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Abstract: Brain-computer interfaces (BCIs) have shown great prospects as real-time bidirectional links 
between living brains and actuators. Artificial intelligence (AI), which can advance the analysis and decoding 
of neural activity, has turbocharged the field of BCIs. Over the past decade, a wide range of BCI applications 
with AI assistance have emerged. These “smart” BCIs including motor and sensory BCIs have shown notable 
clinical success, improved the quality of paralyzed patients’ lives, expanded the athletic ability of common 
people and accelerated the evolution of robots and neurophysiological discoveries. However, despite 
technological improvements, challenges remain with regard to the long training periods, real-time feedback, 
and monitoring of BCIs. In this article, the authors review the current state of AI as applied to BCIs and 
describe advances in BCI applications, their challenges and where they could be headed in the future. 
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Introduction

With the large explosion in technology, the border between 
humans and machines has begun to narrow. Our spectacular 
science fictions describing “mind control” have gradually 
come true with the help of machines. The frontiers of these 
new techniques are brain-computer interfaces (BCIs) and 
artificial intelligence (AI). Experimental paradigms for BCIs 
and AI were usually developed and applied independently 
from each other. However, scientists now prefer to combine 
BCIs and AI, which makes it possible to efficiently use the 
brain’s electric signals to maneuver external devices (1).

For severely disabled people, the development of BCIs 
could be the most important technological breakthrough in 
decades (2). BCIs, which represent technologies designed 

to communicate with the central nervous system, and 
neural sensory organs can provide a muscle independent 
communication channel for people with neurodegenerative 
diseases, such as amyotrophic lateral sclerosis, or acquired 
brain injuries (3). The history of BCIs is intimately related 
to the effort of developing new electrophysiological 
techniques to record extracellular electrical activity, 
which is generated by differences in electric potential 
carried by ions across the membranes of each neuron (4).  
The methods of detecting different types of brain 
signals can be classified as invasive or noninvasive (5).  
Invasive recording systems include electrocorticography 
(ECoG), microelectrode arrays (MEAs), and so on (6). 
Noninvasive BCIs including electroencephalography 
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(EEG), magnetoencephalography, functional magnetic 
resonance imaging (fMRI), and functional near-infrared 
spectroscopy, do not carry risks of tissue damage and can 
be implemented rather easily (7). With the help of these 
electrophysiological techniques, BCIs can be quickly 
applied to ‘read’ the brain to record its activity and decode 
its meaning and to ‘write’ to the brain to manipulate activity 
in specific regions and affect their function (8). However, 
the development of BCIs has limitations. Although we have 
obtained much information from multiple extracellular 
electrodes, this large amount of information cannot 
be transferred efficiently (9). Neuroscientists cannot 
unambiguously discern a person’s intentions from the 
background electrical activity recorded in the brain and 
match it to the actions of robotic arm (10). The reason for 
this limitation is that the neural correlates of psychological 
phenomena are inexact and poorly understood (11). 
Fortunately, recent advances in AI methodologies have 
made great strides, verifying that AI outperforms humans 
in decoding and encoding neural signals (12). This provides 
AI a great opportunity to be to an ideal helper in processing 
signals from the brain before they reach the prostheses. 

AI is a set of general approaches that uses a computer 
to model intelligent behavior with minimal human 
intervention, eventually matches and even surpasses 
human performance in task-specific applications (13).  
When AI works within BCIs, internal parameters are 
provided to the algorithms constantly, such as pulse 
durations and amplitudes, stimulation frequencies, energy 
consumption by the device, stimulation or recording 
densities, and electrical properties of the neural tissues (14). 
After receiving the information, AI algorithms can identify 
useful parts and logic in the data and then simultaneously 
produce the desired functional outcomes (15). Although 
these studies remain largely in the preclinical research 
domain, the continued development may highlight clinically 
actionable changes in BCIs.

At the dawn of technological transformation, a tendency 
to combine BCIs and AI has also attracted our attention. 
Here, we review current applications with a focus on the 
state of BCIs, the role that AI plays and future directions of 
BCIs based on AI (Figure 1).

Applications of BCIs based on AI

Applications in cursor control

Early studies focused on the control of personal computer 

mouse cursors for paralyzed patients through BCIs with 
high feasibility (16,17). The fundamental components of a 
cursor control BCI include a sensor to record neural signals, 
a decoder to interpret movement intentions, and a computer 
cursor that interacts with the external environment (18).

A pioneering study published in 2000 by Kennedy 
and colleagues first demonstrated that an invasive BCI 
device with a special electrode implanted into the outer 
layers of the human neocortex could be decoded to drive a 
cursor on a computer monitor (19). Studies in nonhuman 
primates have shown that cursor control BCIs can achieve 
multidimensional neural integration with two or more 
degrees of freedom (20). One-dimensional (1D) cursor 
control is achievable using EEG with event-related 
desynchronization, using decision trees sequentially string 
selections together to make a final choice (21,22). Two-
dimensional (2D) cursor control can be achieved using 
techniques such as fMRI or EEG (23). Recent work in 2017 
reported the development of a high-performance, invasive 
BCI for communication, using two algorithms to translate 
signals into point-and-click commands: the ReFIT Kalman 
Filter for continuous two-dimensional cursor control and a 
Hidden Markov Model-based state classifier for clicking (24).  
By providing at least 2D neural control of the computer 
cursor and a parallel selection method such as a click, the 
user can not only type in self-selected characters but also 
use native computer application with the cursors, just like 
a healthy person can with a mouse (25). Moreover, this 
BCI improved the communication rate to 32 letters/min,  
making cursor control more efficient (26). 

On the basis of scalp EEG, ECoG and synchronous 
evoked potentials, many BCI systems for cursor control 
have been developed, such as the P300 matrix speller and 
the rapid serial visual presentation method (27). The Brain 
Gate group conducted the first human trial of a motor 
BCI starting in June 2004, which recorded signals from a 
Blackrock 96-channel MEA implanted in the arm area of 
M1 in a patient with tetraplegia following cervical spinal 
cord injury (28). They achieved two-dimensional movement 
of a cursor on a screen and subsequently used this “neural 
cursor” to direct the movement of a robotic limb (28).

Applications in neuroprosthetics and limb rehabilitation 

The task complexity of BCI studies rapidly has advanced 
from 2D and 3D control of a cursor on a computer screen (29)  
to the control of more natural behaviors, such as reaching 
and grasping (30), self-feeding (31), and bimanual arm 
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movements (32). To observe a person with tetraplegia 
picking up a cup of coffee using a BCI-controlled robotic 
arm is spectacular. This rapidly advancing technology 
works by implanting an array of electrodes either on or in a 
person’s motor cortex, which is the brain region involved in 
planning and executing movements (33). Then the activity 
of the brain is recorded while the individual engages in 
cognitive tasks, such as imagining that they are moving their 
hand, and is used to command a robotic limb (33). 

In addition, many therapeutic strategies have been 
developed to help stroke patients regain some function in 
the affected limb. However, approximately 80% of all stroke 
survivors with upper limb motor deficits do not benefit 
from these approaches (34). The method of lower limb 
rehabilitation using BCIs has been explored recently (35).  
The overall principle is thought to be that closing the 
loop between the cortical activity of motor intention and 
movement, thereby producing afferent feedback activity, 
might restore functional corticospinal and corticomuscular 

connections (36).
Early researchers of neuroprosthetics implanted 

electrodes into a monkey’s brain and measured the signals 
from the electrodes. The monkey used a joystick to control 
a robotic arm. Eventually, the researchers changed the 
controls so that the robotic arm was being controlled only by 
the signals coming from the electrodes, not the joystick (37).  
Invasive and noninvasive BCI systems have also been used 
to enable neural control of a robotic arm in humans (38,39). 
The use of implantable electrodes allows patients to control 
movements with several degrees of freedom, enabling 
them to make more complex and functional movements. 
However, approaches that use noninvasive systems provide 
limited control, and most complex movements rely on 
the AI of the robot (40). To classify motor-related signals 
specifically for BCI applications, Nurse and colleagues 
developed a generalized approach that takes advantage of a 
stochastic machine-learning method (41). Importantly, their 
classifier does not need to rely on the use of extensive a 

Figure 1 Schematic description of BCIs based on AI. With the help of AI to process signals, the applications of BCIs have been extended 
greatly, including cursor control, auditory sensation, limb control, spelling devices, somatic sensation, and visual prosthesis. The circuit can be 
described as follows. First, micro-electrodes detect signals from the human cerebral cortex and send them to the AI. Second, the AI takes charge 
of signal processing, which includes feature extraction and classification. Third, the processed signals are output to achieve the abovementioned 
functions. Finally, feedback is sent to the human cortex to adjust the function. BCIs, brain-computer interfaces; AI, artificial intelligence.
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priori data to train the BCI. Their algorithms outperformed 
other methods on the Berlin BMI IV 2008 dataset and 
demonstrated high levels of classification accuracy when 
tested on datasets derived from EEG signals (41). 

In addition, studies have shown that the use of BCIs 
can be effective in chronic stroke motor rehabilitation 
and have demonstrated that stroke patients without 
residual movement benefit from BCIs for their cortical 
and subcortical reorganization including functional and 
structural connectivity (42). The learning of neuroprosthetic 
control has been shown to reshape cortical networks and 
trigger large-scale modifications of the cortical network, 
even in perilesional areas (43). Machine learning algorithms 
can make more gradual decoder modifications (44) and 
produce a robust neuroprosthetic performance that can be 
maintained despite nonstationary neural inputs and changes 
in context (45). The development of AI and computer deep 
learning will provide a new way to decode neural signals 
with extremely fast, never before-seen speeds.

Applications in somatosensation

For treating patients with paralysis, movements are 
highly dependent on somatosensory feedback, especially 
proprioceptive and tactile feedback (46). Mechanoreceptive 
afferent signals in our skin convey information about the 
location of contacts (47) as well as the forces exerted on the 
skin when we grasp an object (48). Loss of proprioception 
largely eliminates the ability to plan the dynamics of limb 
movements (49). Given the importance of somatosensation, 
the development of bidirectional BCIs is essential. 
Activation of sensors on the prosthesis could be transferred 
to activate neurons with the corresponding receptive 
fields (36). We can explore the link between the pressure 
exerted on objects by the prosthesis and the appropriate 
magnitude of intracortical microstimulation (ICMS) pulses 
more efficiently with the help of AI (50). Random forests in 
noninvasive sensorimotor rhythm BCIs have been shown 
to be practical and convenient nonlinear classifiers (51). 
In addition, somatosensory evoked potential-based BCIs 
have been extensively investigated using the Fukunaga-
Koontz transform-based feature extraction method with a 
performance improvement from 70% to 75% (52).

One approach to restore somatosensation through BCIs 
is studying relevant natural somatosensory coding with the 
help of recorded systems such as ICMS and attempting to 
mimic the nervous stimulation of healthy people (36,53). 
Tucker Tomlinson and Lee E. Miller observed that a 

monkey’s perception was altered in a predictable manner 
by delivering ICMS coincidently with force pulses applied 
to a monkey’s hand (54). However, the perception was not 
accurate enough because it is currently impossible to activate 
large numbers of neurons individually and independently (54).  
More combined technologies are needed before we can 
achieve restoration of the somatosensation of humans with 
BCIs.

Applications in auditory sensation

The most common and oldest way to use a BCI is a cochlear 
implant (55). The cochlear implant is a successful example 
of an afferent interface, used to restore hearing in over 
200,000 patients worldwide according to the U.S. Food and 
Drug Administration since December 2010 (https://www.
nidcd.nih.gov/about/strategic-plan/2012-2016/science-
capsule-cochlear-implants). A cochlear implant bypasses 
the nonfunctioning part of the ear, processes sound waves 
into electric signals and directly stimulates the sensory 
epithelium of the basilar membrane to simulate auditory 
stimuli (56). These implants may be placed into the cochlear 
nerve or pons junction when the auditory nerve has been 
damaged; the cochlear nucleus, such as the lateral foramen 
of Luschka; or into the inferior colliculus, a part of the 
distal sensory circuitry (57). A better resolution of sensory 
input is achieved by providing it to the cortex rather than 
the auditory nerve (57).

However, even if cochlear implantation enables some 
children to have restored hearing and attain age-appropriate 
speech development after sensory loss, the outcomes are 
highly variable between patients and are difficult to predict (58).  
A computational model combined with a complete finite 
element model and synthetic structures has been designed 
to provide the missing information linking each of the 
surgical variables to their effect on the excitation of the 
nerves based on μ computed tomography images. The 
metric for the usefulness of the stimulation protocol was 
calculated and used to rerun the simulations with better 
parameters (59). A random-forest regression model using 
clinical data (e.g., duration of deafness and age at surgery) 
was applied for predicting word recognition scores in 
postlingually deaf adults with a high accuracy of 95.2% (60). 
Presurgical neural morphological data obtained from fMRI 
have been used in linear multivariate ranking support vector 
machines for building and validating predictive models of 
speech-perception improvement after surgery (61). The 
findings suggest that neural systems that are unaffected by 
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auditory deprivation best predicted postsurgical speech-
perception outcomes (61). 

Applications in speech synthesizers

Patients with tetraplegia and anarthria can communicate in 
real-time with the help of neural point-and-click control 
derived from intracortical neural activity (62). With the 
development and proliferation of mobile communication 
equipment such as mobile phones, tablet, and other touch-
screen devices, researchers have developed many kinds of 
virtual keyboards with more efficient text entry capabilities, 
including DASHER, which is driven by gestures and has 
been tested as a BCI communication equipment based on 
one-dimensional EEG control (63). Such devices interpret 
neural activity that occurs while people silently mouth 
words and then use this information to generate synthetic 
speech sounds (64).

Locked-in patients with amyotrophic lateral sclerosis 
can control the variations in their slow cortical potentials 
to operate an electronic spelling device at a rate of 
approximately 2 characters per minute (65). To further 
improve the communication rate, techniques for decoding 
speech directly from the cortex should be explored. One 
study examined the potential to decode words from an 
ECoG recorded from Wernicke’s area, but the accuracy was 
modest (66). In a recent study, researchers used a two-stage 
decoder to accurately reconstruct a speech spectrogram (67). 
Stage 1 of the decoder is a bidirectional long short-term 
memory (bLSTM) recurrent neural network, decoding 
articulatory kinematic features from continuous neural 
activity recorded from the ventral sensorimotor cortex, 
superior temporal gyrus, and inferior frontal gyrus. Stage 
2 is a separate bLSTM for decoding acoustic features from 
the decoded articulatory features from stage 1. Then, 
the audio signal is synthesized from the decoded acoustic 
features (67). Unlike using a cursor to spell, transferring 
neural activity into speech directly is more efficient (64). 
The strategy may be an important next step in realizing 
speech restoration for patients with paralysis.

However, the speed of communication using this 
electronic spelling device is much slower than normal 
speech (64). Alternatively, patients with even minimal 
muscle control still preferred communicating with more 
conventional assistive devices such as eye gaze trackers or 
binary switches that can provide higher communication 
rates (67). Even so, the two-stage bLSTM-based decoder 
has been a breakthrough in brain-computer interfacing.

Applications in optical prosthetics

Visual prosthetic development has one of the highest 
priorities in the biomedical engineering field (68). Complete 
blindness from retinal degeneration arises from diseases 
such as Leber’s congenital amaurosis or age-related macular 
degeneration, which causes dystrophy of photoreceptor  
cells (69). The procedure of visual prostheses can be 
described as follows. First, the prosthesis detects light 
emanated from sources or reflected from surfaces in the 
physical environment of the implant patient. Second, the 
light is transduced into an artificial stimulus. Third, the 
artificial stimulus is delivered to the retina and evokes 
a response (70). Rudimentary vision can be achieved by 
converting images into binary pulses of electrical signals 
and delivering them to the visual cortex (70). 

For visual prosthesis design, the electrode array is critical. 
Prosthesis electrode arrays need to adapt to different optimal 
stimulus locations, stimulus patterns, and patient disease 
states (71). To find the best prosthesis electrode array for a 
patient, BCIs based on AI are indispensable. A new electrical 
stimulation tuning system constructed with a generalized 
nonlinear model framework and autoencoder has been 
developed and was suggested to estimate electrical stimuli 
equivalent to a given natural visual stimulus when introduced 
to lateral geniculate nucleus cells (72). A new kind of thin, 
flexible multielectrode polymer probe and a robotic insertion 
approach for inserting flexible probes were developed by 
Neuralink (73). This technology is suitable for visual prosthesis 
and may provide ideal retinal stimulating methods that have 
the flexibility to match the curvature of the retina without 
placing significant mechanical pressure on the retina (74).

However, there are things to note about the development 
of visual prostheses. To date, sensations created have been 
in the form of bright spots referred to as phosphenes or 
visual perception patterns (75). Artificial neural networks 
which are powerful learning tools that provide a great deal 
of flexibility and scalability may provide new methods for 
mimicking the natural visual system. 

Discussion and conclusions

The present review highlights current research in the BCI 
field based on AI, which has grown rapidly over the last 
15 years (76-78). The combination of BCIs and AI offers 
a powerful way to investigate brain function by providing 
direct knowledge and control of neurons controlling 
behavior, which will help scientists know more about the 
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human brain and promote developments in rehabilitation 
medicine (8). One of the biggest advantages machine 
learning may confer on BCI is the ability to achieve real-
time or near-real-time modulation of training parameters 
and subsequent adjustments in response to active real-
time feedback (46). Furthermore, algorithms learn from 
previous data and guide users towards decisions on the 
basis of what they have done in the past (79). Patients and 
healthy subjects alike often show large variability, or even 
inability, of brain self-regulation for BCI control, known 
as BCI illiteracy (79). Adaptive machine learning methods 
can help participants who suffer from BCI illiteracy to gain 
control of the system, combining supervised techniques and 
unsupervised adaptation (80).

Despite the reported successes and breakthroughs in this 
field, there still exist some problems. First, most studies 
have focused on the recovery of motor ability, and the use 
of BCIs and AI for cognitive training is still at a very early 
stage (81). Second, clinical BCI applications are still very 
limited, and some important issues need to be solved before 
BCIs could be considered effective systems for rehabilitation 
in clinical settings. For example, stimulating electrodes with 
smaller diameters are needed (82). Third, machine learning 
algorithms learn to analyze data by generating algorithms 
that can rarely be predicted and comprehended in the 
real world, which leads to problems of unknown process 
between a person’s thoughts and the technology acting on 
their behalf (83). 

As technologies that directly integrate the brain with 
computers become unprecedentedly complex, various ethical 
and social challenges that merit further examination and 
discussion will also arise. For instance, some forms of BCIs 
are likely to be expensive, posing questions of affordability 
and feasibility for people with severe disabilities to access 
them as assistive technology (84). In addition, BCIs with a 
decision-making device into human’s brain with AI software 
that autonomously adapts its operations raise questions about 
human autonomy by (85). Brain information as digitally 
stored neural data can also be exploited by others with 
sufficient computational power to make inferences about our 
memory, intentions, conscious and unconscious interests, 
and emotional reactions (86). Moreover, reports have 
surfaced about a minority of people who undergo deep-brain 
stimulation for Parkinson’s disease becoming hypersexual, or 
developing other impulse-control issues (85,86).

In conclusion, BCI based on AI is a rapidly advancing field 
of interdisciplinary integration of medicine, neuroscience, 
and engineering. Although most studies that have evaluated 

AI applications in BCIs to date have not been vigorously 
validated for reproducibility and generalizability, the goal of 
these devices is to improve the level of function and quality of 
life for people with paralysis, spinal cord injury, amputation, 
acquired blindness, deafness, memory deficits, and other 
neurological disorders. The capability to enhance normal 
motor, sensory or cognitive function is also emerging and 
will require careful regulation and control. Further technical 
development of BCIs, clinical trials and regulatory approval 
will be required before there is widespread introduction of 
these devices into clinical practice. The development of this 
technology must trigger a revolution in medicine. 
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