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Abstract

Associations between genetic loci and increased susceptibility to autoimmune disease have been well characterized,
however, translating this knowledge into mechanistic insight and patient benefit remains a challenge. While improvements
in the precision, completeness and accuracy of our genetic understanding of autoimmune diseases will undoubtedly be
helpful, meeting this challenge will require two interlinked problems to be addressed: first which of the highly correlated
variants at an individual locus is responsible for increased disease risk, and second what are the downstream effects of this
variant. Given that the majority of loci are thought to affect non-coding regulatory elements, the second question is often
reframed as what are the target gene(s) and pathways affected by causal variants. Currently, these questions are being
addressed using a wide variety of novel techniques and datasets. In many cases, these approaches are complementary and
it is likely that the most accurate picture will be generated by consolidating information relating to transcription, regulatory
activity, chromatin accessibility, chromatin conformation and readouts from functional experiments, such as genome
editing and reporter assays. It is clear that it will be necessary to gather this information from disease relevant cell types
and conditions and that by doing so our understanding of disease etiology will be improved. This review is focused on the
field of autoimmune disease functional genomics with a particular focus on the most exciting and significant research to be
published within the last couple of years.

Introduction
Genome-wide association (GWA) studies have been essential
in contributing to our current understanding of autoimmune
disease genetics. For example, across three rounds of GWA
studies the Wellcome Trust Case Control Consortium gathered
data relevant to a host of autoimmune diseases, including
ankylosing spondylitis, autoimmune thyroid disease, Crohn’s
disease (CD), multiple sclerosis (MS), psoriasis (Ps), rheumatoid
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arthritis (RA), type 1 diabetes (T1D) and ulcerative colitis (UC)
(1–10). Subsequent studies have collected cohorts for additional
diseases such as celiac disease (CeD), idiopathic inflammatory
myopathies, juvenile idiopathic arthritis, systemic lupus erythe-
matosus and systemic sclerosis (SSc) (11–15). In many instances,
original findings have been validated and superseded by ever
larger cohorts, imputation to updated reference panels and
meta-analyses (16–19).
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Significant progress is still being made in cataloging variants
for many diseases, especially outside of the European ancestry
population, where the size of existing study cohorts is more
limited. However, the focus of this review is on bridging the gap
between knowledge of genetic associations and an improved
understanding of disease pathology, with a particular focus on
progress made within the last couple of years. Historically, the
significance of a given variant has simply been assigned to
the nearest plausible gene, despite the majority of autoimmune
variants being located in non-coding regions and there often
being no evidence for an impact of a given variant on the
assigned gene. Correctly identifying the downstream impact of
disease-associated variants is crucial when seeking to translate
the findings of genetic studies into patient benefit, e.g. through
drug discovery or repositioning.

Overcoming Linkage Disequilibrium
Because of the non-random inheritance of alleles (linkage-
disequilibrium, LD) and sparse coverage of single nucleotide
polymorphisms (SNPs) assessed by GWA studies, multiple SNPs
may be implicated within a single genetic association. Regions
of LD associated with disease-susceptibility can span hundreds
of kilobases and may contain multiple genetic elements,
such that it is difficult to identify the specific variant which
mediates the increased risk associated with a given allele. To
overcome this, high-density genotyping can be used to more
precisely characterize associations and the impact of LD can be
broken down by studying larger and more genetically diverse
populations.

The Immunochip Consortium has enabled high-density
genotyping of variants associated with many autoimmune
diseases (20,21–32), and this has continued to yield valuable
insights into autoimmune disease genetics. A meta-analysis of
Immunochip data from a total of 37 000 patients with either
CeD, RA, SSc or T1D and 22 000 controls has better characterized
the high degree of genetic overlap between these diseases,
identifying 38 variants with some degree of pleiotropy (33). These
variants were enriched for permissive epigenetic marks in T cells
and especially T-helper 17 and regulatory T cells, highlighting the
potential for genetic information in informing a model of disease
pathogenesis. Such studies demonstrate both the complexity
of autoimmune genetics and the potential value of additional
genetic analyses.

Epigenetic marks or other such functional annotation data
can be used to infer the likelihood of SNPs being causal. A recent
study fine-mapped RA and T1D loci and additionally collated
publically available enhancer and promoter annotations, as well
as expression quantitative trait loci (eQTL) data, H3K4me3 occu-
pancy (indicative of regulatory regions), chromatin accessibility
(based on DNAse I hypersensitivity) and transcription factor
binding site occupancy/motif disruption (34). This allowed them
to infer which SNPs within a given credible SNP set may be most
likely to confer risk. Potentially causal variants were identified
at a number of loci, with functional assays confirming allele-
specific effects on protein binding and enhancer activity for
variants proximal to CD28/CTLA4, MEG3 and TNFAIP3.

Identifying the Right Cell Type
It is clear that both the quality of the functional data and rele-
vance of the sample from which it originates are fundamental
to its utility. The latest release of eQTL data from the Genotype-
Tissue Expression project (70–361 samples for 44 different

tissues) is estimated to explain ∼55% of the variant-based
heritability for UC (35). It is likely that this high percentage may
be partly down to the inclusion of several tissue types of high
relevance to UC, with the highest heritability enrichment being
shown in transverse colon, whole blood, spleen, small intestine
and sigmoid colon. Increasing this percentage and matching it
for other autoimmune diseases may require increasing sample
sizes and alternative sample types.

The most relevant sample type may well be disease relevant
cells isolated from patients and to this end, a recent study
performed RNA-sequencing and profiled H3K27ac and H3K4me1
(indicative of active or primed enhancers) in T-helper cells and
regulatory T cells from six T1D patients and five age-matched
healthy controls (36). The authors found a higher degree of
enrichment for T1D variants among enhancers identified in
their study than in alternative annotations, although this was
not significantly different between T1D-specific enhancers and
healthy control-specific enhancers. Despite very low numbers,
variants found within two of the enhancers identified, intronic
to CD69 and UBASH3A, were found to be associated with changes
in histone marks and differential gene expression of CD69 and
UBASH3A. Similarly, an alternative study using T-helper cells and
B cells from 344 untreated RA patients, discovered eQTLs for a
total of 14 genes at 10 RA loci, roughly half of which were specific
to either cell type (37).

Advances in single-cell technologies have contributed
enormously to the generation of data from ever more precisely
defined cell types. For example, single-cell RNA sequencing
(scRNA-seq), mass cytometry and flow cytometry on T cells,
B cells, monocytes and fibroblasts from RA and osteoarthritis
synovial tissue samples identified and characterized subpopu-
lations that are expanded in RA synovium and may mediate
RA pathogenesis (38). The feasibility of identifying cell-type
specific eQTLs from scRNA-seq data has been demonstrated
in a separate study using ∼25 000 peripheral blood mononuclear
cells from 45 donors (39).

Making Contact
Understanding the 3D conformation of the genome can
help to provide a mechanistic link between local changes
in chromatin and an effect on the expression of protein-
coding genes. It can even provide a quantitative association
between variant containing loci and genes when eQTL, or
other QTL data are absent, thereby identifying downstream
effects of potentially causal variants. Data from perturbation
of thousands of enhancers and fluorescence-based detection of
transcription have recently informed a mathematical model
that stipulates that an enhancer’s function is equivalent to
the product of interaction frequency and permissive chromatin
modifications (40).

Sequencing-based chromatin conformation capture tech-
niques, such as Hi-C, enable chromatin interactions to be
mapped genome wide. Hi-C data provide a heatmap of
interaction frequency for all genomic intervals that reveal
multiple layers of organization, with chromatin being segregated
into domains where interactions occur more frequently within
than outwith the region. The resolution of such maps is limited
by the restriction enzymes used during library generation and
by sequencing depth, but it is clear that eQTLs aggregate within
the highest order domains: topologically associated domains
(41), which are frequently associated with CTCF sites (42).

While the higher order features of chromatin architecture
are considered to be reasonably stable across cell types and
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individuals, at individual loci and higher resolution, there is
more variability. In keeping with this, a recent study performed
Hi-C on lymphoblastoid cell lines from 20 individuals, identify-
ing thousands of regions across the genome where chromatin
conformation varies and is accompanied by changes in histone
modifications, transcription factor binding and gene expression
(43). Furthermore, it was possible to associate common variants
with various quantifiable chromatin conformation phenotypes,
including directionality imbalance, insulation and interaction
frequency. Insulation-QTLs were enriched for nominally associ-
ated UC and inflammatory bowel disease (IBD) variants, whereas
interaction frequency-QTLs showed an enrichment that fell just
below the level of significance. It will be interesting to see how
future studies using more disease relevant cell types, larger sam-
ple sizes and better matched GWA studies and Hi-C populations
build on this.

To improve sequencing depth, it is possible to use oligonu-
cleotide baits to ‘capture’ a defined proportion of a Hi-C library
before sequencing (CHi-C). Baits can span features of interest,
such as promoters (promoter CHi-C) (44) or autoimmune loci
(45,46). CHi-C data mapping interactions at JIA, RA and psoriatic
arthritis (PsA) loci in T-helper and B-cell lines have recently been
combined with chromatin annotations from relevant cell types
to generate a list of genes whose promoter is found to interact
with an enhancer that harbors disease susceptibility (47). These
genes are significantly enriched in disease relevant pathways
and include targets both for existing therapies and drugs which
could potentially be repositioned and tested for efficacy in these
diseases.

HiChIP involves performing chromatin immunoprecipitation
(ChIP) on a Hi-C library, using a protein of interest such as
H3K27ac, such that the resulting data contain information
regarding protein occupancy and interaction frequency (48).
CHi-C and H3K27ac HiChIP have recently been applied to
keratinocyte and skin resident cytotoxic T-cell lines, leading to
the validation of existing potentially causal genes for Ps, as well
as the identification of novel candidates (49). A more extensive
analysis of this data, including other publicly available Hi-C, CHi-
C and HiChIP data have identified relevant genes for Ps, PsA and
SSc and highlighted the enhanced tissue-specificity of H3K27ac
HiChIP data (50).

As an example of how these techniques can be combined,
a recent study compared chromatin accessibility (assay for
transposase-accessible chromatin [ATAC]), CTCF occupancy and
chromatin conformation in thymocytes from a T1D mouse
model (NOD) and diabetes-resistant mice (51). The authors
identified a higher number of chromatin interactions in the
Idd T1D locus in NOD mice and analyzed this and other
hyper-connected diabetes-specific 3D niches in depth, using
fluorescence-microscopy and HiChIP.

Experimental Characterization of Individual
Loci
To investigate or validate mechanisms by which disease
susceptibility mechanisms are mediated various experimental
approaches are used, including reporter assays and genomic
perturbation (Fig. 1).

Reporter (e.g. luciferase) assays are used to assess the regula-
tory impact of candidate DNA regions, such as those harboring
candidate SNPs. This can be performed in a high-throughput
manner as part of massively parallel reporter assays (MPRAs)
and has recently been optimized for use in primary T-helper cells
(52). This technique was applied to 14 autoimmune loci, in rested
and stimulated primary T-helper cells, identifying SNPs which

had the greatest impact on regulatory activity. For example, out
of 44 candidate SNPs within the 6p23 IBD and MS risk locus,
rs34421390 was identified as most likely to affect regulatory
activity. Similarly, rs6927172 was identified with a significant
regulatory role out of hundreds of non-coding SNPs at the 6q23
CD, CeD, RA, SLE, T1D and UC risk locus.

A major drawback to MPRAs is that each SNP is examined
outside of its native environment. It is possible to overcome this
using the latest genomic editing tool, clustered regularly inter-
spaced palindromic repeats (CRISPR)/CRISPR-associated protein
9 (Cas9). In the aforementioned study, Cas9 was targeted to
multiple locations within close proximity of rs6927172 in pri-
mary T-helper cells, giving rise to a heterogeneous combination
of deletions and other edits. Edited cells had reduced TNFAIP3
expression, with no change in five other neighboring genes (52).
A similar approach was applied separately in HEK293 cells, gen-
erating clonally derived lines with specific deletions of 11/12 bp
including rs6927172. The authors also found that these deletions
lead to reduced TNFAIP3 expression, but in contrast to the results
from primary T-helper cells, they also saw a reduction in IL20RA
and OLIG3 expression (53).

While there are limited examples of CRISPR screens
being applied specifically to autoimmune disease functional
genomics, it is clear from related studies that these techniques
are highly relevant. For example, a conventional ‘knockout’
CRISPR screen coupled with ChIP-sequencing and ATAC-
sequencing data has identified new genes influencing the
differentiation of naïve T-helper cells into type 2 T-helper cells
using murine primary T cells (54). CRISPR/Cas9 screens have also
been developed for use in primary human T cells, identifying
genes regulating T-cell proliferation following stimulation (55).

In addition to the generation of deletions, or specific edits,
CRISPR/Cas9 can be used to modify chromatin activity (using
catalytically inactivate dCas9 fused to chromatin modifiers).
A comparison of various methods used for characterizing
autoimmune variants was recently published, focused on
multiple autoimmune loci found within the 6q23 region (56).
The authors performed a number of observational techniques,
assaying chromatin accessibility (using both DNAse I and ATAC)
and activity (using H3K27ac), as well as assessing the impact
of variants through two MPRAs (differing based on the method
of reporter plasmid delivery) and through two CRISPR screens
(both activating and repressing chromatin), all in monocyte, B-
cell and T-helper cell lines. The authors found that many of their
assays gave uninformative or contradictory information with
repression of chromatin being the most informative. It should be
noted, however, that chromatin repression was only performed
when variants were in or near regions of active chromatin
(6.3% of variants included) and that while many chromatin
modifying CRISPR-screens use scRNA-seq as a readout the
authors used their own method of fluorescence-based detection
of transcription.

Conclusion
Using a combination of genetic, transcriptomic, epigenetic and
chromatin conformation data, it is possible to refine associa-
tions with autoimmune disease susceptibility to identify poten-
tially causal variants and genes. The techniques required to
generate these data are constantly being improved, such that
they are becoming accessible for a wider variety of samples,
in greater numbers. Once identified, the effects of potentially
causal variants can be investigated or validated through exper-
imentation, often involving reporter assays or genome editing
technologies.
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Figure 1. The functional role of individual risk variants are validated experimentally using a range of CRISPR/Cas9 technologies and in a high-throughput manner by

MPRA and CRISPR screens. Examples include: (A) Deletion of disease-associated risk loci by targeting Cas9 to either side. (B) Knock-in of risk variants by introducing a

repair template containing a risk variant and homology to the cut site. (C) Artificial activation or repression of loci using dCas9 fused to a chromatin modifier. (D) MPRAs

where candidate regions and variants are cloned into reporter plasmids. (E) CRISPR screens using scRNA-seq or phenotypic readouts for simultaneously screening the

effect of many gRNAs targeting regions of interest. Cas9, CRISPR-associated protein 9; CRISPR, clustered regularly interspaced palindromic repeats; dCas9, catalytically

dead Cas9; gRNA, guide RNA; MPRA, massively parallel reporter assay.

The potential benefits of these approaches have been
demonstrated by many studies, e.g. by generating a priority
index of potential drug targets for 30 immune traits (57). Targets
were identified using genetic, eQTL and chromatin conformation
data and subsequently validated using a CRISPR screen. As in
this example, the consolidation of data from a variety of cell
types, techniques and sources is likely to be crucial. The value of
this has been demonstrated using a novel method for annotating
cell state-specific regulatory elements, trained using over 500
chromatin and sequence annotations. This annotation was able
to capture a greater proportion of heritability to RA in T-helper
cells than is possible using either histone marks or expressed
genes alone (58).

By implementing these techniques in a sufficient number of
relevant samples and combining the data, we stand to improve
our understanding of autoimmune disease and translate genetic
findings into patient benefit.
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