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Abstract: Seeking quality feature correspondences (also known as matches) is a foundational step in
computer vision. In our work, a novel and effective network with a stable local constraint, named the
Local Neighborhood Correlation Network (LNCNet), is proposed to capture abundant contextual
information of each correspondence in the local region, followed by calculating the essential matrix
and camera pose estimation. Firstly, the k-Nearest Neighbor (KNN) algorithm is used to divide the
local neighborhood roughly. Then, we calculate the local neighborhood correlation matrix (LNC)
between the selected correspondence and other correspondences in the local region, which is used
to filter outliers to obtain more accurate local neighborhood information. We cluster the filtered
information into feature vectors containing richer neighborhood contextual information so that they
can be used to more accurately determine the probability of correspondences as inliers. Extensive
experiments have demonstrated that our proposed LNCNet performs better than some state-of-the-
art networks to accomplish outlier rejection and camera pose estimation tasks in complex outdoor
and indoor scenes.

Keywords: feature matching; outlier removal; pose estimation; neighborhood correlation; correspondence

1. Introduction

Feature matching is an essential step in varied computer vision tasks. For instance,
it is important for image fusion [1], image alignment [2], panoramic stitching [3], image
and point registration [4,5], structure from motion [6] and so forth. Feature matching is
composed of four key steps, i.e., extracting feature, feature description, building an initial
correspondence set and removing false correspondences (also known as outlier rejection).
Generally, due to the given matching images usually with large scale variations, occlusions
and so on, false correspondences (also known as outliers) in the initial correspondence
set are often inevitable. To alleviate this issue, outlier rejection as a post-processing step
to improve the ratio of true correspondences (also known as inlier ratio) of the initial
correspondence set is necessary and useful. Meanwhile, quality correspondences are the
foundation of the essential matrix calculation and camera pose estimation. Therefore, this
paper principally focuses on studying outlier rejection.

The traditional outlier rejection methods (such as Random sampling consensus
(RANSAC) [7], coherent point drift (CPD) [8], vector field consensus (VFC) [9], local-
ity preserving matching (LPM) [10], grid-based motion statistics (GMS) [11] and so on)
are suitable for specific scenarios. However, as the dataset multiplies exponentially and
the outlier ratio steeply increases, the performance of traditional methods slumps, and
meanwhile, the outlier rejection methods based on deep learning become popular and
effective recently.

Some deep learning-based networks [12–16] use an end-to-end approach to select
correct correspondences (also known as inliers) and remove outliers. In learning to find
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good correspondences (LFGC) [12], Moo et al. have introduced a PointNet-like architec-
ture [17] called ResNet Block and Multi-Layer Perceptrons (MLPs) to deal with each match
individually. LFGC [12] does well in capturing global contextual information but ignores
the local contextual information. To solve this problem, ACNe [13], order-aware network
(OANet) [14] and local neighborhood consensus (LFLN) [15] add local information in
their networks. In ACNe [13], Sun et al. have proposed Attentive Context Normalization
(ACN) to combine local and global attention and normalize the result. In OANet [14],
Zhang et al. have adopted the idea of combining local information with global information
and introduced a differentiable pooling layer, differentiable unpooling layer and order-
aware filtering block. The differentiable pooling layer is used to cluster correspondence
information, and the differentiable unpooling layer is utlized to recover from clusters to
correspondences. Meanwhile, the order-aware filtering block can enhance the representa-
tion ability of feature map while maintaining the order between the input correspondences
and the output correspondences. In LFLN [15], Wang et al. have integrated the idea of local
neighborhood consistency into the existing network. These works have achieved good
results. However, all of them treat each correspondence indiscriminately, and it does not
fit the real scenarios. Of note, the spatial-channel self-attention network (SCSA) [16] adds
a spatial-channel self-attention block to focus on potential correct matches and capture
abundant contextual information in the global region. However, it overlooks the local
geometric relationship between matching pairs.

There is no network that treats potential inliers and outliers discriminately and con-
siders the local structure at the same time. To figure out the above problem, we present
a fresh and useful network, called LNCNet and shown in Figure 1, which can focus on
the calculation of potential inliers while considering the local structure. Firstly, we use
the k-Nearest Neighbor (KNN) algorithm to loosely determine the local neighborhood.
Afterwards, the local neighborhood correlation matrix LNC of the selected correspondence
and other correspondences in the local region is calculated, which is used to filter outliers
and gain more accurate local neighborhood information. The filtered information is clus-
tered into feature vectors, which contains richer local neighborhood contextual information.
After that, we further deal with the above clustered feature vectors. Our LNCNet is capable
of determining the probability of each match as a correct match, followed by calculating
the essential matrix and camera pose estimation. The comparative and visual experiment
results prove that the proposed LNCNet performs better than other comparative algo-
rithms to accomplish outlier rejection and camera pose estimation tasks in the two complex
datasets. Our main contributions are summarized :

• In our proposed LNCNet, the local neighborhood correlation block is proposed to
filter outliers and cluster more accurate local neighborhood information into new
feature vectors.

• In the proposed LNCNet, we construct the local neighborhood from coarse to fine,
which can ensure we obtain a trade-off between time and precision.

• Our proposed LNCNet is able to accomplish outlier rejection and camera pose estima-
tion tasks better even under complicated scenes.
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Figure 1. The structure of LNCNet. The DiffPool&DiffUnpool Layer is inserted in the middle of 6 PointCN Blocks, and the processed
data are fed into the Local Neighborhood Correlation Block.

2. Related Work

Some traditional outlier rejection methods and some deep learning-based outlier
rejection networks will be introduced in Sections 2.1 and 2.2, respectively.

2.1. Traditional Outlier Rejection

In feature matching, firstly, a putative match set has been built by some classic and
robust methods, such as scale invariant feature transform (SIFT) [18] and newer Super-
Point [19]. Secondly, due to the putative match set generally with numerous false matches,
it is necessary to remove outliers. Outlier rejection methods usually include the traditional
method and learning-based method. The former has been divided into resampling-based,
non-parametric model-based and relaxed method in the literature [20].

RANSAC [7] is a representative in resampling-based methods, which has employed a
hypothesize-and-verify tactic to find out correct matches. After that, some variants based
on the RANSAC [7] algorithm has been proposed. In MLESAC [21], Torr et al. utilize a
maximum likelihood fashion to verify and promote the evaluating indicators. The idea
of this work, changing the verification step, has been expanded in the follow-up works.
Another pioneering work is locally optimized RANSAC (LO-RANSAC) [22], in which
Chum et al. have added a local optimized strategy in the existing well-known models.
Recently, Barath et al. have proposed a series of works based on RANSAC [7], including
Progressive NAPSAC [23], MAGSAC [24] and MAGSAC++ [25], all of which perform well
in the specific scenarios. Though the above methods have been widely used in the computer
vision, they fail to cope with image pairs in complex transformations, e.g., non-rigid ones.
This condition urges researchers to break away from the resampling paradigm.

A set of non-parametric model-based algorithms have been emerging, which can
solve more general prior problems than simple parametric models and can also cope
with degraded scenes. In general, these methods model transformations by different
deformation functions and utilize different measures to separate outliers and inliers. In
recent work, Ma et al. have put forward a new fashion with a L2E estimator to model the
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transformation and deal with coarse outliers in [26]. Li and Hu utilize the Support Vector
Regression strategy to estimate a correspondence function and remove outliers in [27]. In
addition, a pioneering work vector field consensus (VFC) [28] has been proposed, during
which Ma et al. have proposed a novelty framework to deal with non-rigid matching.

To adapt more complex scenes, relaxed matching methods (geometric constraints
become less strict) have been proposed. In LPM [10], Ma et al. have proposed a locality
preserving fashion to match, which pays more attention to the local region instead of the
global image. It has been proven to be efficient and effective. Meanwhile, in GMS [11], Bian
et al. have adopted a simple and effective policy founded on local supporting matches
to remove false correspondences. In RFM-SCAN [29], Jiang et al. have projected feature
matching to a spatial clustering task with outliers. The purpose is to adaptively gather the
initial matches to some motion-consistent clusters as well as an outlier cluster.

Some basic weaknesses are shown in the traditional outlier rejection methods de-
spite being widely applied in computer vision. For example, as the outlier ratio steeply
increases in the initial match set, the above traditional algorithms will fail to obtain a good
performance. Therefore, deep learning-based outlier rejection arises at the historic moment.

2.2. Deep Learning-Based Outlier Rejection

With the exponential increase in the dataset, it becomes popular and useful to utilize
the deep learning-based method to deal with points-based tasks. These technologies
are approximately divided into parameter fitting [30,31] and point classification and/or
segmentation [12,14,32] in the literature [20]. The purpose of the former is to determine
the transformation model (i.e., epipolar geometry [33] and fundamental matrix [31]) via
the deep learning-based fashion with CNNs. At the same time, the latter prefers training a
classifier to distinguish outliers and inliers.

In DSAC [30], Brachmann et al. have substituted probabilistic selection for the de-
terministic hypothesis selection to reduce the expected loss as well as optimize learning
parameters. Afterwards, Ranftl and Koltun have transformed the fundamental matrix
estimation into a set of weighted homogeneous least-squares problems, in which the
weights are calculated by a deep learning-based network in DFE [31]. In NG-RANSAC [33],
Brachmann and Rother have introduced the idea of guiding. Meanwhile, Kluger et al. have
added the idea of multiple parametric model fitting in CONSAC [34].

Deep learning-based outlier rejection methods have grown lately, in which an initial
correspondence set is first established by using a classic method (i.e., SIFT [18]) and an
end-to-end fashion is used to determine the probability that each correspondence is an
inlier. The LFGC [12] network is the first one to get rid of mismatches from the initial
correspondence set by the deep learning-based manner. The network has used Multi-Layer
Perceptrons (MLPs) and Context Normalization to cope with all the correspondences and
performs well.

After that, some deep learning networks, such as LMR [32], ACNe [13], OANet [14],
SCSA [16] and so on, are proposed to deal with the outlier rejection problem. Because
LFGC [12] may fail to capture some correct correspondences in order to estimate the
motion parameters, it is difficult to deal with some general matching problems, such as
deformation and so on. Therefore, Ma et al. have presented a general framework to
eliminate mismatches, named LMR [32], in which some images and geometric representa-
tions that are used to train. In ACNe [13], Sun et al. have put forward Attentive Context
Normalization (ACN) and utilized it to capture and combine local and global contextual
information. In OANet [14], Zhang et al. have come up with a Differentiable Pooling
Layer and a Differentiable Unpooling Layer to work together to generate clusters and
restore to the correspondences, in which the correspondences have been invariant to the
input correspondence permutations. Meanwhile, the Order-Aware Filtering Block has
been proposed to extract the global contextual information among the newly generated
clusters. In SCSA [16], Liu et al. have introduced a spatial self-attention block to extract
abundant contextual information among all the correspondences. Simultaneously, a chan-
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nel self-attention module has been proposed to extract rich contextual information among
all the channels. Afterwards, they combined both of them to improve the representation
capability of potential correct matches.

However, the above methods fail to consider the relationship between each correspon-
dence in the geometric local region, which cannot discriminately process potential inliers
and potential outliers without ignoring the local structure. Therefore, a novel network
with a stable local constraint (called LNCNet), i.e., local neighborhood correlation, is intro-
duced, which can extract richer contextual information and obtain the feature map with
the stronger presentation ability; therefore, it performs better in calculating the essential
matrix and estimating the camera pose.

3. Method

In this section, we first formalize the problem in Section 3.1. After that, the local neigh-
borhood correlation block and network architecture are described in Sections 3.2 and 3.3,
respectively. Finally, we introduce the loss function and implementation details in Sections 3.4
and 3.5, respectively.

3.1. Problem Formulation

Our task aims to remove mismatches from the initial correspondence set, followed by
essential matrix calculation and camera pose estimation. Firstly, the traditional SIFT [18]
is used to find keypoints and corresponding descriptors of a given pair of images (I, I′).
Furthermore, then, an initial correspondence set S = {c1, c2, . . . , cN} ∈ RN×4 is obtained
according to a similarity constraint of descriptors, which consists of N initial correspon-
dences. Furthermore, ci =

(
xi, yi, x′i , y′i

)
is the i th initial correspondence, where (xi, yi)

and (x′i , y′i) are the normalized coordinates of the correspondence under camera intrinsics
and forced into the range [−1, 1]. We put the S set into our network, and we will obtain
a corresponding probability set w = {w1, w2, . . . , wN}, in which wi shows the probability
of ci as an inlier and wi ∈ [0, 1). Following LFGC [12], we choose the weighted 8-point
algorithm to calculate the essential matrix Ê, where the weighted 8-point algorithm merely
focuses on inliers, so it is more robust than the 8-point algorithm. A series of operations
can be formulated as:

u = fψ(S) (1)

w = tanh(ReLU(u)) (2)

Ê = g(S, w) (3)

where u is a set of logit values, each of tanh and ReLU is an activation function, fψ(.)
is our network function with related parameters ψ, and g(.) represents the weighted
8-point algorithm.

3.2. Local Neighborhood Correlation Block

In this section, the local neighborhood correlation block will be introduced in detail.
To present the local neighborhood correlation constraint, building a local neighborhood
structure of the initial matching set is necessary. Firstly, the initial correspondence set S =
{c1, c2, . . . , cN} ∈ RN×4 becomes the initial feature map set F = { f1, f2, . . . , fN} ∈ RC×N×1

through the multi-layer perceptrons. Secondly, we adopt the classic k-Nearest Neighbor
(KNN) to find K neighbors with the shortest Euclidean distances to the initial feature map
set F = { f1, f2, . . . , fN} ∈ RC×N×1 and construct a sketchy local neighborhood relationship.
After that, we capture the neighborhood correlation between fi ∈ F and fij, termed LNC,
where fij is the jth neighbor in the local neighborhood of fi. Finally, we filter and cluster
the correspondence features according to the neighborhood correlation LNC.
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Build Local Neighborhood Correlation:
To extract the local neighborhood related constraints, it is necessary to establish the

local neighborhood structure of the initial feature map set F ∈ RC×N×1. First of all, the
classical KNN algorithm is used to choose the neighborhood fij ( fij ∈ N fi

) to fi according
to Euclidean distances. The KNN criterion can be defined as follows:

w( fi, nj) =

{
1, nj ∈ N fi

,

0, nj /∈ N fi
.

(4)

where w( fi, nj) is only a one-hot encoded weight and can roughly present the probability
of nj being a neighbor of fi; fi and nj are the selected initial feature map and the other
initial feature map, respectively; N fi

is the ith element of the original local neighborhood
feature map NF.

The initial neighborhood feature map NF ∈ RC×N×K includes both inliers and outliers,
so it is not accurate enough to estimate the essential matrix and camera pose. Hence, we
construct the local neighborhood correlation matrix LNC ∈ RC×N×K to alleviate this
shortcoming, as described in Figure 2. To better capture the context information of each
element in NF ∈ RC×N×K, we map NF through two different transformers, each of which
is composed of a Context Normalization layer, a Bath Normalization layer and a ReLU
activation function, to gain two new features: FA ∈ RC×N×K and FB ∈ RC×N×K. Through
the hadamard product between FA ∈ RC×N×K and FB ∈ RC×N×K, their neighborhood
element similarity matrix LN ∈ RC×N×K is obtained. The local neighborhood correlation
matrix LNC ∈ RC×N×K is obtained by softmax operation on the neighborhood element
similarity matrix LN ∈ RC×N×K. The above series of operations can be recorded as:

FA = T(NF) (5)

FB = T(NF) (6)

LN = H(FA, FB) (7)

LNC = So f tmax(LN) (8)

where NF ∈ RC×N×K denotes the initial neighborhood feature map; FA ∈ RC×N×K and
FB ∈ RC×N×K are two new feature maps; LN ∈ RC×N×K and LNC ∈ RC×N×K are the
neighborhood element similarity matrix and the local neighborhood correlation matrix,
respectively; T(.), H(.) and So f tmax(.) are the transformer, hadamard product and softmax
operations, respectively.

Local Feature Aggregation and Filter:
According to the Bayesian principle [35], we know that correct correspondences have

similar information, and correspondences with similar information are more likely to be
inliers. Meanwhile, from Figure 3, we can find that these nearby inliers are distributed in a
similar or identical spatial position and outliers are scattered in space. Because the outliers
as noise will bring trouble to correspondences, it has a negative impact on calculating the
essential matrix and estimating the camera pose. In particular, when there are outliers
in the local neighborhood region, the new feature map of the selected correspondence
clustering will achieve a bad performance, so filtering outliers in the local neighborhood
region is required. That is to say, minimize the influence of the outliers on the selected
correspondence and strengthen the support of inliers on the selected correspondence.
We have obtained the local neighborhood correlation matrix LNC ∈ RC×N×K, which
represents the similarity of each correspondence in the local neighborhood to the selected
correspondence and use it to filter outliers.
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First, we map the initial neighborhood feature map NF ∈ RC×N×K to the new feature
map FG ∈ RC×N×K through the transformer. After that, we use the local neighborhood
correlation matrix LNC ∈ RC×N×K to filter the new feature map FG ∈ RC×N×K so that it
can improve the probability of inliers as well as reduce the interference of outliers. These
operations can be defined as:

FG = T(NF) (9)

F′G = H(NFC, FG) (10)

where FG and F′G are the feature maps before and after filtering, respectively; T(.) and
H(.) are the transformer, hadamard product and softmax operations, respectively; NF and
NFC are the initial neighborhood feature map and the local neighborhood correlation
matrix, respectively.

The feature map F′G includes more accurate neighborhood inlier information due to
the filter operation. After that, we aggregate the neighborhood information on the selected
correspondence, and the formula is as follows:

F′ = E(F′G) (11)

where E(.) is the element-wise summation operation; F′ ∈ RC×N×1 is the output fea-
ture map.

····

E
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Figure 2. Local Neighborhood Correlation Block. First, the K-Nearest Neighbor (KNN) is used to
divide the neighborhood roughly. Then, the local neighborhood correlation matrix LNC between
the selected correspondence and any other correspondence in the local region is calculated, which is
used to filter outliers, and finally, the new feature maps are aggregated.

Finally, the the output feature F′ ∈ RC×N×1 is put into the rest of the architecture,
as shown in Figure 1, to predict the probabilities of each correspondence in the initial
correspondence set.
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(a) Correspondences

(b) Inliers

(c) Outliers

(d) Neighborhood

Figure 3. Diagram of local neighborhood correlation of correspondences. Inliers in the local neighborhood region have similar
distribution, but outliers are randomly distributed.

3.3. Network Architecture

From Figure 1, we can see the overall framework of LNCNet mainly consists of our
proposed Local Neighborhood Correlation Block, PointCN Block, DiffPool&DiffUnpool
Layer and Order-Aware Filtering Block. Firstly, we put our proposed Local Self-Attention
Block at the front of the LNCNet so that it can provide more accurate information for the
subsequent operations to improve the performance of the network. Secondly, a PointCN
Block is made up of two identical contiguous modules, and each of them contains a Context
Normalization layer, a Batch Normalization layer with a ReLU activation function and a
Multi-Layer Perceptron. Finally, the DiffPool&DiffUnpool Layer consists of a Differentiable
Pooling Layer, a Differentiable Unpooling Layer and three Order-Aware Filtering Blocks.

Inspired by OANet [14], we iteratively use sub-LNCNet twice, which is made up of the
proposed Local Self-Attention Block 3 continuous PointCN Blocks, a DiffPool&DiffUnpool
Layer, and the other 3 continuous PointCN Blocks in order. The initial correspondence
set S ∈ RN×4 is put into the sub-LNCNet. Next, the outputs and their relevant residual
information are put into the sub-LNCNet again. Finally, we carry out the ReLU and Tanh
operations so that we can gain the weighted probability set w ∈ RN×1.

Compared with OANet [14], in our proposed LNCNet, KNN is used to coarsely divide
the initial feature map set F. After that, the local neighborhood correlation matrix LNC
between each selected correspondence and other correspondences in the neighborhood
is calculated, which is used to filter outliers. Furthermore, we aggregate the more accu-
rate neighborhood information to form a feature vector. Therefore, each of the feature
vectors can embed more accurate and abundant information so that the proposed LNCNet
performs outlier removal and camera pose estimation better.

3.4. Loss Function

We follow the idea of OANet [14], a hybrid loss function is adopted to guide LNCNet
in training, including a classification loss and a regression loss. It can be formulated as:
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L = Lc(w, Y) + λLr(E, Ê) (12)

where λ is a parameter to obtain a trade-off between two losses. The first is the classifi-
cation loss, where Lc(.) is a binary cross-entropy loss. The ground-truth labels Y and the
predicted probability set w are regarded as inputs. The weakly supervised labels Y can be
calculated according to the essential matrix E, and the epipolar distance constraint [36] can
be defined as:

d(c, E) =
(p
′TEp)2

‖Ep‖2
[1] + ‖Ep‖2

[2] + ‖ET p′‖2
[1] + ‖ET p′‖2

[2]

(13)

where c = (pT , p
′T)T is an initial correspondence, and two keypoint positions are p and p′.

The jth entry of the vector v is v[j]. If the geometric distance d is under the threshold (10−4),
the correspondence will be an inlier.

The second one is the regression matrix loss and can be written as:

Lr(E, Ê) =
Nin

∑
i=1

(p
′T
i Êpi)

2

‖Epi‖2
[1] + ‖Epi‖2

[2] + ‖ET p′i‖2
[1] + ‖ET p′i‖2

[2]

(14)

where Ê is the essential matrix predicted by our network, and Nin is the number of cor-
rect matches.

3.5. Implementation Details

The proposed LNCNet is shown in Figure 1, and its main parts were introduced in
Section 3.3, each of which has 128 channels. The initial correspondence set S ∈ RN×4

(N = 2000) is put into our proposed network. DiffPool&DiffUnpool Layer can map N
matches to M clusters, where M = 500. We gain the weighted probability set w ∈ RN×1 by
ReLU and tanh operations. The whole network is implemented by Pytorch. According to
experience, the learning rate of the Adam optimizer is 10−3. The iteration times are 500k,
and the batchsize is 32. The weight parameter Lr is initialized to 0, and after 20k iterations,
we change it to 0.5.

4. Experiments

In the section, we first present datasets in Section 4.1. Second, we show evaluation
metrics and comparative results in Section 4.2. Finally, we introduce ablation studies in
Section 4.3.

4.1. Datasets

We choose Yahoo’s YFCC100M dataset [37] and SUN3D dataset [38] as the outdoor
and indoor scene datasets, respectively.

Outdoor Scenes: Yahoo’s YFCC100M dataset [37] is as an outdoor scene dataset,
which is made up of 100 million pieces of media data. We divide the media data into
71 image sequences, where 67 sequences are used to train networks and the remaining part
as unknown datasets to test each network.

Indoor Scenes: We choose the SUN3D dataset [38] as an indoor scene dataset, which
is a large-scale RGBD video dataset and can capture 3D information. We split the indoor
scene dataset into 254 sequences, where 239 sequences are chosen to train networks. In
addition, the remaining part of the above sequences are unknown scenes chosen to test
all the networks. The indoor dataset is very challenging due to it with blurs and few
distinctive features.

We test the robust and generalization abilities of each network in known and unknown
scenes. Meanwhile, training sequences are split into disjoint subsets, i.e., the training set,
the validation set and testing set are 60%, 20% and 20%, respectively. Of note, we use the
results of testing in unknown scenarios as the main reference indexes, and the known scene
results are just used as references.
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4.2. Evaluation Metrics and Comparative Results

We show evaluation metrics and compare our proposed network (LNCNet) with other
famous algorithms, i.e., RANSAC [7], LPM [10], PointNet++ [39], LMR [32], DFE [31],
ACNe [13], LFGC [12], OANet [14] and their iterative variations (LFGC++ and OANet++)
to accomplish outlier rejection and camera pose estimation tasks on indoor and outdoor
datasets. The first two are classic traditional algorithms, whereas the rest are deep learning-
based algorithms.

Outlier Rejection: Precision, Recall and F-score are regarded as evaluation metrics
to evaluate the performance of some famous algorithms in outlier rejection. First, the
definition of Precision (P) is the ratio between the number of positive samples and the
number of predicted positive samples in the correspondence set. Second, the definition of
Recall (R) is the ratio between the number of identified correct samples and the number
of positive samples in the correspondence set. Finally, F-score (F) can be gained by 2 ∗
Precision ∗ Recall/(Precision + Recall). The quantitative comparative experimental results
are presented in Table 1. From that, we can find the performance of deep learning-based
networks is much better than traditional RANSAC [7] on the two complex scenes. Because
RANSAC [7] is fit for specific constraints and scenarios, it fails to perform good in the
challenging datasets (the outlier ratio is often around 90%). However, deep learning-based
networks are data-driven approaches, which have stronger abilities to reason and abstract
the relationship among the correspondences. Therefore, they can obtain more accurate
Precision, Recall and F-score values even from the putative correspondence set with vast
scale outliers. Of note, our proposed network performs best in Precision, Recall and F-score
on outdoor and indoor scenes on the whole.

Table 1. Comparisons of outlier rejection under outdoor and indoor unknown scenes are shown
in order. Bold indicates the best-valued index.

Algorithm
YFCC100M(%) SUN3D(%)

P R F P R F

RANSAC [7] 41.83 57.08 48.28 44.11 46.42 45.24
LPM [10] 43.75 65.65 51.72 44.28 55.42 50.63

PointNet++ [39] 48.42 61.16 54.05 45.64 83.43 59.00
DFE [31] 51.68 83.49 63.84 44.09 84.00 57.82
LMR [32] 50.73 66.12 55.19 44.88 58.21 52.71

ACNe [13] 54.56 86.92 67.04 46.44 84.23 59.87
LFGC [12] 53.12 85.51 65.53 47.24 83.45 60.32
LFGC++ 53.71 85.57 66.00 45.82 84.28 59.36

OANet [14] 55.65 85.80 67.51 46.54 83.43 59.74
OANet++ 54.55 86.67 66.96 46.95 83.77 60.17
LNCNet 57.67 86.21 69.11 48.37 83.49 61.25

Part of the visualization results are presented in Figure 4, where the left is OANet++,
and our proposed network is on the right. The green line and the red line denote the right
match and wrong match, respectively, and the information of inliers is clearly shown. In
each set of pictures, our proposed network performs better than OANet++. Therefore,
quantitative and partial visualization results can prove the effectiveness of LNCNet in
outlier rejection well.

Camera Pose Estimation: In this paper, we choose the mean average precision (mAP)
of the angular differences under different error thresholds as evaluation metrics, where the
angular difference is between the ground truth and the predicted vector for rotation and
translation. Because mAP5◦ is more useful in the follow-up work, it is chosen as the default
metric. Following OANet [14], RANSAC [7] with 0.001 threshold is as a post-processing
step in the camera pose estimation. We test the general capabilities of networks in the
unknown and known scenes for the camera pose estimation task in the two challenging
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datasets. From Table 2, we can find that our proposed network performs much better than
other methods.

Inliers: 236/312
P: 0.7564
R: 0.8906

Inliers: 284/379
P: 0.7493
R: 0.9562

Inliers: 227/312
P: 0.7276
R: 0.9578

Inliers: 403/525
P: 0.7676
R: 0.9016

Inliers: 413/523
P: 0.7897
R: 0.9323

Inliers: 266/346
P: 0.7688
R: 0.9301

(a) OANet++

Inliers: 241/317
P: 0.7603
R: 0.9094

Inliers: 285/348
P: 0.8190
R: 0.9596

Inliers: 229/286
P: 0.8007
R: 0.9662

Inliers: 417/532
P: 0.7838
R: 0.9329

Inliers: 412/442
P: 0.9321
R: 0.9300

Inliers: 268/339
P: 0.7906
R: 0.9371

(b) LNCNet

Figure 4. A part of the visualization results by (a) OANet++ (left) and (b) LNCNet (right). The top three images are the
results of the SUN3D dataset, and the rest ones are the results of the YFCC100M dataset. Both of them are tested under the
unknown scene.
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Table 2. Comparisons of camera pose estimation under the outdoor and indoor scenes are reported
in order. Results with and without RANSAC are also shown. Bold indicates the best-valued index.

Algorithm
YFCC100M (%) SUN3D (%)

Known Unknown Known Unknown

RANSAC [7] 5.82/- 9.08/- 4.38/- 2.86/-
PointNet++ [39] 34.69/11.49 45.85/15.75 21.00/11.80 18.79/10.29

DFE [31] 35.17/12.52 49.80/21.78 20.34/10.08 15.68/08.81
ACNe [13] 39.08/25.55 51.62/35.40 21.08/13.44 16.40/11.62
LFGC [12] 37.19/16.77 49.93/26.13 20.85/13.62 16.35/11.96
LFGC++ 37.76/19.78 49.92/30.28 21.08/14.33 15.77/12.59

OANet [14] 41.40/31.00 51.45/35.07 22.29/19.22 16.95/13.69
OANet++ 42.06/34.04 51.65/38.95 22.76/21.19 17.48/16.38
LNCNet 43.75/35.48 54.30/43.58 23.05/23.49 18.00/17.87

For indoor scenes, our network without RANSAC gains increases of 1.49% mAP5◦

and 2.30% mAP5◦ under unknown and known scenes compared to the second best net-
work, respectively. Simultaneously, our network with RANSAC still performs better than
other methods. For outdoor scenes, our network without RANSAC gets the mAP5◦ of
4.63% and 1.44% under unknown and known scenes compared to the second best network
(OANet++), respectively. Meanwhile, increases of 2.65% mAP5◦ and 1.69% mAP5◦ are
obtained under unknown and known scenes compared to OANet++ when using RANSAC.
Figures 5 and 6 show the performance of OANet++ and our proposed LNCNet with dif-
ferent error thresholds (i.e., mAP5◦, mAP10◦, mAP15◦ and mAP20◦) on the YFCC100M
dataset and SUN3D dataset, respectively. It proves that our proposed LNCNet performs
better than OANet++ with different error thresholds under complex indoor and outdoor
scenes. At the same time, it can be seen from the prediction lines (in Figures 5 and 6) that
the value of mAP increases linearly with the increase in the threshold.

Figure 5. The results of OANet++ (green) and LNCNet (yellow) with the different mAP under the
unknown YFCC100M scene without RANSAC.
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Figure 6. The results of OANet++ (green) and LNCNet (yellow) with the different mAP under the
unknown SUN3D scene without RANSAC.

4.3. Ablation Studies

In the section, we do the ablation study about how many neighbors we should
choose in the LNCNet on the YFCC100M dataset. The performance of the proposed
LNCNet with different k, e.g., k = {4, 6, 8, 10, 12, 14} is tested under unknown and known
scenes. As shown in Figure 7, if the value of k is too large (14) or too small (4), the
performance of our network will decrease. If the value of k is too small, we will fail to
obtain enough neighborhood information. On the contrary, if the value of k is too large,
many correspondences with less correlation may be divided into the neighborhood, which
can decrease the performance of networks. Therefore, we select k = 10 to determine the
local region.

Figure 7. The results of LNCNet with different k under the unknown (green) and known (yellow)
scenes without RANSAC.

5. Discussions and Conclusions

In our work, the Local Neighborhood Correlation Network (LNCNet) is proposed
to improve two-view correspondence learning. In particular, we fully utilize the local
neighborhood correlation block so that we can gain the feature maps with stronger rep-
resentation abilities among reliable correspondences in the local region. We tested our
proposed LNCNet to accomplish the outlier rejection and camera pose estimation tasks
under two complex datasets, and it performed better than other famous methods on the
whole. However, because we use k-Nearest Neighbor (KNN) to roughly choose the local
region, the time complexity may be a little high. Therefore, we plan to explore the variant
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version of KNN or other ways to solve the above problem in our future work. At the same
time, we also plan to integrate information of different scales into our network so that our
network can better complete the tasks of outlier removal and camera pose estimation.
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