
SAINT: Probabilistic Scoring of Affinity Purification - Mass 
Spectrometry Data

Hyungwon Choi1, Brett Larsen2, Zhen-Yuan Lin2, Ashton Breitkreutz2, Dattatreya 
Mellacheruvu1, Damian Fermin1, Zhaohui S. Qin3, Mike Tyers2,4,5, Anne-Claude 
Gingras2,4,*, and Alexey I. Nesvizhskii1,6,*

1 Department of Pathology, University of Michigan, Ann Arbor, MI 48109-0602, USA

2 Centre for Systems Biology, Samuel Lunenfeld Research Institute, 600 University Avenue, 
Toronto, Ontario, M5G 1X5, Canada

3 Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann 
Arbor, MI 48109, USA

4 Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, 
Ontario, M5S 1A8, Canada

5 Wellcome Trust Centre for Cell Biology and Centre for Systems Biology, School of Biological 
Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, Scotland, UK

6 Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 
48109-0602, USA

Abstract

We present SAINT (Significance Analysis of INTeractome), a computational tool that assigns 

confidence scores to protein-protein interaction data generated using affinity-purification coupled 

to mass spectrometry (AP-MS). The method utilizes label-free quantitative data and constructs 

separate distributions for true and false interactions to derive the probability of a bona fide protein-

protein interaction. We demonstrate that SAINT is applicable to data of different scales and 

protein connectivity and allows for the transparent analysis of AP-MS data.

The analysis of protein complexes and protein interaction networks is of central importance 

in biological research. A combination of affinity purification and mass spectrometry (AP-

MS) has been increasingly used for both small scale and large scale analysis of protein 

complexes and interaction networks 1–4. However, the development of computational tools 
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for the processing of AP-MS data has not kept pace with improvement in experimental 

approaches. In addition to the general challenge of false positive protein identifications in 

MS-based proteomic data5, unfiltered AP-MS datasets contain a large number of non 

specifically binding proteins; filtering these contaminants represents the foremost 

computational challenge.

While early methods filtered the noise using binary data (presence or absence of a protein), 

more recently proposed methods take into account quantitative information embedded in the 

mass spectrometric data (e.g. label-free quantification, such as spectral counts). For 

example, one recently described method converts the normalized spectral abundance factor 

(NSAF) into the posterior probability of a true interaction between a bait-prey pair using 

simple heuristics, which we term PP-NSAF hereafter 6. Another method, CompPASS 

computes scores that adjust observed spectral counts relative to the reproducibility of 

detection across biological replicates and to the frequency of observing prey proteins in 

purifications of different baits7. Although both approaches are effective in analyzing the 

datasets for which they were developed, these scores are an empirical transformation of 

spectral counts without a probability model for the measurement errors in the data in a 

transparent manner.

In a recent work we introduced an advanced approach for statistical analysis of interaction 

data from AP-MS experiments utilizing label-free quantification, which we termed 

Significance Analysis of INTeractome (SAINT) 8. Like PP-NSAF and CompPASS, our 

original SAINT approach was designed for the analysis of a specific dataset, the yeast kinase 

and phosphatase interactome. Here we present a generalized SAINT framework that can 

compute interaction probabilities in a variety of datasets. The method incorporates negative 

controls commonly generated as a part of the experimental study, but can also be applied to 

large datasets in the absence of such data. Here we illustrate the methodology and its 

advantages through the analysis of datasets of different sizes and network density levels: 

from a large, sparsely connected network involving human deubiquitinating enzymes to a 

smaller, highly interconnected network for chromatin remodeling proteins, and even to the 

analysis of a single bait, the protein CDC23.

The aim of SAINT is to convert the label free quantification (spectral count Xij) for a prey 

protein i identified in a purification of bait j into the probability of true interaction between 

the two proteins, P(True|Xij). The spectral counts for each prey-bait pair are modeled with a 

mixture distribution of two components representing true and false interactions. Note that 

these distributions are specific to each bait-prey pair. The parameters for true and false 

distributions, P(Xij|True) and P(Xij|False), and the prior probability πT of true interactions in 

the dataset, are inferred from the spectral counts for all interactions involving prey i and bait 

j. SAINT normalizes spectral counts to the length of the proteins and to the total number of 

spectra in the purification.

In addition to the experimental data for bait proteins, AP-MS data often contain negative 

controls (Fig. 1a). When these are available, SAINT estimates the spectral count distribution 

for false interactions directly from the negative controls, which makes the modeling 

approach semi-supervised (see Methods). SAINT modeling can also be performed without 
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negative control data, given that a sufficient number of independent baits are profiled, and 

provided that these baits are not densely interconnected. In this case (illustrated in Fig. 1b), a 

prey detected in the purification of a bait is scored in reference to the quantitative 

information for the same prey across purifications of all other baits in the dataset. While this 

is possible for large datasets such as the yeast kinase and phosphatase network8 and the 

human deubiquitinating (DUB) enzyme interaction network7 (that each contain >75 baits; 

see below), this unsupervised approach involves additional assumptions and separate 

treatment of high and low frequency prey proteins (see Methods).

One challenge in modeling AP-MS data is the limited number of replicates available for 

each bait. SAINT addresses this problem by inferring individual bait-prey interaction 

parameters via joint modeling of the entire bait-prey data. To this end, SAINT defines a 

protein-specific abundance parameter and establishes a multiplicative model in the mixture 

component distributions. In other words, if prey i and bait j interact, then the “interaction 

abundance” (the spectral count of the prey i in purification with bait j) is assumed to be 

proportional to αi×αj. Under this assumption, the protein-specific abundance parameters αi 

and αj can be learned not only from the interaction between the two proteins themselves, but 

also from other bona fide interactions that involve either one of them. The same principle 

applies to false interactions. Hence SAINT builds a large number of mixture distributions by 

pooling data (separate mixture distributions for individual prey-bait pairs), but all models are 

interconnected through the shared abundance parameters.

The probability distributions P(Xij|True) and P(Xij|False) are then used to calculate the 

posterior probability of true interaction P(True|Xij) (Fig. 1c and 1d, Methods). For baits 

profiled in replicates, the next step involves computing a combined probability score from 

independent scoring of each replicate (see Methods). Finally, SAINT probabilities can be 

used to estimate the false discovery rate (FDR). By ordering interactions in a decreasing 

order of probabilities, a threshold can be selected that considers the average of the 

complement probabilities as the Bayesian FDR9. Although the accuracy of FDR estimates 

remains to be validated, the availability of an objective reliability measure that has been 

widely used is an advantage over other methods.

The performance of the generalized SAINT model was first investigated using a human 

dataset centered around four key protein complexes involved in chromatin remodeling, 

Prefoldin, hINO80, SRCAP, and TRRAP/TIP60 (referred to as the TIP49 dataset)6. While 

the original publication focused the analysis on the interaction network observed between a 

core set of 65 proteins, the entire dataset provided by the authors of the study is analyzed 

here. The dataset consists of 27 baits (35 purifications) and 1207 preys which yielded 5521 

unfiltered interactions. 35 negative controls were included in the dataset, allowing semi-

supervised modeling (Fig. 1a; Supplementary Table 1).

We applied SAINT to this data and compared the results to PP-NSAF6 and CompPASS Z 

and DN scores7,10, which we re-implemented in-house (see Methods). We note that PP-

NSAF6 removes all interactions involving prey proteins for which the sum of squared NSAF 

values across the negative control purifications is higher than that in the experiments 
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containing bait proteins. CompPASS is the only method that does not incorporate negative 

controls in scoring.

SAINT selected 1375 interactions at the probability threshold 0.9, which was approximately 

equivalent to an estimated FDR of 2%. In PP-NSAF, since arbitrary cutoffs were set to 

define high, moderate, and low probability interaction sets, the same number of top scoring 

interactions was selected from the method (corresponding to a PP-NSAF probability 0.2 or 

higher). In CompPASS, the same number of interactions corresponded to a DN-score 

threshold of 1.48 (Supplementary Table 1).

We evaluated the performance of each algorithm firstly by benchmarking the selected 

interactions against two interaction databases BioGRID11 and iRefWeb12 (Fig. 2a), and 

secondly by assessing the co-annotation rate of interaction partners to common Gene 

Ontology (GO) terms in Biological Processes (Fig. 2b; Supplementary Table 1). SAINT 

filtered interactions (with controls) consistently showed the highest overlap with previously 

reported interactions and co-annotation rates to terms relevant to chromatin remodelling, 

including histone acetylation, protein amino acid acetylation, chromatin organization and 

modification, and cellular macromolecular complex assembly. Variation of the SAINT 

probability thresholds (0.8 ~ 0.95) did not qualitatively change this conclusion (data not 

shown). Note that omission of negative controls from SAINT modeling decreased the 

literature overlap (Supplementary Fig. 1). Explicit incorporation of the negative control data 

improves the robustness of modeling, especially in small to medium datasets.

The performance of SAINT for large scale datasets without negative controls (Fig. 1b) was 

tested on the human deubiquitinating enzymes (DUB) dataset 7 (this dataset was used in the 

development of CompPASS). High confidence interactions from SAINT were compared to 

the high confidence set from CompPASS (see Supplementary Table 2). Due to the absence 

of negative controls, it was not possible to apply PP-NSAF to this dataset. SAINT 

probabilities and DN scores were notably correlated (Pearson correlation r=0.79). At 

probability 0.8 threshold, SAINT selected 1300 interactions, while CompPASS DN≥1 

(threshold value used in 7) reported 1377 interactions. Of these, 1051 interactions were 

common to both methods. Reflecting the similarity of selected interactions, SAINT and 

CompPASS recovered previously reported interactions at comparable rates (Fig. 2c). In the 

top 1000 interactions, SAINT showed higher overlap with literature data. The co-annotation 

of interaction partners to the common GO terms also showed similar results between the two 

methods (Fig. 2d), including relevant terms such as positive and negative regulation of 

ubiquitin-protein ligase activity during mitotic cell cycle, proteasome, etc. (Supplementary 

Table 2). While SAINT and CompPASS recovered largely overlapping interactions, SAINT 

removed the interactions identified with 1–2 spectral counts, which were still scored by 

CompPASS if they were specific to a single bait protein and detected in duplicates.

Another advantage of SAINT over other methods is that it is applicable to the analysis of 

small-scale datasets for which control purifications are available; this extends to the case of 

a single bait. We illustrate this by using a recent dataset13 containing 3 experimental 

purifications of the bait CDC23 and 3 control purifications. In the original analysis, the 

authors of the study identified true interactions using ion intensity-based quantification 
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followed by a simple t-test. We applied the SAINT approach to the same dataset by using 

spectral counts (the data was researched in-house as described in Methods). The results 

obtained by SAINT were nearly identical to the initial report (Supplementary Table 3), the 

sole exception being the single peptide hit C11orf51, which was reported as a new interactor 

in the original analysis13, but which was removed by SAINT.

In summary, SAINT is a probability-based model that is generally applicable to mass 

spectrometry-based interaction data. The SAINT model presented here is based on label-free 

quantification using spectral counts, a parameter that is easily extracted from most AP-MS 

datasets. However, SAINT can also be extended to model other types of quantitative 

parameters such as peptide ion intensity 14 or other continuous variables 15, which can be 

accommodated by simply substituting the likelihood with an appropriate continuous 

distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Probability model in SAINT
a–b Interaction data in the presence (a) and absence (b) of control purifications. Top: 

schematic of the experimental AP-MS procedure; Bottom: illustration of a spectral count 

interaction table. c. Modeling spectral count distributions for true and false interactions. For 

the interaction between prey i and bait j, SAINT utilizes all relevant data for the two 

proteins, as shown in the column of the bait (green) and the data in the row of the prey 

(orange) in a and b. d. Probability is calculated for each replicate by application of Bayes 

rule, and a summary probability is calculated for the interaction pair (i,j).

Choi et al. Page 6

Nat Methods. Author manuscript; available in PMC 2011 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Analysis of TIP49 and DUB datasets
a. Benchmarking of filtered interactions in the TIP49 dataset by the overlap with 

interactions previously reported in BioGRID and iRefWeb databases. b. Co-annotation of 

interaction partners to common GO terms in Biological Processes in the TIP49 dataset. c. 

Benchmarking against BioGRID and iRefWeb in the DUB dataset. d. Co-annotation to GO 

terms in the DUB dataset.
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