case/control

status and raw genotype data. To simulate modest enrichment, we re-

peated these analyses with the P-value for each SNP in the test set multi-

plied by 0.9.

To examine the effect of sample size and number of simulations, we

created case/control genotype sets by randomly sampling a subset of cases

and controls from the T1DGC dataset. For each sample size, we repeated

this five times, and compared the Z statistics produced by VSEAMS (up

to 10 000 simulations) or permutation methods (10 000 permutations).

2.4 Benchmark analyses

The VSEAMS pipeline is designed to run on a shared distributed com-

puting platform, complicating runtime comparisons. We therefore de-

signed a set of benchmarking tests to compare runtime for generating

simulated and permuted test statistics under the null, the main methodo-

logical difference we wished to examine. We randomly selected 1000 LD

blocks from the set of precomputed covariance matrices. Each underlying

covariance matrix was filtered, so that only SNPs present and passing QC

for the T1DGC study dataset were present. For each LD block, we

created a set of corresponding genotype files using data from the

T1DGC study.

In total, 14753 SNPs were included over the 1000 randomly selected

LD blocks. We examined the median runtime speed using the R package

Fig. 1. The VSEAMS pipeline; mandatory inputs are shaded grey; a

dashed border indicates that one or the other input is required.

VSEAMS takes as input either two lists of genes or two lists of regions

for comparison. Given genes, regions are defined by taking gene coord-

inates� 200kb around the TSS. GWAS summary statistics (P-values) for

SNPs in those regions are extracted. The observed Wilcoxon rank sum

test statistic is compared with its null distribution determined by its the-

oretical mean and a variance derived by simulating null P-values with a

correlation structure matching the underlying genotype structure.

Caching of pregenerated LD matrices reduces computation time. A full

description of each step is available in the Supplementary Information

3343

VSEAMS

st
 - 
case 
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu571/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu571/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu571/-/DC1
supplementary 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu571/-/DC1
approximately 
,
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu571/-/DC1
,
,
5 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu571/-/DC1


microbenchmark comparing the wgsea function pairtest() for the

permutation method against the VSEAMS function mvs.perm() for

10 permutations or simulations, for a variable number of cases and con-

trols. All benchmarks were run on a 4 Core AMD Opteron (2.8GHz)

with 32 GB of RAM. Each individual benchmark corresponds to the

median time taken to generate 10 permutations or simulations for a

given LD block for a given sample size. To estimate the total execution

time for a given sample size, we summed median execution over all

LD blocks.

2.5 Transcription factor gene set processing

Cusanovich et al. (2014) present the results of differential gene expression

in siRNA knock-downs of 59 transcription factors and chromatin modi-

fiers in lymphoblastoid cell lines. We downloaded results available in their

Supplementary Table S3. For each transcription factor, we created a set

of test genes that were differentially expressed at an false discovery rate

(FDR) of 5%, making sure that the transcription factor itself was

excluded from this list, using the qvaluesR package. We created a control

set by taking the remaining genes not in the test set and removing those

with missing values or showing evidence of differential expression at an

FDR of 10%. We ran each test/control set in parallel using VSEAMS,

and extended gene regions to incorporate�200kb around gene transcrip-

tional start site (TSS) to best capture regulatory variation (Stranger et al.,

2012). We simulated 100 000 replicates of W to confidently estimate V*.

3 RESULTS

3.1 VSEAMS pipeline

VSEAMS is a software pipeline implemented in R and Perl. To

maximize performance, it uses grid-based computing and the
macd queue submission manager. VSEAMS was developed to
run using the Sun Grid Engine; however, macd is designed to

be extensible to support other high-performance computing sub-
mission solutions. All software is available under open-source
license (GPL v2) from (http://github.com/ollyburren/vseams

and http://github.com/ollyburren/macd).

3.2 V* is a good approximation for V and

computationally more efficient

There is good correlation between results obtained from
VSEAMS approximations and those from directly permuting
genotype (Fig. 2). The simulation method implemented in

VSEAMS is more efficient than a comparable permutation ap-
proach. Figure 3a shows that the generation of simulated statis-
tics is faster than using permutation. Both methods exhibit a

linear relationship with number of SNPs; however, the simula-
tion is on average 100 times faster for a moderate GWAS of 4000
cases and 4000 controls (Fig. 3b). The permutation method run-

time shows a linear relationship with sample size, whereas the
simulation method runtime is independent of sample size, and is
10 times faster, even for 500 cases and controls.

3.3 T1D susceptibility enrichment in targets of the

transcription factors IKZF3, BATF and ESRRA

Genes perturbed by 3 of 59 transcription factors in knock-down

experiments (Cusanovich et al., 2014) were enriched for associa-
tion with T1D (Fig. 4): IKZF3 (P=1.1� 10�4; n=1798), BATF
(P=4.4� 10�4; n=210) and ESRRA (P=8.0� 10�4; n=614),

where n is the number of genes in each set. Fourteen genes are

common to all three sets (Supplementary Fig. S1 and

Supplementary Table S2).

We used VSEAMS to prioritize individual genes within each

significant set, selecting 95 genes of 2326 that exceeded
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Fig. 3. A runtime comparison of simulation using multivariate normal

(black) versus permutation (grey) over 1000 randomly selected LD

blocks. In both plots the y-axis is the median execution time over 10

iterations, and lines indicate the fitting of a linear model. Specifically,

(a) details the effect of sample size on median execution time over

14 753 SNPs summed over all randomly selected LD blocks. (b) Shows

the effect of SNP count on execution time for 4000 cases and controls for

all 1000 randomly selected LD blocks
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Fig. 2. A comparison of Z-scores generated using permuted phenotype

method (10 000 permutations) versus using summary P-values and

VSEAMS (10 000 simulations) for T1DGC study, over 100 randomly

generated gene sets

3344

O.S.Burren et al.

a total of 
 of
,
Factor 
s
u
tili
ses 
 (SGE)
open 
http://github.com/ollyburren/vseams
http://github.com/ollyburren/macd
,
,
,
,
Type 1 diabetes 
three
type 1 diabetes 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu571/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu571/-/DC1
prioritise 
out 
,


Bonferroni threshold for that set (Supplementary Table S3). Of

these, 63 overlap regions of known T1D susceptibility (http://

immunobase.org accessed March15, 2014). We draw attention

to 10 genes that have no conclusively established association to

T1D but have been highlighted for other immune-modulated

diseases in ImmunoBase (Table 1), three of which are implicated

as candidate causal genes in one or more diseases: TRAF3IP2 in

psoriasis, ulcerative colitis and Crohn’s disease (Jostins et al.,

2012; Tsoi et al., 2012), ZNF438 in multiple sclerosis (IMSGC

et al., 2011) and RUNX3 in ankylosing spondylitis and psoriasis

(IGASC et al., 2013; Tsoi et al., 2012). The 22 remaining genes

have no established association to autoimmune disease, their

membership of functionally defined gene sets, which show over-

all association with T1D suggests that they are also worth noting.

3.4 Effect of sample size and simulation number

We picked two gene sets from the Cusanovich et al. (2014) data-

set with similar test set SNP counts to examine the effect of

sample size and gene set selection on VSEAMS performance,

IKZF3 as an example where enrichment is present and YY1

where it is absent. Both sets exhibited similar behaviour. In gen-

eral, we see that the number of permutations required for a stable

correlation between permutation and VSEAMS Z-scores is inde-

pendent of sample size and is mainly dependent on gene set, and

for these gene sets, 5000 simulations seems sufficient to ensure

VSEAMS is a good approximation for permutation. At sample

sizes 510 with a fixed number of permutations, we observe

a large difference between Z-scores generated using

VSEAMS and permutation method (Fig. 5). Small sample sizes

(5200) show reduced correlation even for large numbers of

permutations.

4 DISCUSSION

Correlation is a problem for all enrichment analyses because it

results in inflated test statistics compared with their theoretical

Table 1. Genes with significant gene prioritization statistics identified from enriched gene sets not overlapping known T1D susceptibility loci

Transcription

factor

Ensembl ID HGNC symbol P (empirical) Coordinates Disease overlap

IKZF3 ENSG00000056972 TRAF3IP2 510�6 chr6:111727481..112127481 CROa, PSOa, UCa

IKZF3 ENSG00000183621 ZNF438 0.000008 chr10:31109136..31520866 MSa, RA

IKZF3 ENSG00000110344 UBE4A 510�6 chr11:118030300..118430300 CEL, MS, PBC, RA, SJO

IKZF3 ENSG00000108465 CDK5RAP3 0.000003 chr17:45845176..46245176 AS, MS

IKZF3 ENSG00000105655 ISYNA1 0.000006 chr19:18349111..18749111 MS

IKZF3 ENSG00000128268 MGAT3 0.000004 chr22:39653349..40053349 CD, PBC, UC

BATF ENSG00000020633 RUNX3 0.000169 chr1:25091612..25491612 ASa, PSa

BATF ENSG00000241685 ARPC1A 0.000218 chr7:98723521..99123521 CD, UC

ESRRA ENSG00000213619 NDUFS3 0.000051 chr11:47386888..47786888b MS

ESRRA ENSG00000123444 KBTBD4 0.000082 chr11:47400567..47800567b MS

Note: ‘Disease overlaps’ indicates that the interval defined overlaps a disease annotated in http://immunobase.org. Ankylosing spondylitis (AS), celiac disease (CEL), Crohn’s

disease (CRO), juvenile idiopathic arthritis (JIA), multiple sclerosis (MS), psoriasis (PSO), rheumatoid arthritis (RA), ulcerative colitis (UC). Coordinates are given for build

GRCh37.
aGene is implicated as causal in that disease.
bRegions overlap.
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Fig. 4. T1D susceptible SNP enrichment (excluding major histocompatibility complex (MHC)) within transcription factor perturbed gene sets from

Cusanovich et al. (2014) SNPs are pruned on the basis of r2 threshold �0.95. A positive Z-score indicates enrichment, labels denote associated P-values.

Black bars indicate that the knocked-down transcription factor overlaps a known autoimmune susceptibility locus curated in ImmunoBase
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distribution. This problem exists in GSEA of gene expression

datasets, but is more pronounced for SNP data, in which histor-

ical recombination events produce LD patterns that are both

complex and strong. The original GSEA method accounts for

this correlation by permuting phenotypes and repeating the

entire gene expression analysis multiple times (Subramanian

et al., 2005), an approach we also took in a previous variant

set enrichment analysis (Heinig et al., 2010). This computation-

ally intensive approach seems required because permuting SNPs

or genes directly destroys the correlation structure. Tests have

been adapted for gene set enrichment that deal theoretically with

the inflation of variance by estimating an average variance infla-

tion factor (Wu and Smyth, 2012), but for SNPs, we do not

believe a single variance inflation factor can capture the strength

and highly variable correlation observed. Instead, in VSEAMS,

we adapt a multivariate normal sampling approach, which we

show is not only faster than phenotype permutation, but can be

applied in the typical case where raw genotype data are not

available. Our analyses indicate that the exact number of simu-

lations required for a stable approximation of V* is specific to a

gene set, but suggest that 5000 permutations is sufficient for the

GWAS data we consider here. VSEAMS is designed not to re-

quire raw genotype data, and alternative methods to confirm

sufficiency of simulation could be adopted from those developed

in the Markov chain Monte Carlo (MCMC) literature (Geweke,

1992). Although this framework could equally be applied to

parametric tests such as t-tests, we chose to concentrate on a

non-parametric (Wilcoxon) test because it is more robust to

occasional genotyping errors that may arise and that, without
access to genotyping data, are impossible to check.
Although the selection of test sets is often straightforward, the

selection of appropriate control sets tends not to be and requires
careful understanding of the competitive hypothesis tested in en-
richment studies and consideration of the appropriate control

set. Here, we restricted our set of control genes to genes that
were perturbed by at least one transcription factor in the lym-
phoblastoid cell line knock-down experiments (Cusanovich et al.,

2014). We encourage users to think carefully about the construc-
tion of control gene sets; for example, for microarray derived
sets, we advocate matching on mean gene expression and coeffi-

cient of variation.
All three transcription factors we identify from Cusanovich

et al. (2014) have been previously implicated in autoimmunity

when cross-referenced with data from ImmunoBase (http://
immunobase.org accessed April 3, 2014), providing validation
of the method. IKZF3 is a transcription factor located within a

T1D susceptibility locus at 17q12 (Barrett et al., 2009) and over-
laps susceptibility loci for ulcerative colitis, Crohn’s disease, pri-
mary billiary cirrhosis and rheumatoid arthritis (Jostins et al.,

2012; Liu et al., 2012; Stahl et al., 2010). IKZF3 is implicated in
the regulation of B cell lymphocyte proliferation and differenti-
ation (Morgan et al., 1997). BATF overlaps rheumatoid arthritis

and multiple sclerosis susceptibility loci at 14q24.3 (IMSGC
et al., 2011; Stahl et al., 2010). Mice over expressing Batf show
impaired T-cell development in vitro and no induction of IL-2

(Williams et al., 2003). ESRRA overlaps alopecia areate, Crohn’s
disease, multiple sclerosis and ulcerative colitis loci at 11q13.1
(IMSGC et al., 2011; Jostins et al., 2012; Petukhova et al., 2010)

and is a metabolic regulator of T-cell activation and differenti-
ation (Michalek et al., 2011). Future work will determine
whether the enrichment pattern observed with T1D is shared

with, or distinct from, other autoimmune traits.
The set of genes perturbed when IRF7 is knocked down shows

no evidence for enrichment, in contrast to our previous work

(Heinig et al., 2010). This likely reflects that the transcription
factor experiments were performed in a lymphoblastoid cell
line. The master regulator of the IRF7 network previously

described is GPR183, and is known to be activated by exposure
to Epstein–Barr virus; therefore, IRF7 responsiveness is likely to
be altered in LCLs, which emphasizes a need for transcription

factor function to be studied in primary cells.
Imprecise knowledge of regulatory variants for individual

genes hampers any test of variant set enrichment. As regulatory

variation may lie 200kb from a gene (Stranger et al., 2012), we
use a large window to assign SNPs to genes. This increases the
likelihood of overlapping regions occurring in test and control

sets. We have implemented a random assignment strategy to
mitigate this, and, although unbiased, this approach can result
in a loss of power in the test for enrichment. Combination of

chromatin state annotation with high-throughput chromatin
conformation capture (‘Hi-C’) has the potential to allow better
definition of genomic regions involved in regulating specific

genes. This increased resolution will require a corresponding in-
crease in GWAS resolution through the use of imputation.
Additionally, as regulatory function varies in a cell-specific

manner, annotation of multiple primary cell types and careful
consideration of the biologically relevant cell types will be
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Fig. 5. Comparison of VSEAMS and permuted phenotype methods with

differing sample size, for example, gene sets, where enrichment is present

(IKZF3) and absent (YY1). (a) Shows difference in Z-scores between both

methods with 10 000 simulations and a variable sample size, with an equal

number of cases and controls. (b) Shows how the correlation between Z-

scores over a variable number of permutations varies with respect to

sample size. The coloured lines represent a locally estimated scatterplot

smoothing (LOESS) fitted model for each sample size
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required. However, we expect this more precise definition of

functional SNP sets will allow a sharp increase in the power of

variant set enrichment analyses, and this will allow VSEAMS

analyses to interpret functionally defined genetic regions by link-

ing them to end-point phenotypes.
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