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Abstract

Discovering drugs that efficiently treat brain diseases has been challenging. Genetic vari-

ants that modulate the expression of potential drug targets can be utilized to assess the effi-

cacy of therapeutic interventions. We therefore employed Mendelian Randomization (MR)

on gene expression measured in brain tissue to identify drug targets involved in neurological

and psychiatric diseases. We conducted a two-sample MR using cis-acting brain-derived

expression quantitative trait loci (eQTLs) from the Accelerating Medicines Partnership for

Alzheimer’s Disease consortium (AMP-AD) and the CommonMind Consortium (CMC)

meta-analysis study (n = 1,286) as genetic instruments to predict the effects of 7,137 genes

on 12 neurological and psychiatric disorders. We conducted Bayesian colocalization analy-

sis on the top MR findings (using P<6x10-7 as evidence threshold, Bonferroni-corrected for

80,557 MR tests) to confirm sharing of the same causal variants between gene expression

and trait in each genomic region. We then intersected the colocalized genes with known

monogenic disease genes recorded in Online Mendelian Inheritance in Man (OMIM) and

with genes annotated as drug targets in the Open Targets platform to identify promising

drug targets. 80 eQTLs showed MR evidence of a causal effect, from which we prioritised

47 genes based on colocalization with the trait. We causally linked the expression of 23

genes with schizophrenia and a single gene each with anorexia, bipolar disorder and major

depressive disorder within the psychiatric diseases and 9 genes with Alzheimer’s disease, 6
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genes with Parkinson’s disease, 4 genes with multiple sclerosis and two genes with amyo-

trophic lateral sclerosis within the neurological diseases we tested. From these we identified

five genes (ACE, GPNMB, KCNQ5, RERE and SUOX) as attractive drug targets that may

warrant follow-up in functional studies and clinical trials, demonstrating the value of this

study design for discovering drug targets in neuropsychiatric diseases.

Author summary

Genetic association studies have been successful in identifying many genetic variants asso-

ciated with disease risk, but it has been far more challenging to determine the genes

through which these act. This is important, because such genes may encode effective drug

targets for these diseases. We used Mendelian randomization (MR) and colocalization,

two methods which in combination exploit these genetic variants to estimate the causal

effects of individual genes. We applied this approach to 12 neurological and psychiatric

diseases using data from the AMP-AD and CMC brain expression quantitative locus data-

set, which is large enough to provide robust evidence for the relationship between genetic

variants and gene expression. We found a causal relationship between the change in

expression of 47 genes and increased disease risk across the 12 diseases we tested. As drug

targets with human genetic evidence are far more likely to be approved in clinical trials,

these findings provide a valuable list of potential therapeutic targets, including the ACE,

GPNMB, KCNQ5, RERE and SUOX genes.

Introduction

There is a compelling need to improve the processes to discover new drugs for human disease,

which is time consuming and expensive, with high rates of attrition [1]. Attrition rates have

been particularly high for therapies against brain-related diseases. For instance, a survey of 413

Alzheimer’s disease trials reported a failure rate of 99.6% [2]. Neurological and psychiatric dis-

eases are highly heritable [3]. Genome-wide association studies (GWAS) have identified

numerous genetic loci associated with disease risk [4,5], and can therefore provide evidence to

identify molecular pathways involved in disease that can be intervened on by drugs. Indeed,

drug targets with human genetic evidence are more than twice as likely to be approved than

those without [6,7].

One approach to nominate potential drug targets through genetics is to integrate GWAS

associations with gene expression quantitative trait loci (eQTLs) to select the most likely func-

tional variants and the genes controlled by these variants. Recent studies have adopted such an

approach through a combination of two sample Mendelian randomization (MR) and colocali-

zation methods to infer whether a causal relationship exists between gene expression and dis-

ease outcomes. For example, two sample MR studies have systematically explored causal

relationships between the transcriptome [8,9,10]. methylome [11] and proteome [12] and

complex traits. Zhu et al performed MR between blood eQTLs and five complex traits and

found potential causal effects for 126 genes in total, including 25 novel genes previously unre-

ported in the literature [9]. Richardson et al [11] and Zheng et al [12] performed MR on a

wider phenome-wide scale and found putative causal effects for 1,148 methylation quantitative

trait loci (mQTLs) on 139 complex traits and 111 protein quantitative trait loci (pQTLs) on

225 complex traits respectively. After causal variants have been identified, a follow up MR
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phenome-wide association analysis [13] can then be conducted to assess a gene’s suitability as

a drug target. Specifically, it can be assessed whether associations to clinical endpoints match

the intended indications, or whether there might be a risk for adverse events [14].

A major challenge for two sample MR of gene expression with brain diseases is to obtain tis-

sue-specific expression datasets at large enough sample sizes to be powered for obtaining

robust eQTL associations to instrument genes. In this study, we utilized summary statistics

from a recent cerebral cortex eQTL meta-analysis (n = 1,286) that combined RNA-seq data

from the Accelerating Medicines Partnership for Alzheimer’s Disease consortium (AMP-AD)

and the CommonMind Consortium (CMC) [15] (henceforth referred to as AMP-CMC). We

extracted 7,689 eQTL instruments from this study and conducted a transcriptome-wide two

sample MR and colocalization study between brain eQTLs and 12 neurological and psychiatric

conditions. By identifying shared genetic effects between brain-specific gene expression and

Central Nervous System (CNS) disease, our study establishes causal roles for several genes

across the conditions tested that could be starting points for the development of efficient

drugs.

Results

Selection of instrumental variables for Mendelian Randomization from

AMP-CMC

AMP-CMC combines RNA-seq data from 1,286 human cerebral cortex samples from the

Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD, composed of the

ROSMAP and MAYO cohorts) and the CommonMind consortia (CMC, composed of the

MSSM-Penn_Pitt cohorts) [15]. We first assessed how eQTLs used as instruments from this

cohort compared to alternative brain eQTL datasets available for public download, specifically

a meta-analysis across AMP, CMC and GTEx on pre-frontal cortex tissue (brain cortex meta-

analysis), and a meta-analysis across 10 different brain tissues available in GTEx (GTEx brain

meta-analysis) [10]. Gene expression effects for these brain eQTL datasets agreed well with our

study (r = 0.72, 95% CI [0.71,0.73] brain cortex meta-analysis, r = 0.70, 95% CI [0.68, 0.71] for

GTEx brain meta-analysis). Of the 6,790 harmonised brain cortex meta-analysis effects, 3,922

(57.8%) effects achieved a genome-wide significance level used to select instruments in this

study (P<5x10-8). An additional 2,224 effects (32.8%) reached nominal significance (P<0.05)

and 644 effects (9.5%) showed no evidence of association (P>0.05). Of the 6,628 harmonised

effects from the GTEx brain meta-analysis, 1,642 (24.8%) effects reached P<5x10-8, an addi-

tional 3,256 (49.1%) reached P<0.05, and 1,730 (26.1%) showed no evidence of association

(P>0.05). Of the nominally significant effects, only 49 (0.8%) and 71 (1.4%), respectively,

showed opposite directionality of effect relative to our study (S1 Table).

Blood eQTLs are sometimes used as instruments when examining brain-related disorders,

but this approach can be problematic for genes that are differentially expressed between brain

and blood. To better understand differences, we compared AMP-CMC instruments against

the currently largest public blood eQTL resource, eQTLGen [16]. As expected, the correlation

between blood and brain across all gene expression effects was modest (r = 0.48, 95% CI

[0.46,0.50]). However, of the 5,820 harmonised eQTLGen effects, 4,133 (71.0%) effects reached

P<5x10-8 and an additional 984 effects (16.9%) nominal significance (P<0.05). Interestingly, a

substantial proportion of eQTLs (1,028 or 21.2% of the 4,836 eQTLGen effects at P<0.05)

showed opposite direction of gene expression effect between blood and brain (S1 Table), the

reasons for which will require clarification in future studies. Correlations of AMP-CMC

eQTLs to eQTLs from other GTEx tissues ranged from 0.80 (for brain cortex GTEx brain tis-

sues) to 0.51 (for EBV-transformed lymphocyte cells), with variable agreement on
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directionality (S2 Table). Focusing analyses on the subset of eQTLs identified by and reported

as of identical directionality in other studies further improved specificity of our results (S1 and

S2 Tables).

Mendelian randomization identifies shared genetic effects of brain eQTLs

with neurological and psychiatric disease

We conducted MR to determine the shared genetic effects between gene expression (using

genetically predicted transcript levels) and 12 neurological and psychiatric diseases (see flow

chart in S1 Fig for overview of study design). Our MR analysis included a total of 80,557 Wald

ratio tests across 7,137 genes. Of these, 80 Wald ratio effects across 5 out of the 7 psychiatric

diseases tested and 4 out of the 5 neurological diseases tested showed evidence of MR at the

multiple correction threshold of P<6x10-7 (S3 and S4 Tables). The Wald ratio estimates the

log odds change in disease risk per standard deviation (SD) change in gene expression relative

to the risk allele for the instrumenting SNP. A positive Wald ratio implies a causal relationship

between increased expression of the gene and increased disease risk, whereas a negative Wald

ratio implies a causal relationship between decreased expression of the gene and increased dis-

ease risk. For the psychiatric diseases, we discovered a relationship between 38 genes and

schizophrenia, 2 genes and attention deficient hyperactivity disorder, and a single gene each

for anorexia, bipolar disorder and major depressive disorder risk. For the neurological diseases

we detected a relationship between 16 genes and Parkinson’s disease, 15 genes and Alzheimer’s

disease, 4 genes and multiple sclerosis and 2 genes and amyotrophic lateral sclerosis risk. 47 of

these 80 signals showed evidence of colocalization between gene expression and disease

(PP4>70%) indicating that both gene expression and disease trait share the same casual variant

in the region (i.e. eQTL instrument is not coincidentally associated with disease SNP due to

Linkage Disequilibrium (LD) patterns in the region). We prioritized these co-localizing eQTLs

as pointing to the most likely causal genes and substrate for further analyses (Tables 1 and 2).

One third (17 genes in total) of the 47 genes co-occurred within the same region of the genome

(i.e. instrumented eQTLs used for the different genes were in LD and colocalized with disease,

making it difficult to disentangle the causal gene in this region).

Shared genetic effects between brain gene expression and psychiatric diseases. MR and

colocalization analyses identified 23 potentially causal genes with evidence of a shared genetic

effect between gene expression (eQTL) and schizophrenia risk (Table 1). Of these, 12 genes

showed a positive direction of Wald ratio effect, indicating a relationship between increased

gene expression and increased schizophrenia risk (SF3B1, IN080E, CNTN4, NMB, FES, GOL-
GA2P7, CLCN3, RERE, ZNF823, ZC3H7B, KCNQ5, and NAT8). 11 genes showed a negative

direction of Wald ratio effect indicating a relationship between decreased gene expression and

increased schizophrenia risk (FTCDNL1, FURIN, AC243562.2, AC105749.1, PCCB, PTPRU,

THOC7, LINC02210, GATAD2A, FAM85B and FAM86B3P). Notably, 7 out of the 23 genes

reside in close genomic proximity, challenging attribution of causality for schizophrenia risk

(Fig 1). Instruments for AC243562.2 and GOLGA2P7 are in high LD with each other (r2 =

0.91) and in moderate LD with eQTLs impacting NMB (r2� 0.55 with each instrument).

Instruments for the nearby FURIN and FES genes are in moderate LD with each other (r2 =

0.67). Likewise, eQTLs for FAM86B3P and FAM85B are in high LD (r2 = 0.83), limiting resolu-

tion of MR analyses. For the remaining 6 psychiatric diseases, a positive Wald ratio effect was

observed for RHEBL expression and bipolar disorder, and negative Wald ratio effects for

SUOX expression and anorexia risk, and for PTPN1 expression and major depressive disorder

risk.
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Shared genetic effects between gene expression and neurological diseases. MR and

colocalization analyses further identified 21 potentially causal genes with evidence of a shared

genetic effect between gene expression and five neurological diseases tested (Table 2). We

detected a positive Wald ratio effect between the expression of three genes (CR1, CCDC6,

TSPAN14), and a negative Wald ratio effect between the expression of 6 genes (AC012146.1,

PRSS36, ZNF646, KAT8, ACE, CCNT2-AS1) and the risk for Alzheimer’s disease. Of these,

instruments for ZNF646 and KAT8 are in high LD (r2 = 0.85), and for PRSS36 in relatively low

LD (r2�0.2 with each instrument) (Fig 2). We further found a positive Wald ratio effect

between the expression of two genes (GPNMB, STX4) and Parkinson’s disease risk, and a nega-

tive Wald ratio effect between the expression of four genes (KLHL7-DT, HSD3B7, GRN,

AC135050.3) and Parkinson’s disease risk. Instruments for STX4, AC135050.3 and HSD3B7
are in high LD (r2>0.85), and for KLHL7-DT and GPNMB are in moderate LD (r2 = 0.64) (Fig

2). Moreover, we identified Wald ratio effects between four genes (IQCB, TTC34, MPV17L2
and SLC30A7) and multiple sclerosis risk, and effects between two genes (SCFD1, G2E3) and

amyotrophic lateral sclerosis risk. SCDF1 and G2E3 instruments are in high LD (r2 = 0.99).

Identification of pleiotropic effects across neurological and psychiatric diseases. To

assess whether the neurological and psychiatric diseases analysed in this study share pleiotro-

pic relationships, we next queried for evidence of common Wald ratio effects at a less stringent

Table 1. Genes we related with psychiatric traits in the MR and colocalization analysis. Wald ratio (WR) estimate with standard error (SE) and p-value, coloc (poste-

rior probability of colocalization between gene expression and outcome). WR represents the genetically predicted log odds change in risk per standard deviation (SD)

change in gene expression.

outcome exposure gene SNP cytogenic WR SE P coloc

anorexia SUOX rs1081975 12q13.2 -0.366 0.072 3.00x10-7 93.4

bipolar disorder RHEBL1 rs7969091 12q13.12 0.400 0.075 8.63x10-8 98.2

major depressive disorder PTPN1 rs718050 20q13.13 -0.195 0.037 1.92x10-7 98.4

schizophrenia FURIN rs4702 15q26.1 -0.237 0.034 2.55x10-12 100.0

ZNF823 rs72986630 19p13.2 0.238 0.044 4.90x10-8 100.0

THOC7 rs832187 3p14.1 -0.163 0.029 2.57x10-8 99.3

PTPRU rs1498232 1p35.2 -0.256 0.042 1.22x10-9 99.0

FAM85B rs2980436 8p23.1 -0.126 0.023 7.47x10-8 98.9

KCNQ5 rs2492966 6q13 0.241 0.045 1.05x10-7 98.6

LINC00222 rs9398171 6q21 -0.253 0.046 3.05x10-8 98.6

CLCN3 rs10520163 4q33 0.248 0.043 9.19x10-9 97.9

RERE rs2708630 1p36.23 0.193 0.034 1.54x10-8 96.7

SF3B1 rs2564383 2q33.1 0.265 0.040 4.82x10-11 95.6

FTCDNL1 rs281794 2q33.1 -0.167 0.023 7.75x10-13 95.2

FAM86B3P rs2945253 8p23.1 -0.075 0.015 3.54x10-7 94.5

ZC3H7B rs11090045 22q13.2 0.273 0.051 9.77x10-8 93.4

INO80E rs3814880 16p11.2 0.096 0.016 6.45x10-10 92.7

GATAD2A rs2905435 19p13.11 -0.137 0.025 4.11x10-8 92.4

NAT8 rs10179134 2p13.1 0.145 0.028 2.16x10-7 91.4

AC105749.1 rs11706780 3p22.2 -0.245 0.039 4.17x10-10 90.7

PCCB rs527888 3q22.3 -0.175 0.029 8.79x10-10 88.8

AC243562.2 rs12905223 15q25.2 -0.113 0.018 4.82x10-10 87.5

CNTN4 rs6796313 3p26.3 0.313 0.051 6.76x10-10 81.6

NMB rs56864281 15q25.3 0.307 0.051 1.38x10-9 78.8

GOLGA2P7 rs2019611 15q25.2 0.110 0.019 2.64x10-9 75.2

FES rs6224 15q26.1 0.255 0.042 1.58x10-9 70.5

https://doi.org/10.1371/journal.pgen.1009224.t001
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significance threshold of P<0.05 for our 47 most likely causal candidate genes. 141 of the 551

Wald ratio estimates showed a relationship with a second disease at this cut-off. Of these, nine

genes also passed colocalization (PP4>70%) with this alternative disease. This included six of

the schizophrenia genes (GOLGA2P7, NMB, AC105749.1, FES, FURIN, FTCDNL1), both of

the amyotrophic lateral sclerosis genes (SCFD1 and G2E3), and one of the genes related with

Parkinson’s disease risk (GRN) (Table 3). For instance, expression levels of G2E3 and SCFD1
not only appear to causally effect the risk for amyotrophic lateral sclerosis but also attention

deficient disorder, albeit with alternative directionalities. Wald ratio effects with identical

directionality for two diseases were observed for GRN with Parkinson’s disease and Alzhei-

mer’s disease; for AC105749.1, GOLGA2P7 and NMB with schizophrenia and bipolar disorder;

and FES and FURIN with schizophrenia and major depressive disorder. Permutation testing

suggested that the likelihood to observe these shared genetic effects by chance was very low

(empirical p-value<1x10-4; Methods).

Follow up MR analysis on selected instruments to assess pleiotropy, tissue

specificity and reverse causation

For the 47 signals identified from our primary MR analysis we conducted a series of follow-up

analyses to assess the validity of our instruments.

Assessment of pleiotropy phenome-wide: enrichment for association with brain-related

traits with no evidence of horizontal pleiotropy. It is possible that undetected horizontal

pleiotropy may explain the MR relationship between gene expression and disease observed in

our study. This occurs when the instrument is associated with risk factors that exert their effect

on disease through distinct pathways, which is in contrast to vertical pleiotropy, where the

Table 2. Genes we related with neurological traits detected in the MR and colocalization analysis. WR with SE and p-value, coloc (posterior probability of colocaliza-

tion between gene expression and outcome). WR represents the genetically predicted log odds change in risk per SD change in gene expression.

outcome exposure gene SNP cytogenic WR SE P coloc

Alzheimer’s disease CR1 rs679515 1q32.2 0.274 0.028 2.15x10-23 99.6

CCDC6 rs1171830 10q21.2 0.222 0.039 1.22x10-8 99.5

ACE rs4295 17q23.3 -0.153 0.028 3.37x10-8 99.0

TSPAN14 rs7097656 10q23.1 0.131 0.025 2.64x10-7 98.5

KAT8 rs12597511 16p11.2 -0.133 0.023 6.18x10-9 95.5

ZNF646 rs8050894 16p11.2 -0.216 0.037 3.53x10-9 93.7

CCNT2-AS1 rs766271 2q21.3 -0.151 0.030 5.06x10-7 91.7

PRSS36 rs55667375 16p11.2 -0.135 0.022 1.66x10-9 83.6

AC012146.1 rs56377155 17p13.2 -0.144 0.023 5.62x10-10 77.0

amyotrophic lateral sclerosis SCFD1 rs229184 14q12 0.141 0.028 5.14x10-7 92.6

G2E3 rs229243 14q12 -0.201 0.040 5.94x10-7 92.2

multiple sclerosis MPV17L2 rs62120364 19p13.11 -0.477 0.087 4.34x10-8 99.9

TTC34 rs4310388 1p36.32 -0.487 0.066 2.26x10-13 99.8

IQCB1 rs6438665 3q13.33 0.118 0.022 8.08x10-8 90.9

SLC30A7 rs6681932 1p21.2 -0.357 0.067 9.85x10-8 82.9

Parkinson’s disease GRN rs5848 17q21.31 -0.242 0.047 2.18x10-7 98.4

STX4 rs7184567 16p11.2 0.318 0.051 6.13x10-10 95.9

GPNMB rs858239 7p15.3 0.121 0.017 2.37x10-13 95.5

HSD3B7 rs7196726 16p11.2 -0.301 0.051 2.71x10-9 89.8

KLHL7-DT rs73272053 7p15.3 -0.295 0.042 2.69x10-12 77.2

AC135050.3 rs35713203 16p11.2 -0.235 0.046 3.74x10-7 72.2

https://doi.org/10.1371/journal.pgen.1009224.t002
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instrument is associated with risk factors that act through the same pathway, and does not vio-

late the assumptions of MR [17,18]. We therefore conducted a phenome-wide assessment on

the 47 selected instruments in order to assess the extent of pleiotropy and risk of violating MR

assumptions. For this, a total of 9,441 Wald ratio tests were computed across 219 disease and

risk factor traits (see Methods). 133 Wald ratios showed evidence of a relationship at the multi-

ple testing correction threshold (P<6x10-6) and an additional 1,037 Wald ratios showed

weaker evidence of a relationship (P<0.05). Of these MR effects, 103 showed evidence of colo-

calization between gene expression and the selected trait (PP4>70%), which consisted of 64

from the 133 Wald ratios passing the threshold of P<6x10-6 and an additional 39 from the

1,037 Wald ratios passing the threshold of P< 0.05. 1,549 (16%) of the Wald ratios pertained

to brain-related traits (defined as neurological, psychiatric, education, personality and behav-

iour categories), of which 41 colocalised: 29 Wald ratios at P<6x10-6 (29/1549 = 1.87%) and an

additional 12 Wald ratios at P<0.05 (41/1549 = 2.65%). 7,892 (84%) of the Wald ratios corre-

sponded to other non-brain related traits of which 62 colocalised: 35 Wald ratios at P<6x10-6

(35/7892 = 0.44%) and an additional 27 Wald ratios at the P<0.05 threshold (62/

7892 = 0.79%). Overall, the phenome-wide MR analysis showed evidence for enrichment of

colocalization between gene expression and brain-related traits relative to colocalization with

Fig 1. Manhattan plot showing the MR relationships between gene expression changes and schizophrenia risk. Chromosomal position is on the x-axis and p-value

for the Wald ratio estimate (-log10 scaled) is on the y-axis. The prioritised genes which passed the multiple correction threshold (solid red line) and colocalization

analysis (PP4>70%) are annotated as diamonds and labelled with the gene name. FAM86B3P and FAM85B genes on chromosome 8 and AC243562.2, GOLGA2P7 and

NMB genes and FURIN and FES genes on chromosome 15 are located close together (in LD with each other), challenging attribution of the causal gene at these loci.

https://doi.org/10.1371/journal.pgen.1009224.g001
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other traits (Fisher’s exact test p-values = p<0.0001 for both the P<6x10-6 and P<0.05 thresh-

olds), which suggests that much of the pleiotropy present is likely to be vertical (i.e. potentially

acting through the same brain related pathway). Colocalization was detected with an addi-

tional non-brain trait for 20 of the 47 genes at the P<6x10-6 and another 4 genes at the P<0.05

threshold (S5 Table). Although this shows that non-brain specific effects are present none of

the traits appear to open horizonal pleiotropic pathways which would violate the MR. We

found evidence of non-brain specific effects (Wald Ratio P<0.05 and coloc PP4>70%) for two

of the genes (FES and FURIN) we had previously identified as having pleiotropy effects across

the primary outcomes in our main MR. Increased FES expression colocalised with increased

birth weight, increased ovarian cancer risk and decreased blood pressure along with decreased

risk of hypertension and other related cardiovascular events and increased FURIN colocalised

with decreased birth weight and increased angina risk (S5 Table). Our phenome-wide analysis

suggests there is a limited scope for horizontal pleiotropy to affect our MR results. However, it

is challenging to distinguish horizontal from vertical pleiotropy without an intricate and com-

plete understanding of the pathways, therefore latent pleiotropic factors could still be con-

founding certain MR estimates.

Fig 2. Manhattan plots showing the MR relationships between gene expression changes and Alzheimer’s disease and

Parkinson’s disease outcomes. Chromosomal position is on the x-axis and p-value for the Wald ratio estimate (-log10 scaled) is

on the y-axis. The prioritised genes which passed the multiple correction threshold (solid red line) and colocalization analysis

(PP4>70%) are annotated as diamonds and labelled with the gene name. For Alzheimer’s disease the ZNF646, KAT8 and PRSS36
genes on chromosome 16 are in LD, and for Parkinson’s disease the GPNMB and KLHL7-DT genes on chromosome 7 and the

STX4, AC135050.3 and HSD3B7 on chromosome 16 are in LD, challenging attribution of the causal gene at these loci.

https://doi.org/10.1371/journal.pgen.1009224.g002
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Molecular pleiotropy is pervasive. Another potential source of horizontal pleiotropy

could be through instrument association with the expression of multiple cis or trans genes

(molecular pleiotropy). We observed in our main MR analysis that several of the genes resided

within the same genomic region, indicating potential for molecular pleiotropy. However, our

MR analysis will miss genes where the eQTL could not be included as an instrument due to

the SNP not being robustly associated enough (P<5x10-8) or not finding the SNP in the out-

come. Therefore, in order to more extensively evaluate pleiotropy within the cis-region, the 47

instruments used for the genes identified in our main MR were looked up across the gene tran-

scripts available in AMP-CMC (without employing a p-value threshold). A total of 1,482 SNP-

gene expression effect estimates were extracted. Of these 143 SNPs were associated with gene

expression effects at a multiple testing correction threshold of P<3.4x10-5, from which 87 also

passed colocalization (PP4>70%) with the primary outcome. 23 of the 47 instruments showed

evidence of colocalization between the primary outcome and more than one gene (S6 Table).

In terms of the degree of molecular pleiotropy this consisted of 11 instruments associated with

3 genes, 10 instruments with 2 genes, and 2 instruments with 5 different genes. For the other

24 instruments which colocalised with the expression of a single gene only, there is less ambi-

guity regarding the causal variant and therefore potential genetic pathways involved which

strengthen these as drug target candidates.

Evidence of tissue specific effects. We investigated whether our top MR findings would

be generalisable to other brain tissues by looking up the instruments within the 13 brain tissues

available in GTEx version 7. 44 of our 47 instruments were also present in GTEx, all SNPs

except one (rs9398171-LINC00222 instrument) had effect estimates available across every

brain tissue. 167 tissue effects from 566 effects available in total, across 27 of the 44 instru-

ments, showed evidence of eQTL association at a multiple-testing corrected threshold

(P< 9x10-5, α = 0.05) in the GTEx tissues (S7 Table). All these associations except one

(rs7184567-STX4 association in Cerebellum tissue) had the same direction of effect as our

Table 3. Genes which shared MR and colocalization evidence across the psychiatric and neurological outcomes we tested. The outcome detected in our main MR is

highlighted in bold. Amyotrophic lateral sclerosis (ALS), attention deficient disorder (ADHD), Parkinson’s disease (PD), Alzheimer’s disease (AD), schizophrenia (Sz),

multiple sclerosis (MS), bipolar disorder (BD), and major depressive disorder (MDD).

gene SNP cytogenic outcome WR SE P coloc

G2E3 rs229243 14q12 ALS -0.201 0.040 5.94x10-7 92.2

G2E3 rs229243 14q12 ADHD 0.136 0.040 6.47x10-4 71.4

SCFD1 rs229184 14q12 ALS 0.141 0.028 5.14x10-7 92.6

SCFD1 rs229184 14q12 ADHD -0.092 0.027 8.16x10-4 70.6

GRN rs5848 17q21.31 PD -0.242 0.047 2.18x10-7 98.4

GRN rs5848 17q12.31 AD -0.145 0.034 1.60x10-5 97.9

AC105749.1 rs11706780 3p22.2 Sz -0.245 0.039 4.17x10-10 90.7

AC105749.1 rs11706780 3p22.2 BD -0.370 0.085 1.33x10-5 97.9

FTCDNL1 rs281794 2q33.1 Sz -0.167 0.023 7.75x10-13 95.2

FTCDNL1 rs281794 2q33.1 MS 0.158 0.047 7.10x10-4 98.3

GOLGA2P7 rs2019611 15q25.2 Sz 0.110 0.019 2.64x10-9 75.2

GOLGA2P7 rs2019611 15q25.2 BD 0.130 0.038 6.87x10-4 73.0

NMB rs56864281 15q25.3 Sz 0.307 0.051 1.38x10-9 78.8

NMB rs56864281 15q25.3 BD 0.332 0.112 2.97x10-3 86.9

FES rs6224 15q25.2 Sz 0.255 0.042 1.58x10-9 70.5

FES rs6224 15q25.2 MDD 0.120 0.031 1.42x10-4 76.8

FURIN rs4702 15q26.1 Sz -0.237 0.034 2.55x10-12 100.0

FURIN rs4702 15q26.1 MDD -0.096 0.025 1.34x10-4 78.4

https://doi.org/10.1371/journal.pgen.1009224.t003
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instrument. As we would expect, the overall correlation between the eQTL effects in our study

and GTEx (considering all 13 brain tissues grouped together) was moderately high (r = 0.74,

95% CI = [0.71, 0.78]). Correlations were also computed within the separate tissues and were

of a similar magnitude. 9 of the instruments showed evidence of eQTL effect size heterogeneity

(Cochran’s Q test; P< 0.001) across GTEx tissues, which consisted of rs2945253-FAM863BP
and rs2905435-GATA2DA associations with schizophrenia, rs7184567-STX4 and rs858239-

GPNMB associations with Parkinson’s disease; rs55667375-PRSS36, rs7097656-TSPAN14,

rs4295-ACE and rs56377155-AC012146.1 associations with Alzheimer’s disease; and the

rs229184-SCFD1 association with amyotrophic lateral sclerosis (S8 Table). On inspection of

the error bar plots (Fig 3), we found two of the instruments (rs7184567-STX4 and rs7097656-

TSPAN14) displayed a difference in direction of effect between certain brain tissues.

rs7184567-STX4 eQTL showed evidence (P<0.05) of increased expression in the cerebellar

hemisphere and cerebellum tissues and decreased expression in the amygdala, anterior cingu-

late cortex, cortex, frontal cortex, hypothalamus, nucleus accumbens, and putamen tissues.

rs7097656-TSPAN14 eQTL showed evidence (P<0.05) of increased expression in the cerebel-

lar hemisphere, cerebellum, and substantia nigra tissues, and decreased expression in the

Fig 3. Error bar plot (95% confidence interval around the eQTL effect is displayed) comparing gene expression effects across the 13 brain tissues available in

GTEx version 7. 9 of our 47 prioritised genes showed statistical evidence of effect size heterogeneity across the brain tissues. STX4 and TSPAN14 genes showed evidence

of differing direction of gene expression effect for certain brain tissues.

https://doi.org/10.1371/journal.pgen.1009224.g003
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anterior cingulate cortex, cortex and frontal cortex tissues. As an additional analysis, we then

looked up our brain instruments in eQTLGen to determine if blood tissue would have been a

reasonable proxy for the effects we observed. 42 of our brain instruments were found in the

eQTLGen study. Correlation of the estimates between our brain study and eQTLGen was

moderate (r = 0.56, 95% CI = [0.30,0.73)]. 18 of the 42 instruments were genome-wide signifi-

cant (P<5x10-8) in eQTLGen and showed evidence of colocalization (PP4>70%) with the

same gene’s expression measured in our brain study (S9 Table). All 18 of the instruments apart

from two, the rs229184-SCFD1 and rs7184567-STX4 associations, had the same direction of

expression effect as our brain instrument. We also re-performed MR analysis instrumenting

on eQTLs available within eQTLGen in order to establish whether additional genes could be

reliably discovered using blood tissue as a proxy. A total of 41,157 independent SNPs across

16,190 genes were available as instruments at the P<5x10-8 cut-off in eQTLGen. eQTLGen

allowed for the instrumentation of many other genes with 10,754 of the 16,190 genes (66.4%)

not intersecting with the genes we were able to instrument in the AMP-CMC MR analysis

(S10 Table). 449 instruments (n = 417 genes) at the P< 6x10-7 and 30,245 instruments

(n = 11,818 genes) at the P<0.05 cut-off showed evidence of a MR effect from the 373,176 MR

tests conducted in total across the 12 primary outcomes tested (full eQTLGen MR results avail-

able at GitHub repository denisbrd/braineQTLMR_datasets). We then matched the MR effect

estimates for these eQTLGen instruments with the AMP-CMC MR estimates (n = 7,689

instruments across 7,136 genes) and found that a large proportion of the effects had discrepant

directions: at the P< 6x10-7 cut-off, 50 from the 110 MR effects shared between the studies

(45.5%) were in the opposite direction, and at the P<0.05 cut-off 4,068 from 10,494 shared

MR effects (38.9%) were in the opposite direction.

No evidence of reverse causation. As the genetic instruments were selected from a meta-

analysis which contained post-mortem samples collected from the brain tissue of Alzheimer’s

disease patients, it is possible that some of the gene expression changes are a consequence of

Alzheimer’s disease pathogenesis rather than being cause of a neurological disease. We there-

fore examined whether our MR effects were in the correct direction using reverse MR and Stei-

ger filtering. In reverse MR, we assessed the effect of the outcome on gene expression, using

SNPs associated with the primary outcome at P<5x10-8 as instruments. A total of 13,282 SNPs

was retrieved from the primary outcome GWASs, which reduced to 180 independent SNP

instruments after LD clumping. These consisted of 83 SNPs associated with schizophrenia, 28

with Alzheimer’s disease, 27 with Parkinson’s disease, 26 with multiple sclerosis, 6 with amyo-

trophic lateral sclerosis, 5 with major depressive disorder, 4 with bipolar disorder and one with

anorexia nervosa. After harmonisation with SNP effects retrieved from eQTLGen, it was possi-

ble to conduct reverse MR for 41 of the 47 genes identified in the primary MR. Little evidence

of MR relationships in the reverse direction (from outcome to gene expression) was detected

for any of the genes (S11 Table). Steiger filtering was performed on the brain eQTL dataset

from our study, and little evidence of reverse causation was detected from this analysis as well

(S12 Table).

MR outcomes inform drug discovery

We next assessed whether the genes prioritized by MR might serve as promising targets for

drug discovery. For this, we assessed each of the 47 genes causally linked to neurologic or psy-

chiatric disease using the following three criteria: (i) evidence for an “allelic series” with coding

variants reported to cause Mendelian diseases with neurological or behavioural phenotypes;

(ii) evidence for being the target of a marketed or clinically tested drug; and (iii) a satisfying

safety profile in our phenome-wide MR analyses. Of the 47 genes, five (RERE, KCNQ5, SUOX,
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ACE and GPNMB) fulfilled our criteria as strong candidates for drug development (Tables S13

and 4). Our MR results suggest that inhibition of RERE and KCNQ5 could be used to treat

schizophrenia and GPNMB to treat Parkinson’s disease whereas promotion of SUOX could be

used to treat Anorexia and ACE to treat Alzheimer’s disease. For instance, mutations in three

genes our MR analyses linked to schizophrenia (RERE, KCNQ5) or anorexia (SUOX), respec-

tively, are reported to cause monogenic diseases. Loss-of RERE function results in an early-

onset neurodevelopmental disorder with anomalies in the brain, eye and heart (OMIM

605226) [19,20], and haploinsufficiency for RERE variants with assumed milder impact are

believed to contribute to neurological abnormalities in adults [21]. Mutations in KCNQ5 cause

an autosomal-dominant mental retardation syndrome (OMIM 607357). KCNQ5 is part of the

transmembrane voltage-gated potassium channel gene family involved in the regulation of the

conduction of electrical signals across nerve and muscle cells [22,23]. Lehman et al. identified

both gain (increased nerve cell excitability) and loss of function (decreased nerve cell excitabil-

ity) autosomal dominant mutations in the KCNQ5 gene after conducting exome sequencing

on families with intellectual disability and epilepsy [24]. SUOX encodes the sulphite oxidase

enzyme responsible for breaking down sulfuric amino acids accumulation of which is neuro-

toxic. Autosomal-recessive deficiency for this enzyme results in Isolated Sulfite Oxidase Defi-

ciency (ISOD) which presents as a neurodevelopmental disorder with motor and behavioural

signs (OMIM 272300).

Three of the 47 genes had been considered earlier for drug development and are listed as

targets for approved medicines or drugs tested in clinical trials. For instance, Dalfampridine is

a KCNQ5 inhibitor that has been approved to improve mobility in multiple sclerosis patients,

and KCNQ5 inhibitors [25] have been explored also for other neurological conditions includ-

ing amyotrophic lateral sclerosis, Gullian-Barre Syndrome, unipolar depression and cerebral

palsy (Open Target annotations). Similarly, GPNMB inhibitors have been explored for various

types of cancer, for instance the monoclonoal antibody glembatumab (CDX-011) in Phase 2

trials for melanoma and breast cancer [26,27]. And ACE inhibitors are a well-established

approved class of drugs for the treatment of hypertension, heart failure and diabetes mellitus.

We conducted an MR-PheWAS analysis to assess whether targeting the five genes that

showed either an “allelic series” or were previously reported as drug targets would be safe

(Table 4). Substantial new toxicity signals were identified for none of the five genes. However,

consistent with the known pharmacological effect of ACE inhibitors to lower blood pressure,

increased ACE expression colocalised with increased hypertension risk which might limit

exploration of this target to treat or prevent Alzheimer’s disease. Also, an increase in SUOX
expression as it might be desirable to treat anorexia, colocalised with reduced hypothyroidism

risk and additionally an elevated risk for rheumatoid arthritis and hypertension, warranting

further safety investigations in follow up studies. Interestingly, expression of RERE also coloca-

lized with heel bone mineral density, suggesting that in addition to schizophrenia RERE inhibi-

tors (decreasing expression of RERE) might potentially be beneficial in osteoporosis

(increasing heel bone BMD) and eventually other non-CNS traits, which will need to be clari-

fied in future studies.

Discussion

In this study, we used a combination of two sample MR and colocalization analysis to infer

potential causal relationships between expression of genes measured in brain tissues and 12

neurological and psychiatric conditions. MR was used to mitigate the confounding that may

arise when assessing associations between gene expression and disease, and colocalization was

used to verify that the eQTL instrument used in the MR was not coincidentally associated with
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both traits (i.e. eliminate the possibility of the MR effect arising due to alternative causal vari-

ants in LD). This two-step approach to causal gene identification is important since expression

of many genes with MR effects does not colocalize with association signals for the outcome

trait. For instance, a previous two sample MR study [9] showed that many of the genes

detected in their MR did not subsequently pass the HEIDI test (around 65%) used to distin-

guish between genuine pleiotropy and association through LD. In our current study, 47 eQTLs

showed evidence of a shared genetic effect with neurological or psychiatric disease outcomes

through MR and colocalization, suggesting a functional role for the genes in disease pathogen-

esis. 16 of these eQTLs had only a suggestive association (5x10-8<P<5x10-5) in the respective

outcome GWAS, which suggests that integrating eQTL evidence may help substantiate GWAS

findings.

For eQTLs prioritized by MR, we investigated whether there was evidence for shared effects

across the different neurological or psychiatric outcomes analysed, opening the possibility for

identifying intervention points for novel drugs with cross-indication potential. No evidence

for sharing of genetic effects at our multiple testing corrected P value threshold was detected.

However, as we expected the genes we identified in our main MR to share outcome effects

more often than a random gene we also looked for evidence of shared relationships at a less

stringent threshold of P<0.05, and found some weaker evidence of shared MR effects between

schizophrenia, amyotrophic lateral sclerosis, and Parkinson’s disease genes. GRN emerged as a

particular promising target from our analyses since it was prioritised in our main MR analysis

for Parkinson’s disease, but also showed a suggestive relationship with Alzheimer’s disease

risk. GRN encodes the progranulin protein, that is highly active in brain cells and plays an

important role in the survival of neurons. Autosomal dominant mutations in this gene have

been found to result in frontotemporal dementia via haploinsufficiency, whereby the shortage

of progranulin causes a build-up of TDP-43 aggregates in the brain resulting in premature cell

death [28]. Mutations in this gene have also been identified in patients diagnosed with Alzhei-

mer’s disease [29]. A whole genome-wide sequencing study [30] discovered evidence of

enrichment of rare deleterious variants in the GRN gene amongst Parkinson’s disease cases rel-

ative to European controls.

Table 4. Genes we prioritised as drug targets that had MR and colocalization evidence with other indications. Gene expression-disease relationship identified in the

main MR (instrument-gene-indication): Alzheimer’s disease (AD), Schizophrenia (Sz), anorexia (AN), suggested direction of drug action according to MR effect (inhibi-

tion or promotion of gene expression), other indications detected with the same gene in our MR-PheWAS (other indication), Wald ratio (WR), SE and P-value of MR

effect and colocalization probability PP4 (coloc).

instrument-gene-

indication

drug mechanism other indication WR SE P coloc

rs4295-ACE-AD promotion (negative MR

effect)

Non-cancer illness code self-reported: hypertension 0.024 0.003 3.57x10-

15
99.0

rs2708630-RERE-Sz inhibition (positive MR effect) Heel bone mineral density (BMD) T-score automated -0.080 0.010 2.17x10-

16
97.1

Diastolic blood pressure automated reading 0.054 0.008 2.15x10-

12
96.6

Systolic blood pressure automated reading 0.050 0.008 1.58x10-

10
96.7

Age at menarche 0.081 0.021 1.50x10-4 97.8

rs1081975-SUOX-AN promotion (negative MR

effect)

Non-cancer illness code self-reported: hypothyroidism/

myxoedema

-0.008 0.001 1.20x10-

10
87.0

Rheumatoid arthritis 0.199 0.033 2.23x10-9 97.9

Non-cancer illness code self-reported: hypertension 0.011 0.003 3.06x10-5 74.9

https://doi.org/10.1371/journal.pgen.1009224.t004
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We performed a systematic comparison of our instrument effects against other eQTL data-

sets in order to evaluate the generalisability of our MR findings. We found that a significant

proportion of our instruments showed the inverse direction of effect when compared against

blood tissue effects in eQTLGen and across a range of other non-brain related tissue effects in

GTEx. We then performed the comparison on effect sizes for the instruments belonging to our

top 47 gene-expression disease MR relationships. Heterogeneity tests revealed evidence of dif-

fering eQTL effect sizes for FAM86B3P, STX4, PRSS36, GPNMB, TSPAN14, SCFD1, ACE,

GATAD2A and AC012146.1 genes across the 13 brain tissues in GTEx. In particular, STX4 and

TSPAN14 showed opposing directions of expression effects for certain tissues, which could

result in drawing differing MR conclusions regarding direction of effect. Under half of the

brain instruments for our top findings were also suitable instruments in eQTLGen, which

indicates that disease relevant loci would have been missed if the study had relied on using a

blood tissue as a proxy. In the MR analysis we conducted on eQTLGen instruments, we were

able to detect many additional genes related to our diseases not picked up in our brain eQTL

analysis, however the shared MR effects with our brain study tended to have a different causal

direction. This argues that future MR studies should be conducted in disease relevant tissues

to ensure the correct direction of causality. When there is uncertainty regarding the correct tis-

sue, then it is important to examine instrument effects across a range of applicable tissues

rather than relying on a single tissue. Studies which seek to enhance statistical power through

combining eQTL effects across tissues, such as the MeCs meta-analysis method across brain

tissues [10], will require the assumption of homogeneity of effect across tissues for all loci to be

checked beforehand.

We examined the potential for our top MR findings to inform drug discovery and identified

three genes (RERE, KCNQ5, SUOX) in which high-impact mutations are reported to cause

Mendelian CNS diseases, suggestive of function-phenotype effects observed for “allelic series”

genes [1]. Moreover, three genes (ACE, GPMNB, KCNQ5) have already being explored as drug

targets in clinical trials or are the targets of marketed drugs, proposing existing therapies that

could be explored for CNS conditions.

ACE inhibitors were found to have strong evidence of a causal relationship with increased

Alzheimer’s disease risk in a previous MR study conducted to investigate the use of antihyper-

tensive drugs to treat the disease [31]. However, mice models have demonstrated that

increased expression of ACE helps to prevent cognitive decline and to protect against amyloid

Beta-protein deposits [32], which if they build up in a brain are a risk factor for the develop-

ment of Alzheimer’s disease. Therefore, we recommend that although we found that promo-

tion of ACE could help to treat Alzheimer’s disease, due to the risks associated with the

consequent increased blood pressure this action would require further functional studies to

evaluate safety.

Our MR suggested that GPNMB inhibitors could be re-purposed to treat Parkinson’s dis-

ease. The role of GPNMB is already well-established in tumour progression, where over-

expression of the gene suppresses the immune response to tumour growth [33]. Evidence also

exists that supports a similar pathogenic role for this gene in Parkinson’s disease. Both

GPNMB gene expression and protein levels have been shown to be elevated within brain

regions of Parkinson’s disease patients, and functional follow-up in these same studies indi-

cated that GPNMB may act through suppression of the inflammatory response [34,35]. Our

GPNMB MR finding was consistent with a transcriptome-wide association study (TWAS) con-

ducted by Li et al [36] on the Nalls et al [37] Parkinson’s disease GWAS, who also found that

increased GPNMB expression in dorsolateral prefrontal cortex and peripheral monocytes was

associated with increased disease risk.
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MR further suggests that KCNQ5 inhibitors could be re-purposed to treat schizophrenia.

Potassium channel blockers are known to be effective in the treatment of multiple sclerosis

[25], and several studies suggest that genes within this family would make strong candidates

for the treatment of symptoms associated with schizophrenia [38]. For example, a SNP within

the KCNH7 gene was demonstrated to be involved in modulating the treatment response of

schizophrenics to the antipsychotic drug risperidone, therefore the gene was recommended as

a novel drug target by this study [39].

We decided to be relatively conservative with our cut-off used to select our instruments

(P<5x10-8) and selection of our top MR findings to avoid false positive MR findings.

Although, two sample MR studies will frequently select SNPs at the P<5x10-8 as instruments,

less stringent thresholds have been used for eQTL studies. For example, to investigate brain tis-

sue-specific gene expression effects on schizophrenia, a previous MR study [9] conducted on a

brain tissue eQTL dataset (n = 134) [40] used a less stringent P value threshold of P<1.6x10-3.

Therefore, it is possible that we have missed reporting some genes that have a true casual effect.

In contrast, for our colocalization analysis, we decided to use a relatively liberal probability

cut-off of PP4 > 70% to avoid wrongly eliminating potentially interesting and important loci

(i.e. reduce false negative rate). For example, in the original method publication [41] consid-

ered a cut-off of PP4 > 75% to be strong evidence of colocalization and other studies have used

PP4>80% as the cut-off to determine colocalization between traits[12,42]. 6 from 47 of our

prioritised genes colocalized with a PP4 of between 70% to 80%: NMB, GOLGA2P7, FES genes

with schizophrenia, KLHL7-DT and AC135050.3 genes with Parkinson’s Disease, and the

AC012146.1 gene with Alzheimer’s disease. These findings should therefore be considered as

having more borderline evidence of colocalization. It is also possible that regions may fail to

colocalize due to lack of statistical power and multiple causal variants in the region, which may

obscure association peaks that would colocalize after conditional analysis is conducted across

the region.

A limitation of our MR study, which is true of MR studies on QTLs in general, is the spar-

sity of SNP instruments available within most of the genomic regions. For the MR analysis,

only a small fraction of genes could be instrumented by more than one SNP (of which the vast

majority could only be instrumented by two SNPs), therefore the type of MR and sensitivity

analysis that could be conducted was limited. Due to the lack of single SNP instruments within

genes it was not possible to achieve substantially stronger instrumentation via the Inverse Vari-

ance Weighted (IVW) method (where Wald ratio effects are pooled across the same gene tran-

script as a weighted average to obtain an MR effect, full IVW results available at GitHub

repository denisbrd/braineQTLMR_datasets) and to conduct many of the sensitivity tests to

assess the impact of heterogeneity, invalid instruments and pleiotropy on the MR inference

[43]. For example, for around half of our top findings’ instruments, we detected shared associ-

ation with other eQTLs for genes in the cis-region, making it difficult to prioritise the causal

gene at this locus (i.e. imperfect drug target specificity) and also raising the possibility that

these genes could be confounded via horizontal pleiotropy if genes acted through different

molecular pathways. Reassuringly, we identified no such issues with the genes which we priori-

tised as drug targets as there was no evidence of shared association with the expression of

other genes in their genomic region.

In conclusion, our study demonstrates the utility of using transcriptome-wide MR and

colocalization analysis in brain tissue to identify drug targets for psychiatric and neurological

diseases. However, it is important to note that our MR inference was based on outcomes

which captured the incident risk of the disease, which relates to factors associated with onset of

disease. As such targeting our findings with drugs may be useful in prevention of disease but it

is not clear whether this may be effective in preventing progression of the disease as well.
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GWASs are increasingly becoming available on disease progression traits which can be used in

future MR studies to confirm whether susceptibility loci are also involved in disease progres-

sion and can be targeted by drugs to slow this process. Furthermore, as the SNP coverage and

sample size of eQTL datasets available in brain tissue increases, this will allow for better instru-

mentation of existing genes and for more genes to instrumented, improving the scope of MR

analysis (to include trans-effects for example) that can be carried out and potential to discover

further loci. Other brain QTLs (such as methylation, splicing, protein and cell-type QTLs) can

also provide valuable information on underlying biology, therefore applying a multi-omic

approach to future target identification efforts will be a highly fruitful avenue of MR research.

Materials and methods

Primary MR analysis: Two sample MR between brain eQTLs and

neurological and psychiatric disease traits

Primary outcome selection. We selected 12 traits that were either neurological or psychi-

atric conditions as the primary outcomes (S14 Table) for this study. The 7 psychiatric traits

included: anorexia nervosa [44], attention deficient disorder [45], autism spectrum disorder

[46], bipolar disorder [47], major depressive disorder [48], obsessive compulsive disorder [49],

and schizophrenia [50]. The 5 neurological traits included: Alzheimer’s disease, amyotrophic

lateral sclerosis [51], frontotemporal dementia [52], multiple sclerosis [53], and Parkinson’s

disease.

For Alzheimer’s disease, we combined the summary statistics from the Lambert et al

GWAS [54] (17008 cases, 37154 controls) with a GWAS by proxy of Alzheimer’s disease family

history in the UK Biobank (56773 proxy-cases and 379370 controls). Similarly, for Parkinson’s

disease, we combined summary statistics from Nalls et al GWAS [37] (13708 cases, 95282 con-

trols) and a GWAS by proxy of Parkinson’s disease family history in the UK Biobank (16909

proxy-cases, 388689 controls). For the UK Biobank analyses, we defined proxy-cases as partici-

pants who answered yes to whether they have a biological father (UK Biobank field 20107),

mother (UK Biobank field 20110) or sibling (UK Biobank field 20111) who suffered from Alz-

heimer’s disease/dementia (or Parkinson’s disease). Participants who answered “Do not

know” or “Do not with to answer” were excluded from analyses. All other individuals were

included as controls. We further excluded participants of non-European ancestry [55].

Genome-wide association analyses were performed using BOLT-LMM [56]. To enable meta-

analysis with the previous GWAS, we multiplied the log(OR)-scale effect sizes and standard

errors by a factor of two [57], and then performed meta-analysis using a fixed-effects inverse-

variance weighted approach.

Instrument selection and preparation. We obtained our genetic instruments from a cis-

eQTL meta-analysis performed on cohorts from AMP-CMC. This dataset consisted of a total

of 6,937,060 SNPs across 19,281 gene transcripts measured in 1,286 pre-frontal brain cortex

tissues. We removed 66,788 SNPs within the Major Histocompatibility (MHC) region (defined

as SNPs between 24Mb and 36Mb in chromosome 6 hg19 build) from the dataset due to the

extensive LD structure and complexity of this region. We then selected 1,054,129 genome-

wide significant SNPs using P<5x10-8 as a threshold and conducted LD clumping on this set

of SNPs to obtain a set of independent eQTL instruments for each gene transcript. A total of

7,689 SNPs across 7,137 genes remained as instruments after clumping. LD clumping was per-

formed using the clump_data function provided by the TwoSampleMR R package [43] on the

default settings where all SNPs present in the 1000 Genomes EUR population with r2>0.001

within a 10Mb window of the top hit were removed.
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We standardised all eQTL SNP effects (βj~N(0,1)) to represent a per SD change in gene

expression to allow for comparison of the magnitude of the MR effect sizes across all genes for

the different diseases. Standardised effect sizes and standard errors (SE) were derived using the

following formulae [9,43]:

bstandarised ¼
Zj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �MAFjð1 � MAFjÞ � ðNj þ Z2

j Þ
q

SEstandarised ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �MAFjð1 � MAFjÞ � ðNj þ Z2

j Þ
q

where the z score Zj is obtained for SNPj by dividing the raw SNP effect by the SE of the effect,

and the variance of SNPj genotypes is derived from the study’s allele frequencies using

2�MAFj(1-MAFj), Nj is the sample size for the SNP (reported sample size for the study was

used if SNP-specific sample size was not available). To determine instrument strength we cal-

culated the F-statistic for each instrument using the Cragg-Donald statistic [58,59]:

PVE ¼ b2
=ðb

2
þ se2 � nÞ

where PVE is the proportion of variance explained by the eQTL instrument, β and se is the

effect size and standard error of the instrument, n is the sample size of the instrument

(n = 1286 for our brain eQTL).

F statisitc ¼ PVE � ðn � 1 � kÞ=ð1 � PVE � kÞ

where k is the number of instruments used in the MR estimate (k = 1 for single SNP MR) and

n is the instrument sample size if k = 1 or average of the sample size over k instruments if k>1.

Data harmonisation and two sample MR analysis. We extracted the selected instru-

ments from the outcome GWASs, harmonised the genetic association between the instrument

and outcome GWAS so that they reflected the same allele, and then conducted MR analyses on

the harmonised data. We estimated the effect of gene expression on the primary outcomes

using a single SNP instrument (Wald ratio method). All these steps were implemented using

the TwoSampleMR R package [43] version 0.4 maintained by MR-Base.

Selection of top MR findings. A Bonferroni correction threshold of P = 6x10-7 at α = 0.05

based on n = 80,557 MR tests was used to prioritise gene-outcome associations for further fol-

low up. Some of the prioritised genes were within the same genomic region. For these cis-

genes, in order to visualise the LD between instruments, regional association plots were gener-

ated in LocusZoom (locuszoom.org) [60] using 1000 Genomes EUR reference panel to com-

pute the LD relative to the Wald ratio estimate for the gene with the lowest p-value in the

region. LocusZoom plots are available for viewing on GitHub repository (denisbrd/brai-

neQTLMR_datasets; DOI: 10.5281/zenodo.3778433).

Colocalization analysis between gene expression and traits

Colocalization analysis was conducted on the identified gene-outcome MR associations to

confirm that the gene expression exposure and outcome shared the same causal variant within

the region of interest (rather than the variant being shared coincidentally due to correlation

through LD). Colocalization compares the probability of five hypotheses across a region: nei-

ther gene expression or the outcome are associated with genetic variants in the region (H0),

only gene expression is associated with a genetic variant in the region (H1), only the outcome

is associated with a genetic variant in the region (H2), gene expression and outcome are both
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associated with the region, but with different causal variants (H3), gene expression and out-

come are associated with the same causal variant (H4).

We extracted the summary association statistics for all SNPs residing within a 1Mb region

surrounding the instrument (i.e. instrument +- 500kb) from the eQTL dataset, and then

extracted the summary association statistics for the same SNPs from the outcome GWAS. We

then used Bayesian coloc.abf function in R to conduct colocalization analyses on the SNPs

common to both datasets [41]. Default priors were used: the expected proportion of SNPs

associated with gene expression (p1 = 5x10-4), associated with the outcome (p2 = 5x10-4) and

associated with both gene expression and the outcome (p3 = 5x10-5). We considered the traits

to colocalize if the posterior probability (PP4) for H4 was greater than 70%.

Instrument comparison between our study and other eQTL datasets

In order to determine the extent of similarity which would be observed from conducting the

same MR analysis in other eQTL datasets, we compared the gene expression effect estimates

for our instruments (from the AMP-CMC brain eQTL dataset) to the effect estimates for the

same SNP in other eQTL datasets. In order to compare against brain tissue, we downloaded

the full summary association statistics for the two brain eQTL dataset used in Qi publication

[10] from their SMR website (https://cnsgenomics.com/software/smr/#DataResource): AMP,

CMC and GTEx meta-analysis on brain cortex tissue (n = 1194) and the meta-analysis across

ten different brain tissues available in GTEx (n = 233). In order to compare against blood tis-

sue, we acquired the full summary statistics for eQTLGen [16] (n = 31,684) from their website

(https://www.eqtlgen.org). In order to conduct a cross-tissue comparison, we downloaded the

full association summary statistics available across all 48 tissues in GTEx version 7 (https://

gtexportal.org/home/) [61]. We then extracted our instruments from each of these eQTL data-

sets, matching by both dbSNP rsid for the SNP and Ensembl ENSG gene identifier. We calcu-

lated the Pearson’s correlation between the eQTL effect sizes in our study and the other studies

across the instruments. We also determined the number of times our instruments had a gene

expression effect which was significant at P<5x10-8 (cut-off used for instruments in our study)

and P<0.05 level in the other eQTL datasets as well as the number of times our instruments

disagreed with the direction of gene expression effect in other datasets (provided P<0.05 for

the gene expression effect in the other dataset).

Follow up MR analysis on selected instruments

The following analyses were conducted on the selected instruments identified in the main MR

analysis (i.e. for the potentially causal genes which passed the Bonferroni correction).

Assessment of pleiotropy phenome-wide. We conducted a MR phenome-wide associa-

tion analysis (MR-PheWAS) on 219 disease outcomes and risk factors, previously collated by

Zheng et al [62] (S15 Table) to assess the potential for pleiotropic relationships across traits.

Colocalization was performed on the MR effects which had P<0.05

Using the MR-PheWAS dataset, we also examined whether the proportion of Wald ratio

effects that had a shared effect (P<0.05) in our primary MR could have been through random

chance alone. We did this through permutation testing, in which we generated a distribution

based on repeatedly randomly selecting (n = 10,000 iterations) the same number of non-brain

related traits (n = 12 selected from 182 in total) from the MR-PheWAS dataset. In each itera-

tion, we determined the number and proportion of effects which reached P<0.05. From this

distribution, we could then estimate the 95% empirical confidence interval around the propor-

tion and p-value (number of times each iteration had a proportion that as least as extreme as

our test statistic (proportion = 141/551 = 0.26). We checked the distribution and it was
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approximately Normal: descriptive parameters were as follows: number of effects at P< 0.05:

min = 17, mean = 61.9, max = 140, proportion of effects at P<0.05, min = 0.037, mean = 0.12,

max = 0.27, empirical 95% CI for proportion = 0.12, [0.07,0.17].

Assessment of molecular pleiotropy. We assessed the number of different genes whose

expression was associated with each of our instruments (i.e. molecular pleiotropy). We

retrieved the summary association statistics across the gene transcripts available in the

AMP-CMC study and determined the genes which were associated with the instrument at

Bonferroni P-value α = 0.05. We then conducted colocalization analysis between the gene

expression and the outcome detected in our primary MR.

Assessment of tissue-specific effects. We assessed consistency between our selected

instruments and brain tissue eQTLs from the Genotype-Tissue Expression (GTEx) project ver-

sion 7 [61]. The 13 brain tissues available in GTEx were examined: Amygdala (n = 88), Ante-

rior cingulate cortex BA24 (n = 109), Caudate basal ganglia (n = 144), Cerebellar Hemisphere

(n = 125), Cerebellum (n = 154), Cortex (n = 136), Frontal Cortex BA9 (n = 109), Hippocam-

pus (n = 111), Hypothalamus (n = 108), Nucleus accumbens basal ganglia (n = 130), Putaman

basal gangli (n = 111), Spinal cord cervical c-1 (n = 83), and the Substantia nigra (n = 80). We

extracted our selected instruments from these datasets, and we determined the number of

GTEx eQTLs across the brain tissues that showed evidence of association (using a Bonferroni

corrected α = 0.05) and had the same direction of effect as our instruments (from AMP-CMC

study). We also computed the Pearson’s pairwise correlation between our gene expression

effects and GTEx effects in each tissue. In order to assess whether eQTL effects showed statisti-

cal evidence of varying across different brain tissues, a meta-analysis was performed across the

13 brain GTEx tissues using the GWAMA meta-analysis package [63]. We defined evidence

for heterogeneity across tissues as P<0.001 based on Cochran’s Q test. We also examined if

using our selected instruments in blood tissue could proxy for brain tissue effects in an MR

analysis. To do this summary association statistics were retrieved from eQTLGen (https://

www.eqtlgen.org) [16]. We performed colocalization analysis between the gene expression

effects measured in brain (AMP-CMC) and blood (eQTLGen) and for the regions which

passed colocalization analysis (PP4>70%), we determined the number of blood effects which

were genome-wide significant (P< 5x10-8) and had the same direction of effect as the brain

instrument. We also computed the Pearson’s pairwise correlation between brain and blood

effects across our selected instruments.

Assessment of directionality of MR effect. A potential issue with the MR analysis could

be that the gene expression changes are a consequence of genetic predisposition to disease

rather than a cause of the disease. Directionality can be determined using either bi-directional

MR [64] or Steiger filtering [65,66]. For a bi-directional MR, a reverse MR is conducted where

the SNPs associated with the outcome are used as instruments, therefore evidence of a rela-

tionship would imply an incorrect direction of effect from the outcome to the exposure. The

Steiger filtering method compares the effect estimates for the instrument-exposure association

(ρgx) and instrument-outcome association (ρgy) in order to infer the direction of causality. The

Steiger test computes a p-value (psteiger) which is the probability of obtaining a difference

between these two correlations (ρgx−ρgy) at least as extreme as the one observed in the study

under the null hypothesis. The psteiger statistic indicates the strength of evidence that the rela-

tionship is in the correct direction from exposure to outcome. Since we did not have access to

full summary association statistics for in the AMP-CMC study (i.e. only captured cis-acting

regions), it was not possible to conduct bi-directional MR in our brain tissue dataset, but we

could perform the Steiger filtering test. Steiger filtering was conducted on our instruments

using the mr_steiger function in the TwoSampleMR package, and those labelled as not having

passed the mr_steiger filter reported if present. We performed bi-directional MR using
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eQTLGen as the outcome dataset in the reverse MR. For the reverse MR step, we first defined

instruments for outcomes by selecting genome-wide significant (P<5x10-8) SNPs from our

primary neurological and psychiatric GWASs, and performed LD clumping on the selected

SNPs. We then looked up these SNPs in the genes available within eQTLGen, harmonised the

effects and performed MR analyses to assess the effect of the neurological and psychiatric traits

on gene expression using IVW linear regression, MR Egger and the weighted median estima-

tor via the TwoSampleMR R package.

Evaluation of existing knowledge to assess potential drug targets

We carried out lookups in two public databases to assess the functional relevance and potential

druggability of the genes identified in the main MR analysis: (i) Online Mendelian Inheritance in

Man (OMIM) [67] to search for human monogenic disorders relating to the gene. Gene names

were searched for in Online Mendelian Inheritance in Man (https://omim.org) online and the

allelic variants section was manually reviewed for evidence of mutations which caused abnormal

neurological or behavioural phenotypes and (ii) Open Targets [68] to find potential drug target-

indication pairs for the gene. Ensembl ENSG gene name was searched in the Open Targets

Genetics database online (https://genetics.opentargets.org) and clinical trials information was col-

lected for genes which were annotated as being potentially druggable, which we defined as the

target having entered the clinical trial stage and having at least completed Phase 0.
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