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Simple Summary: The anti-tumor properties of mesenchymal stem cell (MSCs) expressing TNF-
related apoptosis inducing ligand (TRAIL) or MSC-TRAIL have been well documented by several
reports. However, some tumors are resistant to TRAIL due to the existence of cancer stem cells
(CSCs). Chemo-sensitization of tumors and their CSCs has been reported to enhance TRAIL-mediated
inhibition. In this study, we examined the effect of pre-treatment using first-line chemotherapies on
MSC-TRAIL-induced inhibition in non-small cell lung cancers (NSCLCs)–derived CSCs. We found
that these chemotherapies were able to induce a chemo-sensitization effect to the CSC, thus improving
the MSC-TRAIL-induced inhibition. We also noticed that the effect of chemo-sensitization was cell
type specific and selecting chemotherapies for the right NSCLC subtypes might help in inducing a
more meaningful combinatory effect. As such, this study has proven that chemo-sensitization of the
CSCs was able to enhance the MSC-TRAIL-induced inhibition in NSCLC cell lines.

Abstract: Pre-clinical studies have demonstrated the efficacy of mesenchymal stem cells (MSCs)
expressing tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) or MSC-TRAIL
against several tumors. However, due to the existence of cancer stem cells (CSCs), some tumors,
including non-small cell lung cancer (NSCLC), exhibit TRAIL resistance. This study was designed
to evaluate the capacity of using first-line chemotherapies including cisplatin, 5-fluorouracil (5-FU)
and vinorelbine to act as a chemo-sensitizer on CD133+ (prominin-1 positive) CSCs derived from
NSCLC cell lines (A549, H460 and H2170) for the purpose of MSC-TRAIL-induced inhibition. We
showed that MSC-TRAIL was resistant to all three chemotherapies compared to the NSCLC cell lines,
suggesting that the chemotherapies had little effect on MSC-TRAIL viability. Pre-treatment using
either cisplatin or 5-FU, but not with vinorelbine, was able to increase the efficacy of MSC-TRAIL
to kill the TRAIL-resistant A549-derived CSCs. The study also demonstrated that both 5-FU and
vinorelbine were an effective chemo-sensitizer, used to increase the anti-tumor effect of MSC-TRAIL
against H460- and H2170-derived CSCs. Furthermore, pre-treatment using cisplatin was noted to
enhance the effect of MSC-TRAIL in H460-derived CSCs; however, this effect was not detected in
the H2170-derived CSCs. These findings suggest that a pre-treatment using certain chemotherapies
in NSCLC could enhance the anti-tumor effect of MSC-TRAIL to target the CSCs, and therefore the
combination of chemotherapies and MSC-TRAIL may serve as a novel approach for the treatment
of NSCLC.
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1. Introduction

Lung cancer is an uncontrolled growth of malignant cells that can occur in any part
of the lungs [1]. These malignant cells do not have the function of normal lung cells and
are able to metastasize into different parts of the body and organs [2]. The majority of
lung cancer is detected as non-small cell lung cancer (NSCLC), which accounts for 85%
of all cases, whereas the other 15% are detected as small cells [3]. Lung cancer is the
major cause of mortality and morbidity worldwide, killing more than 1.7 million people
annually [3]. Despite current advances in cancer therapy, many of the treatments given
to lung cancer patients are still unable to completely cure the disease [4]. This is due to
the existence of lung cancer CSCs that are spared by chemotherapies [5]. Chemoresistance
is the main characteristic and the hallmark that differentiates CSCs from non-CSCs, as
most chemotherapies are only able to target non-CSCs, leaving CSCs to survive, which will
eventually lead to tumor repopulation [6].

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) (also known as APO-
2L) is one of several members of the TNF gene superfamily that induces apoptosis. TRAIL
activates the extrinsic apoptosis pathway through binding to its two specific agonistic
receptors, known as DR4 and DR5, and three antagonistic decoy receptors, known as
DcR1, DcR2 and osteoprotegerin (OPG) [7]. The anti-tumor activity of TRAIL has been
shown in several preclinical tumor models, including colorectal cancer [8], glioblastoma [9]
and NSCLC [10]. However, TRAIL-resistance can also be seen in several other tumor
models, including breast cancer [11], as well as ovarian [12] and pancreatic cancer [13]. The
dysregulation and evasion of CSCs to apoptosis could be the main factor contributing to
TRAIL resistance in some tumors [14]. Thus, sensitizing the CSCs and tumors to apoptosis
could provide a way to enhance the overall sensitivity of the tumor to TRAIL-induced
apoptosis [15,16].

Several limitations, including its short half-life and poor bioavailability, have hindered
the translation of TRAIL into the clinic [17,18]. Owing to its small molecular weight, sys-
temically delivered TRAIL is mostly excreted by the kidneys through renal filtration [19].
Successful attempts have been made to increase the serum bioavailability of TRAIL through
the addition of isoleucine zipper [20], N-terminus his-tagged protein [21] or immunoglob-
ulin chain [22] into its structure. However, the addition of his-tag or isoleucine zipper
is potentially immunogenic [23] and may contribute to hepatotoxicity compared to the
native TRAIL [24]. The current developments in cytotherapy, using cells as a vehicle for
therapeutic agents, could serve as the most effective approach for the continuous delivery
of TRAIL to the target site [25].

Mesenchymal stem cells or MSCs are adult multipotent stem cells that can be derived
from different sources, including adipose tissue, the umbilical cord and bone marrow [26].
The ability of MSCs to home and integrate into the tumor environment have expanded
the scope of treatments using these cells, not only in degenerative diseases, but also as
a vehicle for the delivery of therapeutic agents to treat cancer [27]. MSCs have been
used as a delivery system for cytokines, including interleukins [28,29], interferon [30] and
pro-apoptotic proteins such as TRAIL [31–35] in several preclinical models. However,
compared to other anti-tumor agents that have utilised MSCs as a delivery system, only
MSCs expressing TRAIL (MSC-TRAIL) have been reported to be effective against several
tumors with minimal toxicity [36].

The synergistic anti-tumor activity of the combination of chemotherapies and MSC-
TRAIL seen in several tumor models suggests that this combination could be an effective
anti-cancer therapy [37–39]. The dual effects of common chemotherapies in cancer, either
as a cytotoxic drug or as a sensitizer to the effect of TRAIL and MSC-TRAIL have also
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been demonstrated in several tumor xenografts including those of brain cancer [40], hep-
atocellular carcinoma [41], breast cancer [42] and NSCLC [43]. Furthermore, TRAIL and
MSC-TRAIL either alone or in combination with other chemotherapies have also been
shown to be effective in targeting CSCs in breast [44,45] and liver cancer [46]. Although
we have found that MSC-TRAIL was effective in targeting the cell lines and their CSCs,
one out of the three NSCLC cell lines used was TRAIL-resistant [47]. Thus, as studies have
suggested the benefit of combining other chemotherapies and TRAIL, we postulated that
a pre-treatment using first-line chemotherapies such as cisplatin, 5-fluorouracil (5-FU) or
vinorelbine, as a chemo-sensitizer, would lead to greater sensitivity of tumor cells and its
CSCs to MSC-TRAIL-induced apoptosis, particularly in the TRAIL-resistant cells.

2. Materials and Methods
2.1. Culture of Human Adipose-Derived Mesenchymal Stem Cells

Human adipose-derived mesenchymal stem cells (MSCs; cat no: ATCC® PCS-500-
011©) were purchased from the American Type Culture Collection (ATCC, Manassas, VA,
USA). The cells were cultured in specific growth medium containing knockout Dulbecco’s
modified Eagle medium (DMEM-KO), 1% penicillin/streptomycin, 2 mM of l X glutamine
(200 mM stock), 10% fetal bovine serum (FBS), 5 ng/mL fibroblast growth factor (FGF)
basic and 5 ng/mL recombinant epidermal growth factor (rhEGF).

2.2. Culture of NSCLC Lines

Three types of human non-small cell lung cancer cell lines (H2170, A549, and H460)
were used in this study. The lung squamous cell carcinoma cell line (H2170) (cat no:
ATCC® CRL-5928) was purchased from the American Type Culture Collection (ATCC,
Manassas, VA, USA), whereas the other two cell lines (both constitutively expressing
luciferase), human adenocarcinoma (A549) (cat no: JCRB1414) and large cell lung cancer
(H460) (cat no: JCRB1407), were purchased from Cell Bank Australia (Westmead, NSW,
Australia). The A549 cell line was cultured in Roswell Park Memorial Institute-1640 (RPMI)-
1640 complete medium containing 1% penicillin/streptomycin, 1X non-essential amino-
acid solution and 10% heat-inactivated FBS. For the H460 cell line, a complete medium
was prepared by adding 15% heat-inactivated FBS to RPMI-1640 medium containing
1% penicillin/streptomycin and 0.08 µg/mL insulin (4 mg/mL stock). H2170 complete
medium was prepared by adding 10% FBS and 1% penicillin/streptomycin to RPMI-1640.
The cells were maintained in 75 cm2 flasks (Nunc, Thermo Fisher Scientific, Inc., Waltham,
MA, USA) and harvested using 0.25% trypsin–ethylenediaminetetraacetic acid (EDTA)
when the cells reached 80% confluence. All cells were grown at 37 ◦C in a humidified
atmosphere of 5% CO2. All culture reagents were obtained from Gibco (Thermo Fisher
Scientific, Inc., Waltham, MA, USA).

2.3. Production of MSC-TRAIL

The mesenchymal stem cells were transduced with the human full-length TRAIL gene
(NM_003810.2) encoding the membrane-bound TRAIL tagged with a red fluorescence
protein (mCherry) using lentivirus. The MSC-TRAIL was successfully characterised based
on TRAIL expression and multipotent characteristics (adipogenesis, chondrogenesis and
osteogenesis), as shown in our previous report [47].

2.4. Isolation and Characterisation of CD133+ CSCs

The CD133+ population from all of the NSCLC cell lines was isolated and successfully
characterised based on clonogenicity, sphere formation and aldehyde dehydrogenase
expression [47]. In brief, the NSCLC cell lines were harvested, washed and stained with the
CD133 (prominin-1) antibody, 1:10 dilution (Clone: AC133; Isotype: Mouse IgG1 kappa)
(Miltenyi Biotec, Bergisch Gladbach, Germany) and incubated for 15 min in dark. Stained
cells were then washed using DPBS, precipitated and subsequently resuspended in ice-cold
DPBS with 2% FBS before being subjected to specific CD133+ (cancer stem cells, CSCs) and
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CD133− (non-CSCs) isolation using a fluorescence-activated cell sorter (FACSAria III; BD
Biosciences, San Jose, CA, USA).

2.5. Analysis of Population Doubling Time

The cumulative population doublings (CPD) and population doubling time (PDT)
in all the MSCs (MSC-WT (wild-type), MSC-EV (empty vector) and MSC-TRAIL) and
NSCLC cell lines (A549, H460 and H2170) were analysed by comparing the number of cells
harvested at every 72 h to the initial number of cells seeded (2.5 × 105 cells in 2 mL of a
6-well plate) using formulas as below:

CPD = [Log10 (H) − Log10 (I)]/Log10 (2)

PDT = [(No. of days in culture x 24 h)]/CPD

H—No. of cells harvested
I—No. of cells seeded (2.5 × 105 cells)

2.6. Analysis of IC50 Values of Different Chemotherapies

The IC50 values of different chemotherapies (cisplatin, 5-fluorouracil/FU and vinorel-
bine) used for the treatment of NSCLC were determined in the NSCLC cell lines (A549,
H460 and H2170) and MSCs (MSC-WT (wild-type), MSC-EV (empty vector) and MSC-
TRAIL) using a proliferation/MTS assay. Cells were seeded in a 96-well plate (5.0 × 103 in
50 µL complete medium) and grown overnight prior to the addition of chemotherapeutic
drugs. To produce treatment stocks consisting of 10 mM of cisplatin and vinorelbine
tartrate and 0.25 M of 5-FU, different volumes of solvents were added into each of the
drugs with different weights calculated, according to their molecular weight. Different
concentrations of drugs ((200 µM, 100 µM, 50 µM, 25 µM, 12.5 µM, 6.25 µM, 3 µM for
cisplatin and vinorelbine) and 40 mM, 20 mM, 10 mM, 5 mM, 2.5 mM, 1.25 mM and 0.6 mM
for 5-FU) were added into each of the wells containing the tumor cells in triplicate. After
48 h of treatment, 10 µL of MTS was added into each well and incubated for another 3 h. The
samples were then subjected to absorbance reading at 490 nm using a plate reader (Envi-
sion, Perkin Elmer, Waltham, MA, USA). Cell proliferation was calculated according to the
following formula: cell proliferation (%) = [absorbance (cells with treatment)/absorbance
(cells without treatment)] × 100. The IC50 values of the chemotherapeutic drugs for each
of the cell lines were calculated using a linear regression formula (y = mx + c) from a
scatter plot, wherein the x-axis represents the concentration of drugs (in log10), the y-axis
expresses the percentage of cell viability, “m” is the gradient, and “c” is the y-intercept
value. The IC50 values of the drugs were then calculated by determining the anti-log of the
derived drug’s concentration value (in log10) from 50% of cell viability.

2.7. Chemo-Sensitization of CD133+ CSCs to MSC-TRAIL

The effect of sensitization in NSCLC-derived CD133+ CSCs using chemotherapies
targeting MSC-TRAIL was assessed by treating the sorted (CD133+ and CD133−) and
unsorted NSCLC cell lines (A549, H460 and H2170) with the chemotherapeutic drugs
(cisplatin, 5-FU and vinorelbine) first, based on the calculated IC50 value, for 24 h. Briefly,
the NSCLC cell lines were seeded in a 24-well plate (4.0 × 105 cells) in 500 µL of medium
containing the chemotherapeutic drugs according to their IC50 values. The next day,
sensitized cells were harvested and re-seeded again (1.0 × 104 cells in 50 µL complete
medium) with either MSC-TRAIL (1:1 ratio) or rhTRAIL (IC50 value of each cell: 12.6 ng/mL
for H2170, 218 ng/mL for H460 and 500 ng/mL for A549) in a 96-well plate for another 24 h.
The NSCLC cells without any treatment (either chemotherapies, MSC-TRAIL or rhTRAIL)
were used as a control for the experiment. The analysis of cell viability/proliferation assay
was performed the next day using either the luciferase assay for both A549 and H460
(both cells express luciferase constitutively), or MTS for the H2170 cell line (which does
not express luciferase). For the luciferase assay, 600 µg/mL of D-luciferin was added
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into each well containing the cells and subjected to a bioluminescence reading. For the
proliferation assay, 10 µL of MTS (CellTiter 96® Aqueous One Solution Cell Proliferation
Assay©; Promega Corporation, Madison, WI, USA) was added into each of the wells. The
samples were then incubated for 4 h and subjected to absorbance reading at 490 nm using
a plate reader (Envision, Perkin Elmer, Waltham, MA, USA).

2.8. Statistical Analysis

Data are presented as means ± standard deviation (SD) of three independent experi-
ments. Comparisons between two groups were performed using the two-tailed t-test with
p < 0.05 considered statistically significant. Analyses were performed using Excel 2010,
version 14.0 (Microsoft Corporation, Redmond, WA, USA).

3. Results
3.1. Population Doublings of MSCs and NSCLC

The proliferation rate between MSCs (MSC-WT, MSC-EV and MSC-TRAIL) versus
NSCLC cell lines (A549, H460 and H2170) was evaluated by analysing the cumulative
population doublings (CPD) for each cell type (Figure 1A). As indicated in Figure 1B, the
NSCLC cell lines were highly proliferative, with PDTs of 19 ± 2.0, 25 ± 5.0 and 23 ± 2.3 h
for the A549, H460 and H2170 cell lines, respectively, whereas the MSCs (MSC-WT, MSC-EV,
MSC-TRAIL) showed slightly longer PDTs (45 ± 18.6, 48 ± 17.3 and 66 ± 19.5 h).
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Figure 1. The cumulative population doublings (CPD) and population doubling time (PDT) of
NSCLC (A549, H460 and H2170) and MSCs ((MSC-WT (wild-type), MSC-EV (empty vector) and
MSC-TRAIL). Cultured cells were harvested every 72 h and their CPD and PDT were calculated.
(A) CPD presented in the graph indicates the proliferation rate of each cell line at different days in
culture. (B) Based on the CPD, the population doubling time (PDT) was calculated in hours for each
of the cell lines.

3.2. Chemo-Sensitivity of MSCs versus NSCLC Cell Lines

To compare the chemo-sensitivity of NSCLC cell lines (A549, H460 and H2170) versus
MSC variants (MSC-WT/wild-type, MSC-EV/empty-vector, MSC-TRAIL), cells were
treated with serially diluted concentration of either cisplatin, 5-FU or vinorelbine for 48 h.
At the end of the 2 days of treatment, MTS was added into each well and the plates
were subjected to an absorbance reading at 490 nm. A distinct separation in terms of cell
viability between MSC-TRAIL and NSCLC cell lines was detected when the cells were
treated with cisplatin at concentrations lower than 40 µM, indicating that treatments higher
than 40 µM were highly toxic to all cells, including the MSCs (Figure 2A). Significantly
higher cell viability was observed in MSC-TRAIL when compared to the NSCLC cells
lines for all the 5-FU dosages, suggesting that MSC-TRAIL was less sensitive to the 5-FU
treatment (Figure 2B). Compared to the NSCLC cell lines, MSC-TRAIL was also resistant
to vinorelbine at concentrations lower than 40 µM (Figure 2C). Furthermore, higher cell
viability in the MSC variant (MSC-WT and MSC-EV) was observed compared to the NSCLC
cell lines (A549, H2170 and H460) following treatments with the chemotherapies ((cisplatin
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and vinorelbine; ≤40 µM) and 5-FU; ≤20 mM). This indicates that the MSCs were less
sensitive to all three chemotherapies compared to the NSCLC cell lines (Figure 2).
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Figure 2. The cell viability of NSCLC cell lines (H460, H2170 and A549) and MSC variants (MSC-WT,
MSC-EV and MSC-TRAIL) treated with chemotherapies. (A) Higher cell viability in all MSC variants
compared to the NSCLC cell lines treated with cisplatin at concentrations lower than 40 µM. (B) A
distinct separation in terms of cell viability was observed between NSCLC cell lines and the MSC
variants at different 5-FU dosages. (C) Compared to the NSCLC cell lines, MSC variants were resistant
to the vinorelbine treatment at concentrations lower than 40 µM. However, as the concentration
increases to 100 µM, the cytotoxicity of vinorelbine becomes more prominent for all cells. ((* p < 0.01,
** p < 0.001; t-test (MSC-TRAIL vs NSCLC cell lines), n = 3)). WT, wild-type; EV, empty vector; 5-FU,
5-fluorouracil.
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3.3. IC50 Values of Chemotherapies in NSCLC and MSCs

The IC50 values of cisplatin, 5-FU and vinorelbine in the NSCLC cells lines were
derived from the chemo-sensitivity assays (Figure 2), before the downstream analysis of
chemo-sensitizing in NSCLC cell lines was performed. Treatments with all three chemother-
apies yielded higher IC50 values in the MSC variants as compared to the NSCLC cell lines
(Table 1). The sensitivity to both cisplatin and 5-FU was high in H460 cell line, indicated by
lower IC50 values (1.5 ± 0.1 µM; cisplatin and 1.1 ± 0.2 mM; 5-FU), compared to both A549
(26.0 ± 1.0 µM; cisplatin and 1.6 ± 0.2 mM; 5-FU) and H2170 (10.6 ± 1.5 µM; cisplatin and
1.5 ± 0.1 mM; 5-FU), respectively. The IC50 values of all three chemotherapies in the MSC
variants and NSCLC cell lines are simplified in Table 1.

Table 1. The IC50 values of all three chemotherapies in MSC variants and NSCLC cell lines.

Cell Types Cisplatin (µM) 5-FU (mM) Vinorelbine (µM)

MSC-WT 73.3 ± 5.8 13.1 ± 1.8 36.3 ± 5.5
MSC-EV 40.3 ± 8.4 26.3 ± 6.7 36.0 ± 1.0

MSC-TRAIL 29.0 ± 2.6 10.0 ± 1.0 32.3 ± 3.21
A549 26.0 ± 1.0 1.6 ± 0.2 <1.5

H2170 10.6 ± 1.5 1.5 ± 0.1 10.67 ± 1.5
H460 1.5 ± 0.1 1.1 ± 0.2 8.57 ± 1.5

Results are the mean ± standard deviation (SD).

3.4. Chemo-Sensitization of A549-Derived CD133+ CSCs

The chemo-sensitizing effects of either cisplatin, 5-FU or vinorelbine to enhance the
cytotoxic effect of MSC-TRAIL on A549-derived CD133+ CSCs was evaluated. The unsorted
CD133+ and CD133− cells were treated with the chemotherapies (according to the IC50
values) for 24 h. The sensitized CSCs were subsequently reseeded and then exposed to
MSC-TRAIL or rhTRAIL for another 24 h. The CD133− cells from the A549 cell line were
highly sensitive to both cisplatin and 5-FU, shown by a lower cell viability (45.0% ± 3.7%
for cisplatin and 36.2% ± 3.2% for 5-FU) compared to the CD133+ (71.6% ± 6.0% for
cisplatin and 60.0% ± 3.1% for 5-FU) populations (Figure 3A,B). However, there were
no differences in cell viability between the A549-derived CD133+ and CD133− cells pre-
treated with vinorelbine (Figure 3C). The findings also indicate that sensitization of the
A549-derived CD133+ CSCs using cisplatin significantly enhanced the cytotoxic effect of
MSC-TRAIL by reducing the viability of CD133+ CSCs from 62.9% ± 5.8% (MSC-TRAIL
treatment alone) to 34.3% ± 2.0% (cisplatin and MSC-TRAIL) (Figure 3A). The sensitization
of A549-derived CD133+ cells using 5-FU was also able to increase the effect of MSC-TRAIL,
as indicated by the substantial decrease in the percentage of cell viability of the CD133+
CSCs from 72.1% ± 2.0% (MSC-TRAIL treatment alone) to 28.0% ± 6.8% (5-FU and MSC-
TRAIL) (Figure 3B). However, the pre-treatment of the A549-derived CD133+ CSCs using
vinorelbine was not able to enhance the cytotoxic effect of MSC-TRAIL, as there were no
differences in cell viabilities between the combination of MSC-TRAIL and vinorelbine,
versus MSC-TRAIL treatment alone (Figure 3C). The analysis of the efficacy of chemo-
sensitization in the CD133− and unsorted A549 cells indicated that both cisplatin and 5-FU,
but not vinorelbine, were able to enhance the effect of MSC-TRAIL-induced inhibition to
both CD133− and unsorted A549 cells. Pre-treatment using cisplatin or vinorelbine prior
to rhTRAIL was observed to have no effect on reducing the viability of A549 cells (CD133+,
CD133− and unsorted) as no significant changes in cell viability were detected between
the use of rhTRAIL as a single treatment versus its use in combination with any of the two
chemotherapies (Figure 3A,C). However, a reduction in cell viability in CD133+, CD133−
and unsorted A549 cells was observed between rhTRAIL as a single treatment versus in
combination with 5-FU, as depicted in Figure 3B.
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Figure 3. The chemo-sensitization effect in A549-derived CD133+ CSCs to MSC-TRAIL. (A,B) Chemo-
sensitization of A549-derived CD133+ CSCs using either cisplatin or 5-FU significantly increased
the effect of MSC-TRAIL in killing CSC. (C) The combination between MSC-TRAIL and vinorelbine
appears to have no significant effect in enhancing the inhibition of CSCs when compared to MSC-
TRAIL alone, as no changes in cell viability were detected between the two groups (** p < 0.001; t-test,
n = 3). 5-FU, 5-fluorouracil; Vino, vinorelbine.
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3.5. Chemo-Sensitization of H460-Derived CD133+ CSCs

Our analyses revealed that the CD133− cells from the H460 cell line were quite sensi-
tive to all three chemotherapies—cisplatin, 5-FU and vinorelbine—as indicated by their
lower cell viability (34.5 ± 3.0%; cisplatin, 46.5% ± 3.0%; 5-FU and 43.8% ± 1.8%; vi-
norelbine) compared to the CD133+ (50.4% ± 3.4%; cisplatin, 100.0% ± 2.9%; 5-FU and
90.0% ± 3.1%; vinorelbine) populations (Figure 4A–C). The results also indicate that the
chemo-sensitization using all three chemotherapies prior to MSC-TRAIL treatment effec-
tively killed the CD133+ CSCs, as shown by the reduction in cell viability to 11.2% ± 1.0%
(cisplatin and MSC-TRAIL) from 17.2% ± 2.3% (MSC-TRAIL only, Figure 4A), 11.5% ± 3.7%
(5-FU and MSC-TRAIL) from 22.6% ± 1.6% (MSC-TRAIL only, Figure 4B) and 15.4% ± 0.4%
(Vinorelbine and MSC-TRAIL) from 17.7% ± 0.4% (MSC-TRAIL only, Figure 4C). Moreover,
chemo-sensitization using 5-FU or vinorelbine was able to enhance the effect of MSC-TRAIL
against the unsorted and CD133− population in the H460 cell line, as indicated by the reduc-
tion in cell viability in the combined treatment as compared to MSC-TRAIL treatment alone
(Figure 4A–C). Pre-treatment using cisplatin was not able to induce a chemo-sensitizing
effect on the CD133+, CD133− or unsorted H460 cells to rhTRAIL-mediated inhibition,
as shown in Figure 4A. However, the other two chemotherapies—5-FU and vinorelbine—
managed to enhance the cytotoxic effect of rhTRAIL to kill the CD133+, CD133− and
unsorted H460 cells (Figure 4A–C).

Biology 2021, 10, x FOR PEER REVIEW 9 of 16 
 

 

3.5. Chemo-Sensitization of H460-Derived CD133+ CSCs 
Our analyses revealed that the CD133- cells from the H460 cell line were quite sensi-

tive to all three chemotherapies—cisplatin, 5-FU and vinorelbine—as indicated by their 
lower cell viability (34.5 ± 3.0%; cisplatin, 46.5% ± 3.0%; 5-FU and 43.8% ± 1.8%; vi-
norelbine) compared to the CD133+ (50.4% ± 3.4%; cisplatin, 100.0% ± 2.9%; 5-FU and 
90.0% ± 3.1%; vinorelbine) populations (Figure 4A–C). The results also indicate that the 
chemo-sensitization using all three chemotherapies prior to MSC-TRAIL treatment effec-
tively killed the CD133+ CSCs, as shown by the reduction in cell viability to 11.2% ± 1.0% 
(cisplatin and MSC-TRAIL) from 17.2% ± 2.3% (MSC-TRAIL only, Figure 4A), 11.5% ± 
3.7% (5-FU and MSC-TRAIL) from 22.6% ± 1.6% (MSC-TRAIL only, Figure 4B) and 15.4% 
± 0.4% (Vinorelbine and MSC-TRAIL) from 17.7% ± 0.4% (MSC-TRAIL only, Figure 4C). 
Moreover, chemo-sensitization using 5-FU or vinorelbine was able to enhance the effect 
of MSC-TRAIL against the unsorted and CD133- population in the H460 cell line, as indi-
cated by the reduction in cell viability in the combined treatment as compared to MSC-
TRAIL treatment alone (Figure 4A–C). Pre-treatment using cisplatin was not able to in-
duce a chemo-sensitizing effect on the CD133+, CD133- or unsorted H460 cells to 
rhTRAIL-mediated inhibition, as shown in Figure 4A. However, the other two chemother-
apies—5-FU and vinorelbine—managed to enhance the cytotoxic effect of rhTRAIL to kill 
the CD133+, CD133- and unsorted H460 cells (Figure 4A–C). 

 
Figure 4. Cell viability of chemo-sensitized H460-derived CD133+ CSCs to MSC-TRAIL treatment. 
(A) Chemo-sensitization using cisplatin enhanced the cytotoxic effect of MSC-TRAIL, but not 
rhTRAIL in the H460-derived CSCs. (B,C) Chemo-sensitization of H460-derived CSCs using 5-FU 

Figure 4. Cell viability of chemo-sensitized H460-derived −+ CSCs to MSC-TRAIL treatment.
(A) Chemo-sensitization using cisplatin enhanced the cytotoxic effect of MSC-TRAIL, but not rhTRAIL
in the H460-derived CSCs. (B,C) Chemo-sensitization of H460-derived CSCs using 5-FU or vinorel-
bine/vino increased the cytotoxic activity of both MSC-TRAIL and rhTRAIL (** p < 0.001, * p < 0.01;
t-test, n = 3). 5-FU, 5-fluorouracil; Vino, vinorelbine.
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3.6. Chemo-Sensitizing of H2170-Derived CD133+ CSCs

Treatment using either one of the three chemotherapies did not induce changes in
the percentage of cell viability between the CD133+ and CD133− cells in the H2170 cell
line. There were no significant changes in cell viability in the CD133+ CSCs between
MSC-TRAIL used as a single treatment and in combination with cisplatin, as depicted
in Figure 5A. However, a significant reduction in H2170-derived CD133+ cell viability
was detected when the MSC-TRAIL was used in combination with 5-FU (9.0% ± 2.4%) or
vinorelbine (15.7% ± 1.6%) versus MSC-TRAIL used as a single treatment (20.7% ± 1.1%
for the 5-FU group, 22.6% ± 1.6% for the vinorelbine group) (Figure 5B,C). Furthermore, all
three chemotherapies were also found to enhance the killing efficacy of rhTRAIL on H2170-
derived CD133+ (Figure 5A–C). It was also observed that the combinations of rhTRAIL or
MSC-TRAIL with the chemotherapies (cisplatin, 5-FU or vinorelbine) effectively reduced
the viability of both CD133− and unsorted H2170 cell lines.
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Figure 5. The effect of chemotherapy pre-treatment on the efficacy of MSC-TRAIL in H2170-derived
CD133+ cells. (A) The pre-treatment using cisplatin was not able to enhance the effect of MSC-TRAIL
in H2170-derived CD133+ CSCs. (B,C) Pre-treatment using either 5-FU or vinorelbine/vino was
able to increase the cytotoxic effect of both MSC-TRAIL and rhTRAIL to kill the CSCs (** p < 0.001,
* p < 0.01; t-test, n = 3). 5-FU, 5-fluorouracil; Vino, vinorelbine.
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4. Discussion

Several studies have reported the anti-tumor activity of MSC-TRAIL against lung
cancer, specifically in pre-clinical models of NSCLC [48–50]. However, the characteristic
of TRAIL resistance has been observed in some of the NSCLC cell lines, indicating that
not all the NSCLC subtypes would benefit from MSC-TRAIL treatment [51,52]. In this
study, we have shown for the first time that chemo-sensitization of the NSCLC cell lines
and their CSCs, particularly the CD133+ population, using first-line chemotherapies such
as cisplatin, 5-FU and vinorelbine was able to enhance the anti-tumor effect of MSC-TRAIL.
Furthermore, chemo-sensitization of A549 and its CSCs is able to reverse the characteristic
of TRAIL resistance, leading to the effective killing of the tumor cells.

An effective anti-tumor response between the combination of MSC-TRAIL and tumor
chemo-sensitization can be achieved using chemotherapies that have a strong ability to kill
tumors without harming the MSC-TRAIL. Studies have suggested that cells with a higher
proliferation rate, such as cancer cells, are sensitive to the effect of chemotherapy compared
to slower-dividing cells [53]. Therefore, comparing the proliferation activity between
NSCLC cells and MSC-TRAIL might indicate how sensitive MSC-TRAIL is to the effect
of chemotherapy. The proliferation activity of cells can be analysed using a growth curve
and population doubling time (PDT), with a higher PDT indicating cells with a slower
proliferation activity and greater chemoresistance [54]. As shown in Figure 1, the MSCs
presented higher PDT values compared to those of the NSCLC cell lines, indicating that
the MSCs need a longer time to divide. This is consistent with the chemosensitivity assay,
illustrated in Figure 2, that showed higher IC50 values in the MSC variants compared to the
NSCLC cell lines (Table 1), suggesting that the MSCs are less sensitive to the chemotherapies
compared to the NSCLC cells. Therefore, the combination of MSC-TRAIL and first-line
chemotherapies could result in an excellent anti-cancer effect as the efficacy of MSC-TRAIL
is less likely to be affected by the chemotherapies.

Most chemotherapies are unable to effectively target CSCs due to several factors,
including an enhanced DNA repair mechanism, high expression of drug-resistant proteins
and evasion of apoptosis [55]. Furthermore, the ability of CSCs to become dormant during
treatment is also one of the main factors contributing to tumor relapse in most cancers [56].
Our study showed that treatment using cisplatin or 5-FU resulted in a lower cell viability
detected in the CD133− population compared to the CD133+ population in the A549 cell
line (Figure 3A,B). A similar observation was also noted for the H460 cell line, where
treatment using any one of the three chemotherapies yielded a lower cell viability in the
CD133− population than in the CD133+ population (Figure 4). These findings indicate
that the CD133+ populations in both the A549 and H460 cell lines are less sensitive to
the chemotherapies, and therefore exhibit the characteristic of CSCs. Moreover, treatment
using cisplatin resulted in higher cell viability in the unsorted H460 cells than in its CD133+
population, suggesting that the heterogeneous population of CD133+ cells and several
other CSCs, such as ALDH, CD166+ and CD44+ cells, in unsorted H460 might contribute
to this observation (Figure 4A) [57,58]. There were no changes in cell viability detected
between the CD133+ and CD133− populations from the H2170 cell line after treatment
with all three chemotherapies, indicating that both populations exhibit the same degree of
sensitivity to the chemotherapies (Figure 5).

Although our previous study showed that the A549-derived CD133+ CSCs were
highly resistant to MSC-TRAIL [47]; pre-treatment of the A549-derived CD133+ population
with cisplatin significantly enhanced the cytotoxic effect of MSC-TRAIL in killing the CSCs
(Figure 3A). This observation might be due to the ability of cisplatin to sensitize tumor cells
to the effect of TRAIL by enhancing DR5 receptor expression [59]. It was also noted that the
5-FU treatment substantially enhanced the effect of MSC-TRAIL and rhTRAIL to inhibit the
A549 cell line and its CSCs (Figure 3B). Mutation of the KRAS gene in the A549 cell line [60]
may contribute to this observation, as indicated by a study that showed the treatment
of 5-FU might preferentially sensitize KRAS-mutated NSCLC samples to TRAIL-induced
apoptosis [61]. Furthermore, pre-treatment using vinorelbine on the CD133+, CD133− and
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unsorted A549 cells was unable to enhance the effect of MSC-TRAIL and rhTRAIL against
these cells. This implies that the vinorelbine IC50 value was not effective to induce chemo-
sensitization on the A549 cells; and therefore, using a higher concentration of vinorelbine
could exert a greater combined effect. Sensitization using cisplatin was unable to enhance
the effect of rhTRAIL against the A549 cell line (CD 133+, CD133− and unsorted) as no
significant changes in cell viability were detected between the single rhTRAIL treatment
and in combination with chemotherapy. This observation might be due to the short half-life
of TRAIL, at about 32 min, leading to the ineffective TRAIL concentration during the 24 h
of rhTRAIL treatment in regard to the TRAIL-resistant A549 cell line [62].

Chemo-sensitization of H460-derived CD133+ CSCs using either cisplatin, 5-FU or
vinorelbine prior to MSC-TRAIL treatment was able to significantly enhance the killing
effect of MSC-TRAIL against the CSCs (Figure 4). Pre-treatment using either 5-FU or
vinorelbine was also able to increase the effect of rhTRAIL to destroy H460-derived CD133+
cells (Figure 4B,C). Furthermore, chemo-sensitization using 5-FU or vinorelbine enhanced
the effect of MSC-TRAIL and rhTRAIL to kill both CD133− and unsorted H460 cells,
suggesting that the combination treatment was effective in killing not only the CD133+
CSCs, but the other populations as well. However, pre-treatment using cisplatin prior to
rhTRAIL in the CD133+ population was noted to slightly reduce the viability of the CSC
compared to the rhTRAIL treatment alone, which indicates that a higher concentration of
rhTRAIL or cisplatin is needed to induce a stronger combined effect to target the CSCs
(Figure 4A).

The efficacy of rhTRAIL in targeting H2170-derived CD133+ cells was improved
through cisplatin chemo-sensitization (Figure 5A). However, pre-treatment using cisplatin
on H2170-derived CD133+ cells did not enhance the effect of MSC-TRAIL in killing CSCs
as no changes in cell viability were detected between the MSC-TRAIL treatment and its
use in combination with cisplatin. Since a study has reported a strong chemo-sensitization
effect of using cisplatin at 72 h of exposure, we postulate that the sensitivity of H2170-
derived CD133+ cells to MSC-TRAIL could be improved by increasing the time of exposure
of the CSCs to cisplatin [63]. Findings from this study also demonstrated that 5-FU
and vinorelbine were an effective chemo-sensitizer, used to enhance the effects of both
MSC-TRAIL and rhTRAIL against the H2170 cell line, particularly the CD133+ CSCs
(Figure 5B,C). Pre-treatment using 5-FU or vinorelbine was also noted to increase the
effect of both MSC-TRAIL and rhTRAIL against the CD133− and unsorted H2170 cells,
suggesting that the combination of either 5-FU or vinorelbine with MSC-TRAIL is an
effective treatment against the H2170 cell line and its CSCs. However, to verify this
observation, analysis of cleaved caspase-3 can be performed to confirm the induction of
apoptosis in the CSCs by MSC-TRAIL.

We have demonstrated that a pre-treatment with first-line chemotherapies was able to
enhance the sensitivity of the NSCLC-derived CD133+ cells to the effects of MSC-TRAIL.
However, the exact mechanism leading to this observation remains to be elucidated. One
particular reason might be due to the ability of these chemotherapies to regulate the
expression of cellular proteins, which may subsequently enhance the transcription of
TRAIL receptors, such as DR4 and DR5, leading to the greater sensitivity of tumor cells and
CSCs to TRAIL. For example, a pre-treatment using cisplatin has been reported to down-
regulate FADD-like IL-1β-converting enzyme (c-FLIP) activity, which is an anti- apoptotic
protein, leading to an increase in DR5 receptor expression in glioma-derived CSCs [64].
On the other hand, chemo-sensitization using 5-FU has been shown to upregulate the
expression of caspases and DR5 in a model of adenocarcinoma, resulting in the activation
of both the intrinsic and extrinsic apoptosis pathways [65]. Pre-treatment using 5-FU has
also been reported to increase the expression of Bcl-2-associated X (Bax) protein in A549
cells, leading to a greater sensitivity of the tumor cells to TRAIL [66]. However, to confirm
that the enhancement in TRAIL sensitivity in the CSCs after chemo-sensitization was
indeed due to the increase in the expression of TRAIL receptors, analysis of the expression
of DR4 and DR5 in the CSCs after chemo-sensitization can be performed in future studies.
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5. Conclusions

This study has demonstrated that the sensitizing of NSCLC cell lines and their CSCs,
specifically the TRAIL-resistant A549 cell line, using first-line chemotherapies could en-
hance the effect of MSC-TRAIL against NSCLC. However, different chemotherapies may
have different chemo-sensitizing effects on the NSCLC subtype. Therefore, selecting
chemotherapies for the right NSCLC subtypes is crucial for a meaningful combination
effect. Despite the promising outcomes from this in vitro study, we are uncertain if these
observations could be replicated in vivo. Therefore, we intend to conduct further studies
on the lung cancer mouse model in order to verify the efficacy of this strategy. The favor-
able results from this study suggest an alternative approach of using MSC-TRAIL as a
complement for the treatment of NSCLC patients. However, to achieve optimal results, the
chemotherapies should have no effect on the MSCs, and this can be assured by choosing
chemotherapies that specifically target the tumor without harming MSC-TRAIL.
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