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INTRODUCTION 
 

Traumatic brain injury (TBI) is a leading cause of death 

and disability among individuals under 45 years of  

age [1],  and is a known risk factor for chronic neurode- 

 

generative diseases such as Alzheimer's disease and 

Parkinson's disease [2–4]. Patients who survive TBI 

experience severe neurological and behavioral deficits, 

along with substantial economic and mental burdens 

[5–7]. Despite recent progress in TBI research, an 
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ABSTRACT 
 

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in young individuals worldwide. There 
is currently no effective clinical treatment for TBI, but mesenchymal stem cell-derived exosomes have exhibited 
promising therapeutic effects. In this study, we performed intracerebroventricular microinjection of human 
adipose mesenchymal stem cell (hADSC)-derived exosomes (hADSC-ex) in a weight-drop-induced TBI rat model. 
We found that hADSC-ex promoted functional recovery, suppressed neuroinflammation, reduced neuronal 
apoptosis, and increased neurogenesis in TBI rats. The therapeutic effects of hADSC-ex were comparable to 
those of hADSC. Sequential in vivo imaging revealed increasing aggregation of DiR-labeled hADSC-ex in the 
lesion area. Immunofluorescent staining of coronal brain sections and primary mixed neural cell cultures 
revealed distinct overlap between CM-DiI-labeled hADSC-ex and microglia/macrophages, indicating that 
hADSC-ex were mainly taken up by microglia/macrophages. In a lipopolysaccharide-induced inflammatory 
model, hADSC-ex suppressed microglia/macrophage activation by inhibiting nuclear factor κB and P38 mitogen-
activated protein kinase signaling. These data suggest that hADSC-ex specifically enter microglia/macrophages 
and suppress their activation during brain injury, thereby inhibiting inflammation and facilitating functional 
recovery. They also offer new insight into the cellular targeting, uptake and migration of hADSC-ex, and provide 
a theoretical basis for new therapeutic strategies for central nervous system diseases. 
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effective clinical treatment strategy has not been 

identified. 

 

Stem cell-based therapies have exhibited great potential 

in the treatment of TBI. Although stem cell 

transplantation has significantly ameliorated TBI in 

animal models and attracted considerable research 

interest, most patients in clinical practice have not 

received stem cell therapy [8]. This could be due to 

poor understanding of the migration, implantation and 

subsequent integration of transplanted human stem cells 

into the target brain circuit, as well as concerns about 

the safety of stem cell treatment [9, 10]. Recent research 

has indicated that only a small proportion of implanted 

stem cells differentiate into neural cells after their 

transplantation into the nervous system, so it is likely 

that their therapeutic effects are mainly induced by 

soluble paracrine factors. Therefore, exosomes released 

by stem cells could be the primary determinants of the 

beneficial effects of stem cell therapy [10].  

 

Exosomes are 30 to 120 nm extracellular vesicles 

containing proteins, lipids and nucleic acids, which are 

secreted by multivesicular endosomes or multivesicular 

bodies. Exosomes are typically internalized through 

phagocytosis or endocytosis, but can also fuse with 

target cell membranes to deliver their contents into the 

cytosol, where they alter the physiological state of the 

recipient cell [11]. Thus, exosomes derived from stem 

cells could be a promising alternative to cell-based 

therapies. Exosomes are also a safer choice than stem 

cells because they have lower immunogenicity and no 

associated ethical issues.  

 

Previous studies have verified the efficacy of 

mesenchymal stem cell (MSC)-derived exosomes in 

TBI animal models [12, 13]. Their mechanism of action 

remains unclear, but could be due to their suppression 

of inflammatory responses after injury. Microglia are 

crucial for the activation and regulation of 

neuroinflammation, and either promote tissue repair or 

increase tissue damage, depending on their phenotypic 

polarization (classic [M1, proinflammatory] or alter-

native [M2, anti-inflammatory]) [14]. Thus, exosomes 

could ameliorate TBI by altering microglial function in 
vivo, although this has not yet been clearly 

demonstrated. Furthermore, visualization and in vivo 

tracking studies have demonstrated that only a small 

proportion of exosomes pass through the blood-brain 

barrier, suggesting that intravenous administration may 

not be an optimal method of delivering exosomes to the 

central nervous system (CNS) [15, 16]. 

 

In the present study, we intracerebroventricularly 

injected human adipose mesenchymal stem cell 

(hADSC)-derived exosomes (hADSC-ex) into a weight-

drop-induced TBI rat model, and examined the 

sensorimotor functional recovery, neuroinflammation, 

neuronal apoptosis and neurogenesis in these rats. We 

also dynamically tracked the biodistribution of hADSC-

ex in rat brain ventricles and assessed the cellular 

uptake of hADSC-ex in vivo and in vitro to determine 

their therapeutic mechanism. 

 

RESULTS 
 

Intracerebroventricular administration of hADSC-

ex facilitated sensorimotor functional recovery in 

TBI rats  

 

We first obtained and characterized hADSC. We found 

that hADSC exhibited a characteristic fibroblast-like 

morphology (Supplementary Figure 1A) and could 

differentiate into adipocytes or osteoblasts under 

specific culture conditions (Supplementary Figure 1B, 

1C). The cells expressed high levels of CD29, CD44, 

CD90, CD105 and human leukocyte antigens A, B and 

C (HLA-ABC), but were negative for CD31, CD34, 

CD144 and human leukocyte antigen DR (HLA-DR) 

(Supplementary Figure 1D), as previously reported [17]. 

We then extracted hADSC-ex and evaluated them using 

transmission electron microscopy, nanoparticle tracking 

analysis and Western blotting. The hADSC-ex had a 

cup-like morphology with a lipid bilayer membrane 

structure (Supplementary Figure 1E) and a peak 

diameter of around 100 nm (Supplementary Figure 1F), 

and expressed exosomal markers such as heat-shock 

protein 90 (Hsp90), Hsp70, tumor susceptibility gene 

101 (Tsg101) and CD63 (Supplementary Figure 1G). 

 

To study the therapeutic effects of hADSC-ex on TBI, 

we established a rat model of weight-drop-induced 

closed head injury, and intracerebroventricularly injected 

hADSC, hADSC-ex or phosphate-buffered saline (PBS) 

into the contralateral ventricle 24 h post-injury (Figure 

1A). The rats' sensorimotor function was assessed with 

the modified neurological severity score (mNSS) and a 

foot-fault test. The mNSS was close to 12 in all rats on 

day 1 post-TBI, indicating that the neurological deficits 

in all the TBI rats were comparable before treatment. 

The mNSS declined gradually in PBS-treated animals 

between days 3 and 35 post-TBI, indicating that 

sensorimotor function recovered spontaneously after 

TBI. However, the functional recovery between days 7 

and 35 was significantly faster in the hADSC and 

hADSC-ex groups than in the PBS-treated control group 

(Figure 1B). Treatment with hADSC and hADSC-ex 

also dramatically reduced the frequency of forelimb 

foot-faults compared with PBS treatment (Figure 1C). 

Thus, hADSC-ex treatment promoted sensorimotor 

functional recovery in a TBI rat model, and its 

therapeutic efficacy was comparable to that of hADSC. 
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Intracerebroventricular administration of hADSC-

ex inhibited neuroinflammation, reduced neuronal 

apoptosis and promoted hippocampal neurogenesis 
 

Neuroinflammation caused by TBI prolongs secondary 

brain injury, leading to neuronal cell dysfunction and 

death [18]. To study the effects of hADSC-ex on 

neuroinflammation after TBI, we analyzed the expression 

of proinflammatory factors in injured brain tissues and 

cerebrospinal fluid (CSF) using quantitative real-time 

PCR (qRT-PCR) and enzyme-linked immunosorbent 

assays (ELISAs), respectively, on day 5 after TBI. The 

mRNA levels of proinflammatory factors (monocyte 

chemoattractant protein 1 [MCP-1], tumor necrosis 

factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) in 

damaged brain tissue (Figure 2A) and the concentrations 

of IL-1β and IL-6 in CSF (Figure 2B) were significantly 

lower in the hADSC and hADSC-ex treatment groups 

than in the PBS control group on day 5 post-TBI. 

 

Long-lasting activation of microglia/macrophages in 

the chronic phase of TBI impedes neurological 

functional recovery [19, 20]. To determine the effects 

of hADSC-ex on sustained microglia/macrophage 

activation, we performed immunohistochemical 

staining for the activated microglia/macrophage 

marker CD68 in paraffin-embedded brain coronal 

sections on day 35 after TBI. The proportion of 

CD68+ activated microglia/macrophages in the lesion 

boundary area was significantly lower in the hADSC 

and hADSC-ex treatment groups than in the control 

group (Figure 2C, 2F). 

 

Neuroinflammation exacerbates neuronal loss following 

TBI. To determine the effects of hADSC-ex on TBI-

induced neuronal apoptosis, we performed double-

staining with terminal deoxynucleotidyl transferase 

dUTP nick end labeling (TUNEL, an apoptotic cell 

marker, green) and NeuN (a mature neuronal marker, 

red) to identify apoptotic neurons in the lesion boundary 

area on day 14 after TBI. The proportion of 

TUNEL/NeuN double-positive cells was lower in the 

hADSC and hADSC-ex treatment groups than in the 

PBS control group (Figure 2D, 2G).  

 

 
 

Figure 1. hADSC-ex facilitated sensorimotor functional recovery in TBI rats. (A) Schematic representation of the experimental 
procedures. (B) Sensorimotor function measured with the mNSS. (C) Left forelimb foot-fault test scores. Data represent the mean ± SD, n = 8 
rats per group; ns. p > 0.05, * p < 0.05, ** p < 0.01, determined by repeated-measures two-way ANOVA vs. PBS control group. 



 

www.aging-us.com 18277 AGING 

 
 

Figure 2. hADSC-ex suppressed neuroinflammation, reduced neuronal loss in the lesion boundary area and promoted 
hippocampal neurogenesis. (A) qRT-PCR analysis of proinflammatory factors in damaged brain tissues on day 5. (B) ELISA analysis of IL-1β 
and IL-6 levels in CSF on day 5. (C) CD68 immunohistochemical staining for activated microglia/macrophages (indicated by yellow arrows) in 
the lesion boundary zone on day 35. Scale bar = 100 μm. (D) NeuN immunofluorescence staining for mature neurons and TUNEL staining for 
apoptotic cells in the lesion boundary zone on day 14; double-staining with TUNEL (green)/NeuN (red) for apoptotic neurons is indicated by 
white arrows. Scale bar = 50 μm. (E) NeuN immunofluorescence staining for mature neurons and BrdU staining for cell proliferation in the 
hippocampal dentate gyrus on day 35; double-staining with BrdU (green)/NeuN (red) for newly generated mature neurons is indicated by 
white arrows. Scale bar = 100 μm. (F–H) Scatter plots of data from C, D and E. Data represent the mean ± SD, n = 6 rats per group. ns. 
p > 0.05, * p < 0.05, determined by one-way ANOVA vs. PBS control group. 
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Endogenous hippocampal neurogenesis induced by 

injury [21, 22] is critical for neurological functional 

recovery following TBI [23, 24]. To elucidate the 

effects of hADSC-ex on hippocampal neurogenesis, we 

performed immunofluorescence staining for 5-bromo-

2′-deoxyuridine (BrdU, a marker of proliferating cells) 

and NeuN (a marker of mature neurons) on paraffin-

embedded brain coronal sections to identify newly 

generated neurons on day 35 after TBI. The number of 

newly generated neurons in the hippocampal dentate 

gyrus was significantly greater in the hADSC and 

hADSC-ex treatment groups than in the control group 

(Figure 2E, 2H). These results indicated that hADSC-ex 

suppressed acute proinflammatory cytokine production, 

inhibited chronic microglia/macrophage activation, 

reduced neuronal apoptosis and promoted hippocampal 

neurogenesis after TBI. The effects of hADSC-ex were 

comparable to those of hADSC. 

 

Visualization and in vivo tracking of hADSC-ex after 

intracerebroventricular administration  
 

To better understand the therapeutic effects of hADSC-

ex in TBI rats, we monitored the biodistribution and 

migration of DiR-labeled hADSC-ex (DiR-hADSC-ex) 

after their intracerebroventricular administration. The 

control group was injected with PBS and DiR dye 

without exosomes (Figure 3A, 3B). Biofluorescence 

imaging revealed that DiR-hADSC-ex fluorescence in 

the lesion site accumulated incrementally from day 7 

onwards, and was significantly greater than the  

DiR fluorescence in the control group by day 21  

(Figure 3C, 3E). Fluorescence imaging and fluorescence 

intensity analyses of dissected brain tissues on day 21 

confirmed these findings (Figure 3D, 3F). Thus, intra-

cerebroventricularly administered hADSC-ex accu-

mulated in the lesion area in TBI rats. We hypothesized 

that this phenomenon was due to the uptake of hADSC-

ex by certain neural cells, and their subsequent transport 

to the injury site.  

 

hADSC-ex were mainly taken up by 

microglia/macrophages in vitro and in vivo 
 

To determine the mechanism of exosome migration to 

the lesion area, we labeled hADSC-ex with CM-DiI (DiI-

hADSC-ex) and intracerebroventricularly administered 

them to rats 24 h post-injury. Rat brains were collected 

on day 21 after the intervention because distinct DiR 

fluorescence enrichment was observed in the lesion area 

after 21 days. To determine the cellular location of DiI 

fluorescence around the lesion boundary zone, we 

performed immunofluorescence staining for the 

following markers on frozen brain coronal sections: 

ionized calcium binding adaptor molecule 1 (IBA1) for 

microglia/macrophages, glial fibrillary acidic protein 

(GFAP) for astrocytes, NeuN for mature neurons, and 

myelin basic protein (MBP) for mature oligodendrocytes. 

The DiI signals mainly overlapped with those of IBA1, as 

IBA1/DiI double-positive cells accounted for 88.06% of 

IBA1+ cells. Weak DiI signals were also observed in 

some GFAP+ cells, GFAP/DiI double-positive cells 

accounted for 28.9% of GFAP+ cells. However, the DiI 

signals scarcely overlapped with those of MBP or NeuN 

(Figure 4A and Supplementary Figure 2C). Furthermore, 

there was a higher proportion of microglia/macrophages 

(IBA1+) with DiI fluorescence signals around the lesion 

boundary zone than in the corresponding contralateral 

area (Supplementary Figure 2A, 2B). Thus, hADSC-ex 

were likely carried to the injury site by microglia/ 

macrophages. 

 

To determine whether microglia/macrophages were the 

primary neural cells that took up hADSC-ex in vivo, we 

isolated the contralateral hemispheres 24 h after DiI-

hADSC-ex administration and dispersed them into 

single-cell suspensions. The cells were stained with 

CD11b (a microglia/macrophage marker), GFAP, NeuN 

or MBP, and the proportion of double-positive cells 

(CD11b/DiI, GFAP/DiI, NeuN/DiI and MBP/DiI) 

among DiI+ cells was determined using fluorescence-

activated cell sorting (FACS) (Figure 4B). DiI+ cells 

accounted for 1.1% of all cells (Supplemenatay Figure 

3A). CD11b/DiI double-positive cells accounted  

for 77.63% of DiI+ cells, while GFAP/DiI double-

positive cells accounted for 9.1%, NeuN/DiI double-

positive cells accounted for 3.6% and MBP/DiI  

double-positive cells accounted for 22.8% (Figure 4C, 

4D). Further, the DiI fluorescence signals in these cells 

mainly overlapped with those of CD11b, rather than 

GFAP, NeuN and MBP (Supplementary Figure 3B). 

Thus, hADSC-ex were mainly taken up by microglia/ 

macrophages in vivo. 

 

To confirm that microglia/macrophages were the  

main neural cells that took up hADSC-ex in vitro,  

we produced mixed neural cell cultures (containing 

neurons, astrocytes, microglia/macrophages and 

oligodendrocytes) through the prolonged culture of 

primary cortical neurons in vitro. The mixed neural cells 

were incubated with DiI-hADSC-ex for 24 h, and the 

fluorescence intensity of DiI was detected in every type 

of neural cell for 24 h (Figure 4E). After four hours, the 

total fluorescence intensity of DiI was significantly 

greater in microglia/macrophages than in other neural 

cells (Figure 4F, Supplementary Videos 1–5). Immuno-

fluorescence staining confirmed that DiI distinctly 

overlapped with IBA1 and only weakly overlapped with 

GFAP, microtubule-associated protein 2 (MAP2) and 

MBP (Supplementary Figure 2D). These results 

suggested that hADSC-ex were mainly taken up by 

microglia/macrophages in vitro and in vivo. 



 

www.aging-us.com 18279 AGING 

 
 

Figure 3. Visualization and in vivo tracking of hADSC-ex after intracerebroventricular administration. (A) Schematic 
representation of the experimental procedures. (B) Representative fluorescence images of DiR-labeled hADSC-ex and PBS. (C) Representative 
fluorescence images of rat heads on days 0, 7, 14 and 21 after administration of PBS, DiR dye or DiR-hADSC-ex. (D) Representative 
fluorescence images of dissected brains on day 21. (E) Fluorescence intensity quantification of regions of interest in the lesion sites of rat 
heads, expressed as the average radiance ± SD, n = 5 rats per group. ns. p > 0.05, * p < 0.05, *** p < 0.001, determined by repeat-measures 
two-way ANOVA vs. DiR dye control group. (F) Fluorescence intensity quantification of regions of interest in the lesion sites of dissected rat 
brains, expressed as the average radiance ± SD, n = 5 rats per group. ns. p > 0.05, ** p < 0.01, determined by one-way ANOVA vs. DiR dye 
control group. 
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Figure 4. hADSC-ex were mainly taken up by microglia/macrophages in vitro and in vivo. (A) Representative images of 
IBA1/GFAP/DiI, IBA1/MBP/DiI and IBA1/NeuN/DiI immunostaining in the lesion boundary zone in rat brain coronal sections (bregma, −1.5 
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mm); n = 3, scale bar = 50 μm. The overlapping signals are marked with blue arrows (GFAP/DiI) and white arrows (IBA1/DiI). The white dotted 
boxes denoted the slices overview and the solid line rectangles indicated the snapshot location. (B) Schematic representation of the 
experimental procedures to detect hADSC-ex cellular uptake by dissociated primary neural cells using FACS. (C) Representative dot plots from 
FACS showing double-positive cell (CD11b/DiI, GFAP/DiI, NeuN/DiI, MBP/DiI) gating in P1 and P2. The gating strategy is shown in 
Supplementary Figure 3A. (D) Bar graphs quantifying the data from (C). Data are presented as the mean ± SD, n = 3 independent experiments, 
*** p < 0.001, determined by one-way ANOVA vs. CD11b/DiI. (E) Schematic representation of the use of mixed neural cell cultures to identify 
the cellular uptake of hADSC-ex in vitro. (F) Line graph showing the change in the total fluorescence intensity of DiI over time in every neural 
cell type in the mixed neural cell culture. Data represent the mean ± SD, n = 3 independent experiments, *** p < 0.001, determined by 
repeated-measures two-way ANOVA vs. microglia. 

 

hADSC-ex suppressed M1 microglial polarization 

and promoted M2 microglial polarization in vitro 
 

To assess the effects of hADSC-ex on the functional 

status of microglia, we isolated primary microglia from 

adult rat brains and induced them into different 

functional states (M0, M1 and M2 phenotypes) as 

described previously [25, 26]. Microglia were incubated 

with hADSC-ex during their induction from the M0 to 

the M1 phenotype. The mRNA levels of M1-associated 

factors (IL-1α, IL-1β, IL-6, TNF-α, inducible nitric 

oxide synthase [iNOS], chemokine ligand 2 [CCL2], 

CCL3 and CCL5) were analyzed using qRT-PCR, and 

the dynamic morphological changes in microglia were 

observed using time-lapse live cell imaging, as 

described previously [27, 28]. The hADSC-ex 

significantly inhibited the expression of M1-associated 

proinflammatory cytokines (Figure 5A) and the 

morphological transformation from the M0 to the M1 

state (activated microglia with an amoebic appearance; 

Figure 5C, 5D). Furthermore, hADSC-ex promoted the 

mRNA expression of M2-associated cytokines (arginase 

1, CD206, insulin-like growth factor 1 and IL-10) in the 

process of M0 to M2 induction (Figure 5B). Thus, 

hADSC-ex likely suppressed the microglial functional 

state change from M0 to M1 and promoted the 

transition from M0 to M2 in vitro.  

 

hADSC-ex inhibited microglia/macrophage activation 

by suppressing classical nuclear factor (NF)-kB and 

mitogen-activated protein kinase (MAPK) signaling 

 

The NF-kB and MAPK signaling pathways are important 

inducers of neuroinflammation and glial cell activation 

[29–32]. To determine whether hADSC-ex inhibited 

microglia/macrophage activation by suppressing the NF-

κB and MAPK pathways, we assessed the effects of 

hADSC-ex on the phosphorylation of three NF-kB 

pathway proteins (P65, inhibitor of NF-kB kinase β 

[IKKβ] and inhibitor of NF-kB alpha [IKBα]) and three 

MAPK pathway proteins (P38, extracellular signal-

regulated kinase [ERK] 1/2 and c-Jun N-terminal kinase 

[JNK]), and on the nuclear translocation of the P65 

subunit in primary microglia. The NF-κB and MAPK 

signaling pathways were markedly activated after M0 

microglia were exposed to M1 medium (phosphorylated 

[P]-P65, P-IKKαβ, P-IKBα, P-P38, P-ERK1/2 and P-

JNK levels increased prominently and peaked at different 

times). However, a significant reduction in P65, IKKαβ, 

IKBα and P38 phosphorylation was observed in the 

hADSC-ex treatment group compared with the PBS 

group (Figure 6A–6C). The phosphorylation of JNK and 

ERK1/2 did not differ significantly between the hADSC-

ex treatment group and the PBS group (data not 

shown). Immunofluorescence staining revealed 

significantly greater nuclear localization of NF-κB P65 in 

the PBS group than in the hADSC-ex treatment group 

(Figure 6D). These results suggested that hADSC-ex 

inhibited NF-κB and P38/MAPK activation, thereby 

downregulating inflammatory molecule expression in 

microglia. 
 

DISCUSSION 
 

The poor self-repair capability of the CNS and the 

complicated pathology of TBI have made it challenging 

to develop an efficient clinical strategy to prevent 

and/or treat the secondary injury after TBI. [33]. MSC-

derived exosomes have attracted much interest in the 

treatment of TBI because of their ease of isolation, 

safety, lack of ethical challenges, and pleiotropic 

effects. Although the therapeutic effects of MSC-

derived exosomes in TBI have already been confirmed 

[12, 13], the underlying mechanisms have been 

unclear. In this study, we found that hADSC-ex were 

mainly taken up by microglia/macrophages and carried 

to the lesion site after being delivered to the 

contralateral cerebral ventricle in a rat model of 

TBI. After their uptake, the hADSC-ex suppressed 

microglia/macrophage activation, inhibited inflame-

matory responses and improved the neural injury 

microenvironment, thereby ameliorating multiple TBI-

induced adverse effects. The beneficial effects of 

hADSC-ex treatment after TBI included improved 

sensorimotor functional recovery, reduced neuronal loss 

and enhanced endogenous hippocampal neurogenesis.  
 

The efficacy of MSC-derived exosomes in the treatment 

of CNS diseases has been widely reported [34, 35]; 

however, in most studies, exosomes have been 

administered intravenously. Although exosomes can 

pass through the blood-brain barrier [36], in vivo 
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Figure 5. hADSC-ex alter the functional state of microglia in vitro. (A) qRT-PCR analysis of M1-associated factors after culture of M0 
microglia in M1 medium (containing 10 ng/mL granulocyte M-CSF, 100 ng/mL lipopolysaccharide and 20 ng/mL interferon-γ) for 12 h with 
hADSC-ex (200 μg total protein/mL), IL-4 (10 ng/mL) or PBS. Data represent the mean ± SD, n = 3 independent experiments, ns. p > 0.05, * p < 
0.05, ** p < 0.01, *** p < 0.001, determined by one-way ANOVA vs. M1+PBS. (B) qRT-PCR analysis of M2-associated factors after culture of 
M0 microglia in M2 culture medium (containing 10 ng/mL M-CSF and 10 ng/mL IL-4) for 12 h with hADSC-ex (200 μg total protein/mL) or PBS. 
Data represent the mean ± SD, n = 3 independent experiments, ns. p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, determined by one-way 
ANOVA vs. M2+PBS. (C) Representative images of morphological changes in microglia cultured in M1 medium for 24 h; yellow arrows indicate 
morphological changes. (D) The proportion of amoeba-like cells (M1 phenotype) among all cells after culture in M1 medium with hADSC-ex 
or PBS for 24 h. Data are presented as the mean ± SD, n = 3 independent experiments, * p < 0.05, determined by t-test vs. M1+PBS. 
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Figure 6. hADSC-ex suppressed the activation of classical NF-kB and MAPK signaling in primary microglia. (A, B) Immunoblots 
showing P-P65 and P65, P-IKKαβ and IKKβ, P-IKBα and IKBα, P-P38 and P38, P-ERK1/2 and ERK1/2, P-JNK and JNK, and GAPDH in M0 microglia 
cultured in M0 medium (containing 10 ng/mL M-CSF and 50 ng/mL transforming growth factor β1) or M1 medium, and treated with PBS or 
hADSC-ex (200 μg/mL) at different time points. (C) Fold changes in P-P65 to P65, P-IKKαβ to IKKβ, P-IKBα to IKBα, and P-P38 to P38 levels 
were each normalized to those of the M0 control group. Data represent the mean ± SD, n = 3 independent experiments, ns. p > 0.05, * p < 
0.05, determined by one-way ANOVA vs. M1+PBS. (D) M0 microglia were cultured in M1 medium and treated with PBS, IL-4 (10 ng/mL) or 
hADSC-ex (200 μg/mL) for 24 h. The cells were stained for NF-κB P65 protein (green), and the nuclei were counterstained with Hoechst 33342 
(blue). Scale bar = 50 μm. White arrows indicate the enrichment of nuclear NF-κB P65. 
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biodistribution studies have demonstrated that 

intravenously administered exosomes mainly accumu-

late in the liver, spleen, gastrointestinal tract and lungs, 

while only a small proportion enter the brain, even 

when modified with rabies virus glycoprotein  

[15, 16]. Therefore, intravenous administration may not 

be the optimal exosome delivery method for the 

treatment of CNS diseases. Patients with moderate to 

severe TBI usually undergo intraventricular catheter 

placement for intracranial pressure monitoring because 

elevated intracranial pressure is associated with poorer 

outcomes [1]. Exosomes could be administered through 

intraventricular catheters during intracranial pressure 

monitoring, thus preventing potential adverse reactions 

to the systemic distribution of exosomes and improving 

their therapeutic efficiency. In the present study, we 

microinjected hADSC-ex into the contralateral lateral 

ventricle of TBI rats 24 h after injury, thereby reducing 

the required exosome dosage (20 μg vs. 200 μg required 

for intravenous administration) [12]. Other routes of 

exosome administration, such as intrathecal (lumbar) 

injection or intranasal administration [37], could also be 

tested. Determining the optimal exosome administration 

route for the treatment of CNS diseases is an important 

priority for future research. 

 

The first step of exosome uptake and cargo delivery into 

acceptor cells is targeting of the acceptor cells. 

However, it is unclear whether this process is specific or 

nonspecific and stochastic [38]. We demonstrated that 

hADSC-ex were mainly taken up by microglia in vivo 

and in vitro. Our findings are consistent with those of  

a recent study indicating that exosomes from oligo-

dendrocytes were internalized preferentially by 

microglia, rather than by neurons [39]. Thus, MSC-

derived exosomes likely specifically enter microglia/ 

macrophages, although we have yet to determine by 

what pathway they enter.  

 

After their delivery, exosomes have been reported to 

accumulate at the injury site in a variety of animal 

disease models [37, 40–44]; however, the mechanisms 

of exosome migration have been unclear. We also 

observed exosome accumulation at the injury site. 

Further, we demonstrated that this phenomenon 

resulted from the uptake of exosomes by microglia/ 

macrophages and their subsequent transport to the 

injury site. Microglia are the resident innate immune 

cells of the CNS, which monitor the microenvironment 

in the healthy state and respond quickly when brain 

injury occurs. Activated microglia produce inflam-

matory molecules such as IL-1β, IL-6, IL-12, TNF-α, 

metalloproteinases, nitric oxide and reactive oxygen 

species, which promote inflammatory reactions by 

increasing the permeability of the blood-brain barrier 

and facilitating the recruitment of peripheral immune 

cells [20, 45, 46]. Neuroinflammation initiated by 

microglial activation is the main cause of secondary 

injury to the brain, which is the leading cause of 

aggravated neurological deficits and hospital deaths 

after TBI [45, 47, 48]. Therefore, normalizing 

microglial function and inhibiting microglia-induced 

neuroinflammation could help to prevent or treat neural 

injury [18]. We found that hADSC-ex suppressed  

the activation of the NF-kB and MAPK pathways  

in lipopolysaccharide/interferon-γ-stimulated primary 

microglial cells (M1 phenotype), prevented the 

secretion of inflammatory factors and promoted the 

polarization of microglia to the anti-inflammatory (M2) 

phenotype. Our results indicated that MSC-derived 

exosomes mainly entered microglia and exerted anti-

inflammatory effects by inhibiting M1 macrophage 

activation. Although these results may not fully reflect 

in vivo changes in the functional state of microglia, 

they provide valuable insights into the effects of MSC-

derived exosomes on microglial function. 

 

The advantages of exosome-based therapy have been 

extensively discussed [33, 49]. However, there are a few 

challenges associated with their routine use in clinical 

practice: (i) Due to the low yield of exosomes with 

currently available technologies, large numbers of stem 

cells are needed to produce therapeutic doses of 

exosomes. Thus, cell-free exosome treatment could be 

more costly than stem cell-based therapy. Therefore, it is 

imperative to improve the yield and purity of exosomes. 

(ii) Stem cell-derived exosomes are thought to have a 

lower therapeutic risk than stem cell therapies [50]. 

However, exosomes have specific biological functions 

and physicochemical molecular characteristics that could 

have unforeseen effects [50]. (iii) The composition of 

exosomal cargo is very complicated, and the various 

exosomal components could exhibit peculiar effects and 

interactions. The function of each exosomal component 

needs to be clarified before exosomes are used in clinical 

treatment. Active components could be increased 

through alterations of the culture conditions [51, 52] or 

modifications to exosomes via bioengineering [53, 54] to 

maximize their therapeutic effects. 

 

In conclusion, we have reported the first direct evidence 

that hADSC-ex mainly enter microglia and prevent their 

proinflammatory activation, thereby improving the 

injury microenvironment, alleviating aggravated neural 

injury and facilitating recovery following TBI. We have 

also demonstrated that the migration of exosomes may 

be due to their uptake by microglia/macrophages, which 

carry them to the lesion site. Our findings have 

extended the current understanding of the therapeutic 

action of exosomes in CNS diseases and provided 

valuable new insights into the immunoregulatory 

mechanisms of MSCs. 
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MATERIALS AND METHODS 
 

This study and all the experimental procedures were 

approved by the Institutional Animal Care and Use 

Committee of the Academic Committee of the Chinese 

Academy of Medical Sciences and Peking Union 

Medical College Hospital. 

 

Isolation, culture and identification of hADSC and 

hADSC-ex 
 

Human adipose tissue was obtained from donors who 

underwent liposuction surgery. The hADSC were 

isolated, cultured and identified as described in our 

previous study [17]. The hADSC-ex were also extracted 

according to previously described methods [55]. 

 

Animal experiments and behavioral assessment 

following TBI 

 

Adult male Sprague-Dawley rats aged six to eight 

weeks and weighing 300 ± 11 g (Charles River, Beijing, 

China) were housed in the animal facility of Peking 

Union Medical College Hospital. The rats were kept 

under temperature- and humidity-controlled specific-

pathogen-free conditions on a 12-hour light-dark cycle. 

TBI was induced by Feeney's weight-drop method [56], 

with a 25-g weight fall from a height of 20 cm. The 

animals were randomly divided into four groups of 

eight rats each, as follows: hADSC, hADSC-ex, PBS 

and Sham. The rats received a contralateral intra-

cerebroventricular injection of a 20 μL solution 

containing either hADSC (5.0 x 105 cells per rat, based 

on previous reports [57–59]), hADSC-ex (20 μg total 

protein per rat, 2.0 x 1010 particles/mL) or PBS, 24 h 

after injury (Figure 1A). Rats in the Sham group 

underwent surgery without injury or treatment. For 

proliferating cell labeling, BrdU (50 mg/kg) was 

injected intraperitoneally into rats daily for 10 days, 

beginning one day after TBI [60]. To determine the 

effects of hADSC-ex on neurologic deficits after TBI, 

two investigators who were blinded to the treatment 

status performed behavioral analyses using the mNSS 

[61] and foot-fault test [62] before the TBI and on days 

1, 3, 7, 14, 21, 28 and 35 post-injury.  

 

Immunohistochemical and immunofluorescence 

staining 

 

The rats were anesthetized with an intraperitoneally 

administered overdose of pentobarbital sodium, and 

were transcardially perfused with 200 mL of 0.01 M 

PBS, followed by 200 mL of 4% paraformaldehyde in 

0.1 M PBS (pH 7.4). Their brains were removed, 

immersed in 4% paraformaldehyde for two to four days, 

and cut into 4-mm-thick coronal blocks (total of four 

blocks per animal) using a rat brain matrix. The tissues 

were embedded in paraffin, and a series of 6-μm-thick 

slides were cut. After being deparaffinized and 

rehydrated, the brain sections were boiled in 10 mM 

citric acid buffer (pH 6) for 10 minutes for antigen 

retrieval. After being washed with PBS, the sections 

were incubated with 0.3% H2O2 in PBS for 10 minutes 

and blocked with 5% bovine serum albumin (BSA) 

containing 0.3% Triton X-100 at room temperature for 

one hour. The sections were then incubated with primary 

antibodies at 4°C overnight. For the negative controls, 

the primary antibodies were excluded. The sections were 

washed with PBS five times, incubated with secondary 

antibodies at room temperature for one hour, 

counterstained with 4′,6-diamidino-2-phenylindole and 

examined by fluorescence microscopy. For immune-

histochemical staining, sections were incubated with 

primary antibodies at 4°C overnight, then incubated with 

biotin-conjugated secondary antibodies followed by an 

avidin-biotin-peroxidase reagent, visualized with Fast 

DAB Peroxidase Substrate (Sigma-Aldrich) and 

counterstained with hematoxylin.  

 

For cell immunofluorescence staining, cells were fixed 

in 4% paraformaldehyde for 15 minutes and blocked 

with 5% BSA containing 0.3% Triton X-100 for one 

hour. The cells were then incubated with primary 

antibodies at 4°C overnight, and then with secondary 

antibodies for one hour at room temperature. Nuclei 

were counterstained with Hoechst 33342. The following 

primary antibodies were used: NeuN (Abcam, 

ab177487), CD11b (Abcam, ab1211), GFAP (Abcam, 

ab4674), MBP (Abcam, ab62631), CD68 (Abcam, 

125212), IBA1 (Proteintech, 10904-1-AP), BrdU 

(Proteintech, 241-1-Ig) and MAP2 (Proteintech, 17490-

1-AP). 

 

TUNEL staining for apoptotic neurons  

 

To detect neuronal cell death in vivo in TBI rats, we 

performed TUNEL staining of 10-μm paraffin-

embedded brain coronal sections (bregma, −1.5 mm) 

using an In-Situ Cell Death Detection Kit, POD (Roche, 

11684817910) according to the manufacturer's protocol. 

 

Cell counting and quantitation 
 

Cell counting and quantitation were carried out by an 

investigator blinded to the experimental groups. For the 

analysis of activated microglia/macrophages, CD68+ 

activated microglia/macrophages were counted in  

the lesion boundary zone in eight fields of view in  

each section, and the proportion of CD68+ activated 

microglia/macrophages relative to all cells was 

calculated. For neuronal apoptosis analysis, TUNEL/ 

NeuN double-positive cells were counted in the lesion 
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boundary zone in eight fields of view in each section, 

and the proportion of apoptotic neurons relative to the 

total number of neuronal cells was calculated. For 

neurogenesis analysis, in each section, all NeuN/BrdU 

double-positive cells were counted in the hippocampal 

dentate gyrus and its subregions, including the sub-

granular zone, granular cell layer and molecular layer. 

The percentage of overlapping signals between DiI and 

IBA1/GFAP in IBA1+ or GFAP+ cells was calculated 

in the lesion boundary zone in eight fields of view in 

each section. The proportion of IBA1/DiI double-

positive cells among all cells was calculated in the 

lesion boundary zone or contralateral side in eight fields 

of view in each section. 

 

In vivo tracking of hADSC-ex 
 

For in vivo tracking, hADSC-ex were stained with DiR 

dye (Invitrogen, D12731) according to the manufacturer's 

protocol. PBS, DiR dye or DiR-hADSC-ex were 

microinjected into the contralateral lateral ventricle 24 h 

after injury. The rats were anesthetized for observation 

under a Perkin Elmer (Caliper) IVIS Spectrum In  

Vivo System on days 0, 7, 14 and 21 after injection. 

Fluorescence images of DiR-hADSC-ex migration and 

biodistribution throughout the brain ventricle were 

acquired at an excitation wavelength of 740 nm and an 

emission wavelength of 790 nm, and were analyzed using 

Living Image® 4.5.5 software (Perkin Elmer).  

 

Flow cytometry analysis of in vivo cellular hADSC-

ex uptake  
 

CM-DiI dye (Invitrogen, C7000) was used to stain 

hADSC-ex (DiI-hADSC-ex) according to the supplier's 

protocol, and the DiI-hADSC-ex were injected into the 

contralateral brain ventricle of the rats 24 h post-injury. 

After 24 h, the rats were anesthetized with an 

intraperitoneally administered overdose of pentobarbital 

sodium, and were transcardially perfused with PBS. The 

contralateral hemispheres were immediately extracted, 

minced and digested with 20 units/mL papain and 

0.005% DNase I in PBS. The cell suspension was 

centrifuged at 200 x g for five minutes. Dissociated 

neural cells were obtained by centrifugation in 0.9 M 

sucrose in 0.5× Hank's Balanced Salt Solution for 10 

minutes at 750 x g [63]. The cells were pre-blocked 

with 5% donkey serum and stained on ice for 30 

minutes with optimal concentrations of the primary 

antibodies and isotype controls. The cells were then 

washed three times with 3% BSA/PBS, stained with 

Alexa Fluor 647-conjugated secondary antibodies 

(Abcam, ab150075, ab150107) in the dark, washed 

three times and resuspended in 3% BSA/PBS. Cell 

sorting was performed on a BD Accuri C6 flow 

cytometer (BD Biosciences), and data were analyzed 

with Cflow software (BD Biosciences). The following 

primary antibodies and isotype controls were used: 

CD11b (Abcam, ab1211), NeuN (Abcam, ab177487), 

GFAP (Abcam, ab10062), MBP (Abcam, ab62631), 

rabbit IgG monoclonal-isotype control (Abcam, 

ab172730) and mouse IgG2a kappa monoclonal 

antibody-isotype control (Abcam, ab170191).  

 

Culture of primary adult rat microglia and 

generation of M0, M1 and M2 phenotype microglia 
 

Primary microglia were isolated from adult male 

Sprague-Dawley rat brains, as described previously [25]. 

The cells were cultured (1.2 x 105 cells per well in 2 mL 

of medium) in six-well poly-D-lysine-coated plates 

(Sigma-Aldrich, P0296) and grown in microglia culture 

medium (Dulbecco's modified Eagle's medium/F-12 

Glutamax; Gibco, 10565042) supplemented with 10% 

fetal bovine serum, 100 U/mL penicillin, 100 mg/mL 

streptomycin and 10 ng/mL rat recombinant carrier-free 

macrophage colony stimulating factor (M-CSF; 

Peprotech, 400-28) at 37°C with 5% CO2. Half of the 

medium was changed every three days. M0, M1 and M2 

microglia were polarized as described previously [26].  

 

Primary adult rat mixed neural cell culture and in 

vitro hADSC-ex uptake  
 

Mixed neural cell cultures were obtained through the 

prolonged culture of purified neurons obtained using 

OptiPrep™ density gradient (Sigma-Aldrich, D1556) 

separation. Primary adult rat cortical neurons were 

isolated from adult male Sprague-Dawley rats, as 

described previously [64]. Primary cortical neurons were 

cultured for 14-20 days (until glial cells appeared) to 

obtain mixed neural cells. To study the cellular uptake of 

hADSC-ex, we added DiI-hADSC-ex to the mixed 

neural cells and monitored the changes in DiI 

fluorescence intensity in each cell type for 24 h using a 

Cytation 5 Cell Imaging Multi-Mode Reader. The results 

were analyzed with Gen5 Data Analysis 3.0 Software. 

 

ELISA 
 

CSF was collected from the rats by means of a needle 

puncture through the occipito-atlantal membrane on day 

5 after TBI. IL-1β and IL-6 protein levels in the CSF 

were quantified with ELISA kits (Multi Sciences, 70-

EK301BHS-96, 70-EK306HS-96) according to the 

manufacturer's instructions by an investigator blinded to 

the experimental groups. 

 

Western blotting 
 

Cells or hADSC-ex were lysed in radioimmuno-

precipitation assay lysis buffer (Beyotime, P0013C) 
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with 1 mM phenylmethylsulfonyl fluoride and a 

protease inhibitor cocktail on ice for 30 minutes. The 

lysates were sonicated, and proteins were quantified 

with a BCA Protein Assay Kit (Beyotime, P0012S). 

Proteins were electrophoretically separated on 10% 

sodium dodecyl sulfate polyacrylamide gels and 

electroblotted onto polyvinylidene difluoride 

membranes (0.22 μm, Millipore, R9AA3602). The 

membranes were blocked with 5% BSA, incubated with 

specific antibodies overnight at 4°C, and then incubated 

with horseradish peroxidase-conjugated secondary 

antibodies (Proteintech, SA00001-1, SA00001-2) for 

one hour at room temperature. Protein levels were 

detected with an enhanced chemi-luminescent reagent 

(Millipore, 345818). The primary antibodies used were: 

β-actin (Proteintech, 60008-1-Ig), Hsp70 (Proteintech, 

66183-1-Ig), Hsp90 (Proteintech, 60318-1-Ig), Tsg101 

(Abcam, ab125011), CD63 (Proteintech, 67605-1-Ig), 

NF-κB Pathway Sampler Kit (Cell Signaling 

Technology, 9936T), P38 (Cell Signaling Technology, 

8690), Phospho-P38 (Cell Signaling Technology, 4511), 

ERK1/2 (Cell Signaling Technology, 4695), Phospho-

ERK1/2 (Cell Signaling Technology, 4370), JNK (Cell 

Signaling Technology, 9252), Phospho-JNK (Cell 

Signaling Technology, 9255) and glyceraldehyde 3-

phosphate dehydrogenase (GAPDH; Proteintech, 

60004-1-Ig). 

 

RNA extraction and qRT-PCR 

 

Brain tissues or cells were sonicated and lysed with 

TRIzol (Invitrogen, 10296010). Total RNA was 

extracted according to the manufacturer's instructions 

and treated with DNase I (Sigma-Aldrich, AMPD1). 

Next, cDNA was synthesized using a high-capacity 

cDNA reverse transcription kit (Takara, RR037Q). The 

qRT-PCR analysis was performed on a Step-one 

System (Bio-Rad) with TB Green Mastermix (Takara, 

R075A). Relative mRNA expression was determined 

through the 2–ΔΔCt method and normalized to GAPDH 

expression. The primer sequences are shown in 

Supplementary Table 1. 

 

Statistical analysis 

 

Statistical analyses were performed with GraphPad 

Prism Software 7.0. All data are presented as the mean 

± standard deviation (SD), and were analyzed with 

Student's t-test (two groups) or with one-way analysis 

of variance (ANOVA) or two-way ANOVA followed 

by Bonferroni's multiple comparison test (more than 

two groups). Differences between means were 

considered statistically significant when p was < 0.05. 

The animal weights were used for randomization and 

group allocation. No animals were excluded from the 

analysis. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Characterization of hADSC and hADSC-ex. (A) Cell morphology of hADSC observed under a light 
microscope. (B, C) Differentiation capacity of hADSC demonstrated by Oil red O staining for adipocytes and alkaline phosphatase staining for 
osteoblasts. (D) FACS analysis of surface markers on hADSC. (E) Representative transmission electron microscopy images of hADSC-ex. Scale 
bar = 100 nm. (F) Size distribution of hADSC-ex, determined with a nanoparticle tracking analyzer. The peak diameter of the particles was 
101.4 nm. Concentration = 2.0 x 1010 particles/mL. (G) Western blot analysis of exosomal markers (Hsp90, Hsp70, Tsg101 and CD63) and β-
actin in hADSC and hADSC-ex. 
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Supplementary Figure 2. hADSC-ex were mainly taken up by microglia/macrophages in vitro and in vivo. (A) Representative 
images of IBA1/DiI immunostaining in the lesion boundary zone and corresponding contralateral area. (B) Quantification of the proportion of 
IBA1/DiI double-positive cells among all cells in the lesion boundary zone and corresponding contralateral area. Data are expressed as the 
mean ± SD, n = 3 rats. *** p < 0.001, determined by Student’s t-test. (C) Quantification of the percentage of overlapping signals between DiI 
and IBA1/GFAP in IBA1+ or GFAP+ cells in the lesion boundary zone. Data are expressed as the mean ± SD, n = 3 rats. *** p < 0.001, 
determined by Student’s t-test. (D) Representative images of IBA1, GFAP, MAP2 and MBP immunostaining for microglia/macrophages, 
astrocytes, neurons and oligodendrocytes, respectively, in the mixed neural cell culture after 24 h DiI-hADSC-ex treatment, to track the 
cellular uptake of hADSC-ex. Scale bar = 50 μm.  
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Supplementary Figure 3. hADSC-ex were mainly taken up by microglia/macrophages in vitro and in vivo. (A) Gating strategy for 
FACS analysis. (B) Representative immunostaining images of dissociated primary neural cells under laser scanning confocal microscopy, 
showing CD11b (white), GFAP (white), NeuN (white), MBP (white) and DiI (red). Scale bar = 50 μm. Double-positive cells are indicated by 
yellow arrows. 
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Supplementary Table 
 

Supplementary Table 1. Primers used in this study. 

Gene Sense (5ʹ-3ʹ)  Anti-sense (5ʹ-3ʹ) 

MCP-1 AACCCTAAGGACTTCAGCACCTT GCTTGAGGTGGTTGTGGAAAA 

TNF-α TGAACTTCGGGGTGATCGGT CGCTTGGTGGTTTGCTACGA 

IL-1α GAGGCCATAGCCCATGATTTA CTCCTGCTTGACGATCCTTATC 

IL-1β AAAAATGCCTCGTGCTGTCT TCGTTGCTTGTCTCTCCTTG 

IL-6 GTTCTCAGGGAGATCTTGGAAATG GATTGTTTTCTGACAGTGCATCATC 

iNOS AACCCAAGGTCTACGTTCAAG GCACATCGCCACAAACATAAA 

CCL2 GCAGGTCTCTGTCACGCTTC GGGCATTAACTGCATCTGGCT 

CCL3 AACGAAGTCTTCTCAGCGCC TCTCTTGGTCAGGAAAATGACACC 

CCL5 CTCACCGTCATCCTCGTTGC TTCGAGTGACAAAGACGACTGC 

Arg1 GGGTGGAGACCACAGTATGGC GCATCCACCCAAATGACGCA 

CD206 CAACTCTTGGACTCACGGCA GGGATTCAGCTTCCGGGTTG 

IGF1 TACCAAAATGAGCGCACCTCC GCCTGTGGGCTTGTTGAAGTA 

IL-10 AGCTGAAGACCCTCTGGATAC TGGCCTTGTAGACACCTTTG 

GAPDH AGTGCCAGCCTCGTCTCATA TGAACTTGCCGTGGGTAGAG 

 

  



 

www.aging-us.com 18296 AGING 

Supplementary Videos 
 

Please browse Full Text version to see the data of Supplementary Videos 1–5. 

 

Supplementary Videos 1–5. The videos captured on the Cytation 5 Cell Imaging Reader for 24 h depict the dynamic 

changes in DiI fluorescence intensity in different neural cell types (merge of brightfield and red fluorescence) after the 

addition of DiI-hADSC-ex (200 μg/mL) to purified microglia or mixed neural cells.  

 

Video 1. Purified microglia.  

Video 2. Microglia in the mixed neural cell culture.  

Video 3. Microglia and astrocytes.  

Video 4. Microglia and neurons.  

Video 5. Microglia and oligodendrocytes. Microglia are indicated by white circles. Astrocytes, neurons and oligodendrocytes 
are indicated by yellow circles. 


