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Abstract

Motivation: Finding biosynthetic pathways is essential for metabolic engineering of organisms to produce chemi-
cals, biodegradation prediction of pollutants and drugs, and for the elucidation of bioproduction pathways of sec-
ondary metabolites. A key step in biosynthetic pathway design is the extraction of novel metabolic pathways from
big networks that integrate known biological, as well as novel, predicted biotransformations. However, the efficient
analysis and the navigation of big biochemical networks remain a challenge.

Results: Here, we propose the construction of searchable graph representations of metabolic networks. Each reac-
tion is decomposed into pairs of reactants and products, and each pair is assigned a weight, which is calculated
from the number of conserved atoms between the reactant and the product molecule. We test our method on a bio-
chemical network that spans 6546 known enzymatic reactions to show how our approach elegantly extracts biologic-
ally relevant metabolic pathways from biochemical networks, and how the proposed network structure enables the
application of efficient graph search algorithms that improve navigation and pathway identification in big metabolic
networks. The weighted reactant–product pairs of an example network and the corresponding graph search algo-
rithm are available online. The proposed method extracts metabolic pathways fast and reliably from big biochemical
networks, which is inherently important for all applications involving the engineering of metabolic networks.

Availability and implementation: https://github.com/EPFL-LCSB/nicepath.

Contact: vassily.hatzimanikatis@epfl.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Extracting meaningful metabolic pathways from large metabolic
networks is essential for the computational design of bioproduction
pathways, for the elucidation of biosynthesis of natural products,
and for the fundamental understanding of metabolism. Metabolic
pathways describe the transformation from one or several source
molecules over consecutive reaction steps into one or several target
molecules and provide the roadmap guiding these various applica-
tions (Cravens et al., 2019; Lin et al., 2019; Nielsen and Keasling,
2016). Traditionally, metabolic pathways were drawn by hand after
directly inferring biochemical transformations from experimental
evidence. However, the advent of the omics era and the dramatic in-
crease of computational data resources has drastically changed the
way we study biochemistry. Biochemical knowledge is now col-
lected in continuously growing databases, providing new opportuni-
ties for fundamental research and metabolic engineering. These

resources can be harnessed to design non-canonical pathways that
do not exist in nature. While many non-natural pathways have been
historically designed by intuition using paper and pencil, it is likely
that alternative and more efficient solutions will be missed given the
wealth of available biochemical data, thus making systematic and
automated pathway extraction indispensable. To address this chal-
lenge, computational pathway search tools have been developed to
extract metabolic pathways from biochemical databases (Hadadi
and Hatzimanikatis, 2015; Wang et al., 2017).

Pathway search tools aim to provide meaningful, easily interpretable
metabolic pathways as they are shown in textbooks, but through an
automated approach. A typical, linear pathway starts with a precursor
molecule that is chemically modified by subsequent enzymatic steps
until a target molecule is obtained. The atoms of the precursor com-
pounds that are conserved throughout the pathway can be defined as
core atoms. Cofactors and co-metabolites are considered boundary
compounds and their metabolic provenance and fate are not further
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detailed in the linear pathway. In reality however, pathways are not al-
ways linear. Anabolic pathways may involve the concatenation of two
or more metabolites to form a bigger compound [e.g. (S)-norcoclaurine
synthase], and catabolic pathways may break down a compound into
two or more smaller molecules. However, every branched pathway can
also be described as a combination of linear pathways, and we therefore
only consider linear pathways in this work. Here, we define biologically
relevant, linear pathways as biochemical routes that fulfill the following
criteria: (i) Core atoms are conserved throughout the pathway, (ii) loops
are not allowed, meaning that no metabolite appears twice and (iii)
other metabolites that contribute to the main biotransformation route
in a lesser degree are considered as cofactors or co-metabolites.

Pathway search methods are applied to biochemical networks that
define the search space. There are two main approaches to mathematic-
ally describe a biochemical network: A stoichiometric matrix or a math-
ematical graph (Wang et al., 2017). Stoichiometric reaction matrices
can be searched for pathways by optimizing the production of a target
molecule within a metabolic network (Kumar et al., 2018). However,
this technique is not applicable to biochemical networks the size of bio-
chemical databases with tens to hundreds of thousands of reactions and
is therefore not further discussed here. Graph-based methods on the
other hand are suitable for large-scale applications due to their compu-
tational efficiency. They represent metabolic networks as mathematical
graph structures, and then find paths within the graph from a given
source to a target metabolite. Several approaches have been explored to
bias a biochemically blind graph search algorithm toward biologically
meaningful pathways, such as the exclusion of cofactors from the net-
work to avoid shortcuts through hub metabolites (e.g. CO2, ATP, H2O)
(Ma and Zeng, 2003), defining substrate-product pairs through the
chemical similarity of reactants (Pertusi et al., 2015), precomputing
recurring subpaths (Kim et al., 2020) and atom or substructure conser-
vation throughout the pathway (Sankar et al., 2017). Atom conserva-
tion in general, and carbon conservation in particular, is a valuable
criterion for finding biologically meaningful pathways (Arita, 2004;
Blum and Kohlbacher, 2008; Heath et al., 2010; Huang et al., 2017;
Kumar et al., 2018; Tervo and Reed, 2016).

Several solutions to pathway discovery employ the concept of
atom conservation. Initially, the tracking of single atoms was used
by Arita et al. to calculate network properties of the metabolism of
Escherichia coli (Arita, 2004). Later, atom tracking was used to im-
prove the quality of pathway search tools by ensuring that one or
several atoms were conserved throughout the pathway (Fooshee et
al., 2013; Heath et al., 2010; Huang et al., 2017; Latendresse et al.,
2012; 2014; Pey et al., 2013). Atom-tracking methods have been
shown to find biologically relevant pathways, although the high
quality came with an increased computational cost. An alternative
strategy has been pursued by the Kyoto Encyclopedia of Genes and
Genomes (KEGG). Their reactions are annotated with chemical
structure alignments, also called substrate-product pairs or reactant
pairs (short RPAIRs) (Shimizu et al., 2008). The KEGG RPAIR
database consists of manually curated, atom-mapped, substructure-
conserving substrate-product pairs. KEGG differentiates between
five types of RPAIRS: ‘main’, ‘cofac’, ‘trans’, ‘ligase’ and ‘leave’.
The four latter ones describe cofactor pairs, small groups transferred
by transferases, nucleotide triphosphate consumption by ligases, and
the addition or removal of small inorganic compounds by lyases and
hydrolases, respectively. The first type, ‘main’, describes the main
biotransformation in a given reaction.

KEGG’s pathway prediction server, named PathPred, uses the
‘main’ reactant pairs to create a searchable graph of biologically mean-
ingful biotransformations (Moriya et al., 2010). Instead of tracking
atoms individually, PathPred approximates the atom conservation by
defining moiety-conserving reactant pairs, which decreases the complex-
ity of the path search problem. However, their classification system is
based on a combination of manual curation and automatic annotation,
a strategy that is not easily applicable to large biochemical networks,
such as the ATLAS of Biochemistry with its more than 140 000 pre-
dicted reactions (Hadadi et al., 2016; Hafner et al., 2020), or its succes-
sor database ATLASx with its more than 5 million predicted reactions
(Mohammadi-Peyhani et al., 2021). Large biochemical databases, espe-
cially those including hypothetical reactions, require reliable and

computationally efficient algorithms to extract biologically relevant bio-
chemical pathways.

Here, we address the challenge of efficiently searching and analyzing
big biochemical networks. We propose a new method, named NICEpath,
that biases the graph search toward atom-conserving pathways. To
achieve this, we calculate weighted reactant–product pairs that reflect the
atom conservation in each reaction, and we use the atom-conserving pairs
to represent biochemical reaction networks as weighted graphs that are
compatible with efficient search algorithms. The pathways found by
NICEpath therefore fit our definition of ‘biologically meaningful’ in the
sense that they fulfill the three criteria mentioned earlier. The algorithm
finds atom-conserving pathways first and returns a pathway list ranked
by overall atom conservation. NICEpath can be readily employed to ex-
tract and compare metabolic pathways from biochemical database (e.g.
KEGG) or from metabolic networks specific to an organism (e.g.
genome-scale models). The method can be further applied to efficiently
search large biochemical networks, as they are generated by reaction pre-
diction tool such as BNICE.ch (Hatzimanikatis et al., 2005).

2 Materials and methods

Our approach can be divided into four steps (Fig. 1): (i) The first step
consists of acquiring an atom-level representation of each reaction. The
atom maps can come from databases, atom-mapping algorithms, or, in
our case, enzymatic reaction rules as implemented in BNICE.ch
(Hatzimanikatis et al., 2005). (ii) In a second step, each atom-mapped
reaction is decomposed into all the possible reactant–product pairs. For
each pair, we calculate the Conserved Atom Ratio (CAR) from the
number of conserved atoms between reactant and product and the size
of the molecules in terms of number of atoms. (iii) The atom-weighted
substrate-product pairs are used to construct a weighted undirected
graph, where the distance between reactants and products are inversely
proportional to the CAR. (iv) Once the graph of weighted substrate-
product pairs is constructed, we can apply well-established graph search
methods to find the shortest paths, which will inherently find the path-
ways that conserve the highest number of atoms. NICEpath uses the
Yen’s k-shortest loop-less path (Yen, 1971) algorithm, a standard
method to find a predefined number (k) of shortest paths in weighted
graph, avoiding the repetition of nodes.

2.1 Biochemically correct atom mapping with BNICE.ch
Atom-mapped reactions are the prerequisite for calculating weighted
reactant–product pairs. Here, we use the computational tool BNICE.ch,
developed to predict hypothetical biochemical networks, to calculate
biochemically correct atom mappings of enzymatic reactions. The core
of BNICE.ch consists of 442 bidirectional, generalized biochemical reac-
tion rules that describe the biochemical reaction mechanisms of enzym-
atic reactions. The reaction rules are applied to a molecular structure to
(i) reconstruct atom-mapped, known biochemical reactions; and (ii) to
predict all possible biochemical transformations that a given compound
can undergo along with the product compounds generated in the pro-
cess. Here, BNICE.ch calculates atom maps for metabolic reactions
using the mechanistic knowledge stored in the reaction rules, as
described by Hadadi et al. (2017). In this step, other tools for the auto-
matic atom mapping of reactions may also be applied to generate atom
maps (Chen et al., 2013; Fooshee et al., 2013; Latendresse et al., 2012).

2.2 Calculation of weighted reactant–product pairs
The following steps are applied to each reaction in the network to
generate atom-weighted reactant–product pairs: (i) Each reaction is
split into all possible reactant–product pairs. (ii) For each pair of
reactant and product, the number of common atoms (nc) between
reactant and product is calculated along with the total number of
atoms in the reactant (nr) and the total number of atoms in the prod-
uct (np). Hydrogen atoms are omitted from the calculation. (iii) For
each pair, the ratio of conserved atoms (in the following, called
Conserved Atom Ratio, or CAR) is calculated with respect to the
reactant (CARr) and with respect to the product (CARp).

NICEpath 3561



CARr ¼
nc

nr
;CARp ¼

nc

np
(1,2)

(iv) To calculate a bidirectional CAR, the mean CAR is multiplied
with a correction factor that decreases with the difference between
the number of common atoms and the total number of atoms in the
molecule.

CAR ¼ CARr þ CARp

2
� 1� jCARr � CARpj
� �

(3)

The only exception to this approach is made for reactions involving
the cofactor Coenzyme A (CoA). In a molecule, CoA is treated as a
single atom when it occurs in both the reactant and in the product,
mainly because the high number of conserved atoms between the
comparably big CoA leads to high CARs, thus masking the bio-
chemically more interesting connections between the smaller metab-
olites that are attached to and detached from CoA during metabolic
transformations. The final CAR value is used to weight reactant–
product pairs in the network.

2.3 Assigning mechanisms to biochemical reactions

from the KEGG reference network
We used KEGG as a reference database for enzymatic reactions, from
which we extracted all reactions that have an associated mechanism in
BNICE.ch. If a given reaction from KEGG could be reconstructed with
BNICE.ch, it was assigned a reaction mechanism that allowed us to re-
trieve the number of conserved atoms between each reactant–product
pair. The set of KEGG reactions with assigned reaction mechanisms
and pre-calculated CAR values was used for further validation and as
an example network for network analysis and pathway search. The set
of BNICE.ch curated KEGG reactions is available from the GitHub re-
pository at https://github.com/EPFL-LCSB/nicepath.

2.4 Graph representation of biochemical networks
For a given reaction network, NICEpath loads all the reactant–prod-
uct pairs to generate a weighted, undirected graph, where

metabolites are nodes connected by edges, representing the reactant–
product relationship. Edges are assigned a weight that defines the rela-
tion between two connected nodes. To use state-of-the-art shortest-
path graph search algorithms, highly atom-conserving reactants
should be close to each other, and pairs that only share a few atoms
should be further away. Hence, we convert the CAR into a distance:

Default transformation distance ¼ 1

CAR
(4)

NICEpath accepts two alternative ways to calculate the distance,
which can be used to modulate the influence of the atom conserva-
tion on the weight of the reactant–product pair.

Square root transformation distance ¼
ffiffiffiffiffiffiffiffiffiffiffi

1

CAR

2

r
(5)

Exponential transformation distance ¼ e
1=

CAR

e
(6)

The type of transformation can be changed to square root or expo-
nential depending on the nature of the pathway search problem, i.e.
the structures of source and target molecules as well as the estimated
number of biotransformation used to convert one into the other.
The distance measure is used to reconstruct a directed graph whose
edge weights represent the atomic distance between reactants and
products. The different transformations as a function of the CAR
are visualized in Supplementary Figure S1. For longer pathways, we
recommend using the exponential transformation because it
increases the penalty for pairs with low CARs, which makes the
search more conservative in terms of atoms.

For this study, we grouped duplicate KEGG compounds into one
node. Duplicates were identified based on the first fourteen letters of
the InChIKey that describe the atom connectivity of a compound, but
that do not contain additional information (i.e. charge, stereochemis-
try, isotopes) In practice, this means that different stereoisomers of the
same molecular structure were merged into one node.

Fig. 1. The workflow of the pathway search is divided into two parts. The first two steps (left) describe the atom weighting of the network from atom-mapped reactions. In this

study, steps 1 and 2 are performed by BNICE.ch. Steps 3 and 4 (right), implemented in NICEpath, take the atom-weighted network as an input to create a searchable graph

structure and finally apply a Yen’s k-shortest pathway search
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2.5 Finding metabolic pathways with graph search
NICEpath applies a Yen’s k-shortest loop-less path search (Yen,
1971) to extract the shortest pathways from the weighted network
of reactant–product pairs using the python package NetworkX. As
inputs, the pathway search algorithm takes a weighted graph, a
source compound, a target compound and the maximum number of
shortest paths (k) to be found. As soon as this number k is reached,
the algorithm stops and returns all the k-shortest paths in terms of
summed edge weights.

The run time of NICEpath depends on the structure of the net-
work, the distance between the source and target compound in the
graph, the number of pathways to be found and the maximum path-
way length allowed. As an example, to find 10 000 pathways of
maximum length 100, the algorithm runs for about 15 min on a
standard desktop computer using a single core. If there are several
source compounds given as input, NICEpath can run path searches
in parallel for different source compounds using all available cores.

2.6 Network analysis in NICEpath
NICEpath first calculates standard network statistics, such as the
number of nodes and edges, and then extracts an undirected,
unweighted network from the original network by only considering
edges with a CAR higher than a given threshold. For this new net-
work, the number of components, or disjoint graphs, is extracted,
and the biggest component is further analyzed regarding its size rela-
tive to the previous network as well as its diameter. Since searching
for pathways between two compounds belonging to different dis-
connected graphs will not yield any good pathways, NICEpath will
warn the user in this case.

2.7 Software
The NICEpath code can be executed with any python version up to
3.7. The NetworkX python library (https://networkx.github.io/)
was used to implement and search the reaction graph. An extensive
list of libraries used can be found in the specification file on GitHub.

3 Results

3.1 Weighted substrate-product pairs capture the main

biotransformations
To validate the biochemical relevance of weighted substrate-product
pairs, we compared them to the KEGG RPAIR database. KEGG
RPAIR distinguishes ‘main’ substrate-product pair of the reaction
from secondary types of pairs (e.g. ‘cofac’, ‘leave’). To take the alco-
hol dehydrogenase reaction as an example, the main pair would be
the transformation of the primary alcohol to the aldehyde, and the
conversion of the cofactor NADþ to NADH would be of type
‘cofac’ (Fig. 2). ‘Main’ pairs are used to draw the KEGG metabolic
pathway maps. Therefore, a method that accurately predicts KEGG
RPAIRS of type ‘main’ can be used to reconstruct biologically rele-
vant metabolic pathways. It should be noted that KEGG discontin-
ued the manual definition and curation of RPAIRS in 2016, and
replaced the concept of RPAIRS with an automatically calculated al-
ternative, RCLASS.

We validated the NICEpath method by predicting KEGG RPAIRS
of type ‘main’ using the concept of the Conserved Atom Ratio. We used
BNICE.ch to calculate CAR values for a test set of 6546 KEGG reac-
tions for which the exact reaction mechanism is known, and which are,
therefore, reconstructed by BNICE.ch (Supplementary Table S1). From
these 6546 reactions, we determined 10 747 substrate-product pairs
with a non-zero CAR, meaning that at least one non-hydrogen atom is
conserved between the substrate and the product (Supplementary Table
S2). Out of these 10 747 pairs, 5148 were found to be KEGG RPAIRS
of type ‘main’. Since RPAIRs are defined based on the conservation of
structural moieties within a reaction, we hypothesized that the higher
the CAR value, the more atoms conserved between a substrate and a
product, and hence the higher the probability that the pair would be a
KEGG RPAIR of type ‘main’. We should therefore be able to predict
the membership of a pair to the set of ‘main’ KEGG RPAIRS by using a

given CAR threshold as a classifier. To test our hypothesis that the
CAR is a good predictor for a reactant–product pair to be of KEGG
RPAIR type ‘main’, we performed a Receiver-Operator Characteristic
(ROC) analysis (Fig. 3). The reference for true pairs were the 5148
‘main’ RPAIRs (true positives), and the remaining 5599 pairs were true
negatives.

For 100 CAR cutoff values between zero and one we calculated
the number of good predictions (i.e. number of pairs with a CAR
above the cutoff and of type ‘main’, or true positives) and bad pre-
dictions (i.e. number of pairs with a CAR above the cutoff and not
of type ‘main’, or false positives). By drawing true positives versus
false positives, we found an Area Under Curve (AUC) of 0.88. An
AUC above 0.8 is considered an ‘excellent discrimination’ (Hosmer
and Lemeshow, 2000). We further show the tradeoff between sensi-
tivity and specificity, as well as the Youden’s index (i.e. sensitivity þ
specificity - 1) to characterize this tradeoff (Youden, 1950) and to
determine an optimal CAR cutoff. We found that the Youden’s
index is maximal at a CAR equal to 0.34, which suggests that this is
the optimal CAR cutoff to tell whether a given substrate-product
pair conserves enough atoms to be considered a ‘main’ pair. This
analysis shows that we can reliably use the CAR to predict KEGG
RPAIRS of type ‘main’. The network of weighted KEGG reactant
pairs for 6546 KEGG reactions is included in the NICEpath soft-
ware and used as a reaction database in the default search.

3.2 Graph-theoretical analysis of metabolic networks
Characterizing biochemical networks from a graph-theoretical point
of view can be used to evaluate the quality and connectivity of the
represented network, and also bring new insights into the overall
organization of metabolism. Furthermore, knowing the graph-theor-
etical properties of a biochemical network can be crucial for antici-
pating potential problems in the pathway search. NICEpath
provides basic network statistics that allow us to assess the quality
of the data. Here, the weighted graph of the KEGG network used
for validation initially contained 5578 compounds, or nodes, and 20
911 directed edges representing reactant–product pairs. Certain
graph properties are not defined for weighted directed graphs, such
as the number of components or the network diameter. For

NAD+ NADH

CAR: 1.00

cofac
CAR: 1.00

CO2

CAR: 0.22

CAR: 0.56

B

A

Fig. 2. Example of relation between KEGG RPAIRs and the CAR value in a bio-

chemical reaction. (A) Alcohol dehydrogenase: in an oxidoreduction reaction

only electrons and protons are exchanged between the reaction participants,

resulting in two distinct substrate-product pairs with a maximum CAR value.

(B) Decarboxylation reaction: the atoms of the reactant are distributed be-

tween a leaving CO2 molecule with a low CAR value and a product molecule

with a higher CAR value corresponding to the ‘main’ RPAIR
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calculating these properties, a simple, non-directed graph was gener-
ated by removing reactant–product pairs with a CAR lower than the
previously calculated optimal threshold of 0.34 and by removing the
weights on the remaining reactant–product pairs. The unweighted
graph contains 5518 nodes and 5541 edges, which are distributed
over 813 smaller disjoint graphs, or so-called components. The big-
gest component contains 2663 nodes (48%) and 3422 edges (62%),
and it has a network diameter of 40. In other words, the longest
shortest pathway connecting two compounds counts 40 biotrans-
formation steps in the main component of the KEGG network. This
means that our KEGG network is dominated by one big component,
or ‘island’, that includes half of the metabolites in KEGG and repre-
sents the core metabolism plus connected secondary metabolism.
The remaining metabolites are organized in small, disconnected sub-
networks, which we hypothesize to be mostly secondary metabolites
without defined biosynthesis pathways.

3.3 Finding biologically relevant pathways with

NICEpath
To illustrate the output of NICEpath, we discuss two example path-
way searches. In the first example, we tried to biochemically connect
tyrosine to caffeate, and we allowed a maximum number of ten
pathways to be found. The pathway search resulted in ten pathways
with lengths ranging from two to six consecutive reaction steps
(Table 1). The quality of the pathway can be estimated from the
pathway score and the average CAR. The pathway score sums the
distances for each reactant–product pair in the pathway. The score
reflects both the length of the pathway as well as the quality of atom
conservation within the pathway, and it is eventually used by
NICEpath to rank the paths. The average CAR estimates the quality
of the pathway by averaging the atom conservation over each reac-
tion step. Out of these ten best pathways, the pathways ranked first,
second and fifth were chosen for visual inspection (Fig. 4). The first
pathway had a very low score of 2.24 combined with a high average
CAR (0.89) and a length of two, which indicatesthat the pathway is
of good quality because it only requires a small number of steps, all
of them showing high atom conservation. Indeed, KEGG proposes
this pathway in its phenylpropanoid biosynthesis map, meaning that
it is biologically relevant. The second pathway, although longer, has
a similarly high average CAR of 0.93, a length of four steps, and it
can also be found in KEGG. To contrast these two good pathway

examples with a poor example, the pathway ranked fifth shows a
slightly lower average CAR of 0.81, which is due to the attachment
and subsequent detachment of a one-carbon unit. In this pathway,
out of five reaction steps, the last step is redundant with the first
pathway, while the first four steps describe a detour from tyrosine to
coumarate (C00811). This last, suboptimal pathway cannot be
found in the KEGG map for phenylpropanoid biosynthesis.

In a second example, we searched for pathways connecting the
compounds tyrosine and syringin. The number of pathways to be
found was restricted to five, and we used three different transforma-
tions to calculate the distance between reactant–product pairs: The
default transformation 1/CAR, the square root transformation, and
the exponential transformation. Using the default option, NICEpath
first listed three short pathways with a low average CAR (�0.5), fol-
lowed by two longer pathways with high average CAR (�0.8)
(Table 2). The square root option yielded only short pathways with
a low average CAR, while the exponential option only resulted in
longer pathways of high average CAR. Interestingly, all the long
pathways with high CAR were identified as known metabolic path-
ways in KEGG, indicating that increasing the influence of the CAR
on the distance by choosing an exponential transformation operator
is helpful to reliably extract longer pathways.

Two pathways were chosen to understand in detail the influence
of the type of transformation used for calculating the distances be-
tween reactants and products: one was short with a low CAR (A)
and one was long with a high CAR (D*) (Fig. 5). Pathway A con-
nected tyrosine to syringin in four reaction steps, with a relatively
low average CAR of 0.51. As already indicated by the low CAR, the
pathway turned out to be a shortcut through pathway was ranked
first in the default and the square root transformation types, but,
interestingly, ranked 1114th in the exponential case when re-run-
ning the search with an upper limit of 2000 pathways. The exponen-
tial transformation increases the penalty of atom loss in
biotransformation, which leads to a higher pathway score assigned
to the shortcut pathway. Pathway D* connected tyrosine to syringin
in eight reaction steps, with a high average CAR of 0.86. It was
ranked first using an exponential transformation, ranked fourth
using the default distance calculation, and ranked 43rd for the
square root case. This second pathway kept the molecular core
structure of tyrosine and modified it to produce syringin, conserving
a maximum number of atoms. Remarkably, this pathway is part of
the KEGG pathway map for phenylpropanoid biosynthesis, and it

Fig. 3. Sensitivity and specificity analyses. The ROC (left panel) curve shows the prediction of KEGG RPAIRS of type ‘main’ by CAR score from BNICE.ch. The right panel

shows the tradeoff between specificity (black dashed line) and sensitivity (black dotted line). The Youden’s index (gray continuous line) reaches its maximum (0.66) at a CAR

value of 0.34 (gray dashed line). ROC: Receiver operator characteristic, AUC: Area under the curve
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Table 1. Output of example pathway search from tyrosine (C00082) to caffeate (C01197)

Index Pathway length Intermediates Reaction IDs Pathway score Average CAR

1 2 C00082->C00811->C01197 R00737->R07826 2.24 0.89

2 4 C00082->C00811->C00223->C00323-

>C01197

R00737->R01616->R07436->R01943 4.32 0.93

3 4 C00082->C01179->C03672->C00811-

>C01197

R00729->R03336->R08766->R07826 4.33 0.93

4 4 C00082->C00079->C00423->C00811-

>C01197

R07211->R00697->R02253->R07826 4.52 0.89

5 5 C00082->C00826->C00079->C00423-

>C00811->C01197

R00732->R00691->R00697->R02253-

>R07826

6.27 0.81

6 6 C00082->C01179->C03672->C00811-

>C00223->C00323->C01197

R00729->R03336->R08766->R01616-

>R07436->R01943

6.41 0.94

7 6 C00082->C00811->C00223->C00323-

>C00406->C01494->C01197

R00737->R01616->R07436->R01942-

>R02194->R03366

6.44 0.93

8 6 C00082->C00079->C00423->C00540-

>C00223->C00323->C01197

R07211->R00697->R02255->R08815-

>R07436->R01943

6.50 0.93

9 6 C00082->C00811->C00423->C00540-

>C00223->C00323->C01197

R00737->R02253->R02255->R08815-

>R07436->R01943

6.50 0.93

10 6 C00082->C00079->C00423->C00811-

>C00223->C00323->C01197

R07211->R00697->R02253->R01616-

>R07436->R01943

6.60 0.91

Note: KEGG identifiers are used to specify compounds and reactions. The maximum number of pathways (k) was set to 10, and only one reaction alternative

was printed when several reactions could do the same biotransformation.

Fig. 4. The pathways from Table 1 connecting tyrosine and caffeate with index numbers 1, 2 and 5 are visualized in detail for comparison. For each biotransformation, the

CAR value as well as the default distance (d) are indicated
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can therefore be called a confirmed, biologically meaningful path-
way. These two examples of pathway search problems illustrate
the capacity of NICEpath to efficiently extract biologically relevant
pathways from large biochemical networks. The algorithm robust-
ly handled searches for long pathways of eight and more biotrans-
formation steps, as they are usually present in secondary
metabolism.

To demonstrate the universality of our approach, we performed
a systematic validation on 50 pathways collected from KEGG con-
sisting of 40 biosynthesis and 10 biodegradation routes and involv-
ing between 3 and 15 reactions steps (Supplementary Table S3,
Supplementary Fig. S2). We evaluated the NICEpath performance
using the three proposed transformation operators and compared
it to a two-sided breadth-first search within (i) an unweighted net-
work of substrate-product pairs with edges where the CAR exceeds
the identified threshold value of 0.34, (ii) an unweighted network
of ‘main’ KEGG RPAIRs (as used in the KEGG PathPred server)
and (iii) an unweighted network of all possible KEGG RPAIRs
without cofactors. The first and second networks are expected to
yield similar results, because a CAR threshold of 0.34 has been
shown to well predict KEGG RPAIRs of type ‘main’. The third net-
work represents the common approach of removing cofactors from
a network of all possible substrate-product edges to avoid
extracted pathways to shortcut through cofactors acting as hub
metabolites.

For each of the reference pathways, we performed a k-shortest
path search within each network between the source and the end
compound of the pathway. To evaluate the performance, we
retrieved the rank of the reference pathway within the top 100
pathways produced by the algorithm, and we measured the run-
time of the search algorithm (Supplementary Table S4). We could
show that within the weighted networks, the exponential trans-
formation resulted in longer search time, but it had the highest
probability of finding the reference pathway first, while the square
root transformation yielded the opposite result (Supplementary
Figs S3 and S4.). We further found that the runtimes within the
unweighted networks were significantly lower than within the
weighted networks, which is due to the fact that the unweighted
network allows for a two-sided search starting simultaneously
from the source and the target compound. Within the unweighted
networks, searches within the network without cofactors were
found to be the slowest and the less accurate. The RPAIR ‘main’
network and the CAR > 0.34 network showed a similar perform-
ance with respect to runtime, but the ranking performance was bet-
ter in the CAR > 0.34 network, which is due to the fact that not all
reactions within the reference pathway had RPAIRs assigned in
KEGG.

Interestingly, the ranking performance of the exponentially
transformed network and the unweighted CAR > 0.34 were very
similar. This indicates that when the algorithm runtime becomes a
limiting factor, the search can be performed within an unweighted
graph (CAR > 0.34) to reduce the runtime, allowing a two-sided
search starting simultaneously from the source and the target com-
pound and thus speeding up the search.

3.4 Limitations and future challenges
There are cases in which NICEpath will not find satisfactory solu-
tions. Possible reasons for suboptimal results are (i) the network
does not contain the necessary reactions to connect the starting
compound to the target compound, and (ii) the source and the tar-
get compound initially have only a few atoms in common. The first
issue can be solved by adding the missing reactant–product pairs to
the network. Missing steps can be hypothesized manually or pre-
dicted using reaction prediction tools such as BNICE.ch. The se-
cond issue is more complex, since it depends on the molecular
structure of the source and target compound, as well as on the real
number of biochemical transformations needed to transform one
into the other. Possible solutions to improve the output include
breaking down the search into several sub-searches by identifying
intermediates and increasing the penalty on atom loss by using an
exponential transformation of the CAR into the distance betweenT
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reactants and products. While our algorithm successfully circum-
vents the recurrent problem of shortcuts through small hub metabo-
lites, it does not satisfactorily avoid shortcuts through big hub
metabolites such as Coenzyme A (CoA). In fact, reactant pairs
involving CoA structures on both sides have a lot of atoms in com-
mon, and therefore a high CAR value. For this reason, NICEpath
excludes CoA by default from the reactant pair network.

4 Conclusion

We introduce a new pathway search method based on weighted
reactant–product pairs. To our best knowledge, this is the first to
use automatically generated atom-weighted reactant–product pairs
in combination with a k-shortest graph search approach. We bench-
mark our method for reactant-pair weighting against the KEGG
RPAIR database, and we evaluated the performance of the proposed
pathway search on 50 pathways obtained from KEGG. The strong
point of NICEpath is that it is suitable for big biochemical networks,
spanning more than hundreds of thousands biochemical reactions,
such as hypothetical reaction networks generated by retrobiosynthe-
sis tools and predictive biochemistry (Hadadi et al., 2016; Hafner
et al., 2020). Pathway search constitutes the first step, and hence the
foundation, of the overall pathway design pipeline. Downstream

pathway analyses include the evaluation of the stoichiometric and
thermodynamic feasibility of a pathway within a host organism via
Flux Balance Analysis and Thermodynamic Flux Analysis, respect-
ively, the estimation of the kinetic properties of the pathway, and
the assessment of enzyme availability (e.g. from databases or from
enzyme prediction tools) (Hadadi and Hatzimanikatis, 2015). As all
these tools require substantial effort and computational resources, it
is key that the pathways proposed initially by a pathway search tool
only deliver biologically feasible biotransformation routes.

We estimate that the future development of reaction prediction
tools, based on biochemical reaction rules or machine learning
methods, will yield big hypothetical reaction networks that require
optimized search tools to efficiently extract biochemical pathways.
Furthermore, the presented method to translate metabolic networks
into a graph structure can be used in the future to analyze the global
characteristics of biochemical networks, such as the diameter of a
network or its connectivity, and finally to detect and map know-
ledge gaps in metabolic databases.

Finally, the herein proposed framework will lay the foundation
for further developments. Other types of weights, such as kinetic
and thermodynamic considerations, can be integrated into the
weighting of substrate-product pairs to steer the pathway search to-
ward biochemically feasible pathways, and a set of user-defined
parameters will make it easy to fine-tune the pathway search.

Fig. 5. Comparison of two pathways (A and D*) from the pathway search connecting tyrosine to syringin. For each biotransformation, the CAR value along with the default

distances for each transformation are indicated. (dflt): default distance, d(sqrt): square root transformation, d(exp): exponential transformation. The tyrosine moiety is marked

in gray if conserved from tyrosine to syringin, and gray striped if entering from co-substrates
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Additionaly, metrics other than the here proposed CAR could be uti-
lized to quantify atom conservation within substrate-product pairs,
such as the Jaccard index (Jaccard, 1908). The NICEpath code is
available on GitHub (https://github.com/EPFL-LCSB/nicepath), and
it comes with a collection of 5434 known metabolic reactions with
pre-calculated atom-weighted reactant pairs.
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