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Predicting the diagnosis of autism spectrum disorder using
gene pathway analysis
E Skafidas1, R Testa2,3, D Zantomio4, G Chana5, IP Everall5 and C Pantelis2,5

Autism spectrum disorder (ASD) depends on a clinical interview with no biomarkers to aid diagnosis. The current investigation
interrogated single-nucleotide polymorphisms (SNPs) of individuals with ASD from the Autism Genetic Resource Exchange (AGRE)
database. SNPs were mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG)-derived pathways to identify affected cellular
processes and develop a diagnostic test. This test was then applied to two independent samples from the Simons Foundation
Autism Research Initiative (SFARI) and Wellcome Trust 1958 normal birth cohort (WTBC) for validation. Using AGRE SNP data from a
Central European (CEU) cohort, we created a genetic diagnostic classifier consisting of 237 SNPs in 146 genes that correctly
predicted ASD diagnosis in 85.6% of CEU cases. This classifier also predicted 84.3% of cases in an ethnically related Tuscan cohort;
however, prediction was less accurate (56.4%) in a genetically dissimilar Han Chinese cohort (HAN). Eight SNPs in three genes
(KCNMB4, GNAO1, GRM5) had the largest effect in the classifier with some acting as vulnerability SNPs, whereas others were
protective. Prediction accuracy diminished as the number of SNPs analyzed in the model was decreased. Our diagnostic classifier
correctly predicted ASD diagnosis with an accuracy of 71.7% in CEU individuals from the SFARI (ASD) and WTBC (controls) validation
data sets. In conclusion, we have developed an accurate diagnostic test for a genetically homogeneous group to aid in early
detection of ASD. While SNPs differ across ethnic groups, our pathway approach identified cellular processes common to ASD
across ethnicities. Our results have wide implications for detection, intervention and prevention of ASD.
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INTRODUCTION
Autism spectrum disorders (ASDs) are a complex group of sporadic
and familial developmental disorders affecting 1 in 150 births1 and
characterized by: abnormal social interaction, impaired
communication and stereotypic behaviors.2 The etiology of ASD
is poorly understood, however, a genetic basis is evidenced by the
greater than 70% concordance in monozygotic twins and elevated
risk in siblings compared with the population.3–5 The search for
genetic loci in ASD, including linkage and genome-wide
association screens (GWAS), has identified a number of candidate
genes and loci on almost every chromosome,6–11 with multiple
hotspots on several chromosomes (for example, CNTNAP2, NGLNX4,
NRXN1, IMMP2L, DOCK4, SEMA5A, SYNGAP1, DLGAP2, SHANK2 and
SHANK3),7,12–15 and copy number variations.9,13,16–21 However,
none of these have provided adequate specificity or accuracy to
be used in ASD diagnosis. Novel approaches are required22 to
examine multiple genetic variants and their additive contri-
bution19,23,24 taking into account genetic differences between
ethnicities and consideration of protective versus vulnerability
single-nucleotide polymorphisms (SNPs).

The present study interrogated the Autism Genetics Resource
Exchange (AGRE)25 SNP data with two aims: (1) to identify groups
of SNPs that populate known cellular pathways that may be
pathogenic or protective for ASD, and (2) to apply machine
learning to identified SNPs to generate a predictive classifier for
ASD diagnosis.26 The results were validated in two independent
samples: the US Simons Foundation Autism Research Initiative

(SFARI) and UK Wellcome Trust 1958 normal birth cohort (WTBC).
This novel and strategic approach assessed the contribution of
various SNPs within an additive SNP-based predictive test for ASD.

MATERIALS AND METHODS
The University of Melbourne Human Research Ethics Committee approved
the study (Approval Numbers 0932503.1, 0932503.2).

Subjects
(i) Index sample: subject data from 2609 probands with ASD (including
Autism, Asperger’s or Pervasive Developmental Disorder-not otherwise
specified, but excluding RETT syndrome and Fragile X), and 4165 relatives
of probands, was available from AGRE (http://www.agre.org); 1862
probands and 2587 first-degree relatives had SNP data from the Illumina
550 platform relevant to analyses (Figure 1a). Diagnosis of ASD was made
by a specialist clinician and confirmed using the Autism Diagnostic
Interview Revised (ADI-R27). Control training data was obtained from
HapMap28 instead of relatives, as the latter may possess SNPs that
predispose to ASD and skew analysis (Figures 1a and b).

(ii) Independent validation samples: 737 probands with ASD (ADI-R diag-
nosed) derived from SFARI; 2930 control subjects from WTBC (Figure 1b).

As SNP incidence rates vary according to ancestral heritage, HapMap
data (Phase 3 NCBI build 36) was utilized to allocate individuals to their
closest ethnicity. Individuals of mixed ethnicity were excluded; HapMap
data has 1 403 896 SNPs available from 11 ethnicities. Any SNPs not
included in the AGRE data measured on the Illumina 550 platform were
discarded, resulting in 407 420 SNPs. Mitochondrial SNPs reported in AGRE,
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but not available in HapMap were excluded. The 30 most prevalent
(495%) SNPs within each ethnicity were identified and each ASD
individual assigned to the group for which they shared the highest
number of ethnically specific SNPs. HapMap groups were determined to be
appropriate for analysis, as prevalence rates of the 30 SNPs relevant to
each ethnicity were similar for each AGRE group assigned to that ethnicity,
Po0.05.

Gene set enrichment analysis (GSEA)
Pathway analysis was selected because it depicts how groups of genes
may contribute to ASD etiology (Supplementary S1) and mitigates the

statistical problem of conducting a large number of multiple comparisons
required in GWAS studies. The current pathway analysis differs from
previous ASD analyses in three unique ways: (1) we divided the cohort into
ethnically homogeneous samples with similar SNP rates; (2) both
protective and contributory SNPs were accounted for in the analysis and
(3) the pathway test statistic was calculated using permutation analysis.
Although this is computationally expensive, benefits include taking
account of rare alleles, small sample sizes and familial effects. It also
relaxes the Hardy–Weinberg equilibrium assumption, that allele and
genotype frequencies remain constant within a population over genera-
tions. Pathways were obtained from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and SNP-to-gene data obtained from the National Center
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Figure 1. (a and b) Flow charts show the subjects used in the analyses. Key: AGRE, Autism Genetic Research Exchange; SFARI, Simons
Foundation Autism Research Initiative; WTBC, Wellcome Trust 1958 normal birth cohort; CEU, of Central (Western and Northern) European
origin; HAN, of Han Chinese origin; TSI, of Tuscan Italian origin; For panels 1a and b: ‘red boxes’—samples used in developing the predictive
algorithm; ‘blue boxes’—samples used to investigate different ethnic groups; ‘green boxes’—validation sets; ‘light green boxes’—relatives
assessed, including parents and unaffected siblings. Numbers in brackets represent numbers of males/females.
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for Biotechnology Information (NCBI). Intronic and exonic SNPs were
included. AGRE individuals most closely matching the genetics of Utah
residents of Western and Northern European (CEU), Tuscan Italian (TSI) and
Han Chinese origin were used in the analysis. CEU individuals (975 affected
individuals and 165 controls) were chosen as the index sample,
representing the largest group affected in AGRE (Figure 1a). The CEU
and Han Chinese had 116 753 SNPs that differed, whereas the CEU and TSI
had 627 SNPs, differing in allelic prevalence at Po1� 10� 5. The pathway
test statistic was calculated for CEU and Han individuals using a ‘set-based
test’ in the PLINK29 software package, with P¼ 0.05, r2¼ 0.5 and
permutations set to at least 2 000 000. Significance threshold was set
conservatively at Po1� 10� 5, calculated from the number of pathways
being examined (200). Therefore, significance was o0.05/200, set at
o1� 10� 5 (see Supplementary S1).

Predicting ASD phenotype based upon candidate SNPs
For each individual, a 775-dimensional vector was constructed, corre-
sponding to 775 unique SNPs identified as part of the GSEA. To examine
whether SNPs could predict an individual’s clinical status (ASD versus non-
ASD), two-tail unpaired t-tests were used to identify which of the 775 SNPs
had statistically significant differences in mean SNP value (Po0.005). This
significance level provided low classification error while maintaining
acceptable variance in estimation of regression coefficients for each
SNP’s contribution status, and provided the set of SNPs that maximized the
classifier output between the populations (Figure 2 and Supplementary
S2). This resulted in 237 SNPs selected for regression analysis. Each
dimension of the vector was assigned a value of 0, 1 or 3, dependent
on a SNP having two copies of the dominant allele, heterozygous or two
copies of the minor allele. The ‘0, 1, 3’ weighting provided greater
classification accuracy over ‘0, 1, 2’. Such approaches using superadditive
models have been used previously to understand genetic interactions.30

The formula for the classifier and classifier performance are presented
in Supplementary S3.

The CEU sample was divided into a training set (732 ASD individuals and
123 controls) and the remainder comprised the validation set. An affected
individual was given a value of 10 and an unaffected individual a value of
� 10, providing a sufficiently large separation to maximize the distance
between means (see Supplementary S3). Least squares regression analysis
of the training set determined coefficients whose sum over product by
SNP value mapped SNPs to clinical status. Kolmogorov–Smirnov goodness
of fit test assessed the nature of distribution of SNPs by classification. At
P¼ 0.05, the distributions were accepted as being normally distributed,
allowing determination of positive and negative predictive values (see
ROC, Supplementary S4). The Durbin–Watson test was used to investigate
the residual errors of the training set to determine if further correlations
existed. At P¼ 0.05, the residuals were uncorrelated. Regression coeffi-
cients were used to assess individual SNP contribution to clinical status.

AGRE validation
After analyzing the CEU training cohort, three cohorts were used for
validation: 285 (243 probands, 42 controls) CEUs; a genetically similar TSI
sample (65 patients, 88 controls); and a genetically dissimilar Han Chinese
population (33 patients, 169 controls). To illustrate overlap in SNPs in first-
degree relatives of individuals with ASD (n¼ 1512), we mapped the SNPs
of parents (n¼ 1219; 581 male) and unaffected siblings (n¼ 293; 98 male)
of CEU origin who did not meet criteria for ASD. Finally, the accuracy of the
predictive model was modified to test predictive ability using 10, 30 and 60
SNPs having the greatest weightings.

Independent validation
Samples included 507 CEU and 18 TSI subjects with ASD from SFARI, and
2557 CEU and 63 TSI from WTBC (Figure 1b).

RESULTS
Identification of affected pathways
Analyses focused on 975 CEU ASD individuals, in which 13 KEGG
pathways were significantly affected (Po1� 10� 5). The pathway
analysis identified 775 significant SNPs perturbed in ASD. A
number of the pathways were populated by the same genes and
had inter-related functions (Table 1).

The most significant pathways were: calcium signaling, gap
junction, long-term depression (LTD), long-term potentiation
(LTP), olfactory transduction and mitogen-activated kinase-like
protein signaling. GSEA on the genetically distinct Han Chinese
identified six pathways that overlapped with 13 pathways in the
CEU cohort (estimate of this occurring by chance, P¼ 0.05),
including: purine metabolism, calcium signaling, phosphatidylino-
sitol signaling, gap junction, long-term potentiation and long-term
depression. Related to these pathways, the statistically significant
SNPs in both populations were rs3790095 within GNAO1, rs1869901
within PLCB2, rs6806529 within ADCY5 and rs9313203 in ADCY2.

Diagnostic prediction of ASD
From the 775 SNPs identified within the CEU cohort, accurate
genetic classification of ASD versus non-ASD was possible using
237 SNPs determined to be highly significant (Po0.005). Figure 3a
shows the distribution of ASD and non-ASD individuals based on
genetic classification. An individual’s clinical status was set to ASD
if their score exceeded the threshold of 3.93. This threshold
corresponds to the intersection points of the two normal curves.
The theoretical classification error was 8.55%, and positive (ASD)
and negative predictive values (controls) were 96.72% and
94.74%, respectively. Classification accuracy for the 285 CEU AGRE
validation individuals was 85.6% and 84.3% for the TSI, while
accuracy for the Han Chinese population was only 56.4%. Using the
same classifier with the identical set of SNPs, accuracy of prediction
of ASD in the independent data sets was 71.6%; positive and
negative predictive accuracies were 70.8% and 71.8%, respectively.

SNPs were compared with the affected and unaffected
individuals. Figure 3b shows that relatives (parents and unaffected
siblings combined) fall between the two distributions, with a
mean score of 2.68 (s.d.¼ 2.27). The percentage overlap of the
relatives and affected individuals was 30.4%. The mean scores of
the mothers and fathers did not differ (at P¼ 0.05) with scores of
2.83 (s.d.¼ 2.17) and 2.93 (s.d.¼ 2.34), respectively (see
Supplementary S5), whereas unaffected siblings (not meeting
diagnostic criteria for ASD) fell between parents and cases
(mean¼ 4.74, s.d.¼ 3.80). In testing the robustness of the
predictive model, using fewer SNPs monotonically decreased
accuracy in the AGRE-CEU analyses to 72% for 60 SNPs, 58% for 30
SNPs and 53.5% for 10 SNPs, with the distribution of parents being
indistinguishable from controls.

Cumulative Coefficient Error and Classification Error vs P-value
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Figure 2. Cumulative coefficient estimation error and percentage
classification error as a function of P-value; P¼ 0.005 provides good
trade-off between classification performance and cumulative
regression coefficient error.
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Of the 237 SNPs within our classifier, presence of some
contributed to vulnerability to ASD (Table 2a), whereas others
were protective (Table 2b). Eight SNPs in three genes, GRM5,
GNAO1 and KCNMB4, were highly discriminatory in determining an
individual’s classification as ASD or non-ASD. For KCNMB4,
rs968122 highly contributed to a clinical diagnosis of ASD,
whereas rs12317962 was protective; for GNAO1, SNP rs876619
contributed, whereas rs8053370 was protective; for GRM5, SNPs
rs11020772 was contributory, whereas rs905646 and rs6483362
were protective.

DISCUSSION
Using pathway analysis, we have generated a genetic diagnostic
classifier based on a linear function of 237 SNPs that accurately
distinguished ASD from controls within a CEU cohort. This same
diagnostic classifier was able to correctly predict and identify ASD
individuals with accuracy exceeding 85.6% and 84.3% in the
unseen CEU and TSI cohorts, respectively. Our classifier was then
able to predict ASD group membership in subjects derived from
two independent data sets with an accuracy of 71.6%, thus greatly
adding strength to our original finding. However, the classifier was
sub-optimal at predicting ASD in the genetically distinct Han

Table 1. Statistically significant pathways for the CEU and Han Chinese

KEGG pathway Pathway name CEU significance (P-values) HAN significance (P-values)

hsa04020 Calcium signaling 5.0� 10� 7 5.0�10�7

hsa04540 Gap junction 5.0� 10� 7 5.0�10�7

hsa04730 Long-term depression 5.0� 10� 7 5.0�10�7

hsa04070 Phosphotidylinositol signaling 1.5� 10� 6 5.0�10�7

hsa04720 Long-term potentiation 2.5� 10� 6 5.0�10�7

hsa00230 Purine metabolism 1.0� 10� 5 5.0�10�7

hsa04010 mitogen-activated kinase-like protein 5.0� 10� 7 —
hsa04740 Olfactory transduction 5.0� 10� 7 —
hsa04910 Insulin signaling pathway 1.5� 10� 6 —
hsa04916 Melanogenesis 2.0� 10� 6 —
hsa04310 Wnt signaling 4.0� 10� 6 —
hsa04912 GnRH signaling 4.5� 10� 6 —
hsa04120 Ubiquitin-mediated proteolysis 7.0� 10� 6 —
hsa04080 Neuroactive ligand receptor 1.2� 10� 5 5.0�10�7

hsa04062 Chemokine signaling pathway 1.2� 10� 5 5.0�10�7

hsa04060 Cytokine–cytokine receptor 1.65� 10� 5 5.0�10�7

hsa04114 Oocyte meiosis — 5.0�10�7

hsa04360 Axon guidance — 5.0�10�7

hsa04510 Focal adhesion — 5.0�10�7

hsa04514 Cell adhesion molecules — 5.0�10�7

hsa04670 Leukocyte transendothelial migration — 5.0�10�7

hsa04144 Endocytosis — 2.0�10�6

hsa04742 Taste transduction — 2.0�10�6

Abbreviations: CEU, of Central (Western and Northern) European origin; HAN, of Han Chinese origin; KEGG, Kyoto Encyclopedia of Genes and Genomes
(ftp.kegg.jp).
P-values in bold are statistically significant. The pathways highlighted in ‘bold’ denote pathways that have reached statistical significance in both populations.
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Figure 3. (a) Genetic-based classification of CEU population (AGRE and Controls) for ASD and non-ASD individuals, showing Gaussian
approximation of distribution of individuals. As both the mapped ASD and control populations were well approximated by normal
distributions, the asymptotic Test Positive Predictive Value (PPV) and Negative Predictive Value (NPV) was determined. For individuals with
CEU ancestry, the PPV and NPV were 96.72% and 94.74%, respectively. (Note the test was substantially less predictive on individuals with
different ancestry, that is, Han Chinese). (b) Genetic-based classification of CEU population, including first-degree relatives (parents and
siblings of ASD children). Note that the distribution of relatives of ASD children maps between the ASD and the control groups, with no
difference found between mothers and fathers (see Supplementary material S5). Key: ASD, autism spectrum disorder; relatives, first-degree
relatives (parents and siblings); Siblings, siblings of ASD cases not meeting criteria for ASD; Autism Classifier Score, scores for each individual
derived from the predictive algorithm, with greater values representing greater risk for autism.
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Chinese cohort, which may be explained by differences in allelic
prevalence. Although only 627 SNPs significantly differed between
the TSI and CEU cohorts, this figure increased to 116 753 SNPs
between the CEU and Han Chinese. It is likely that an additional
set of SNPs may be predictive of ASD diagnosis in Han Chinese
and that methods used for our classifier could be applicable to
other ethnicities. Interestingly, parents and siblings of ASD-CEU
individuals fell as distinct groups between the ASD and controls,
reinforcing a genetic basis for ASD with neurobehavioral
abnormalities reported in parents of ASD individuals also
supporting our findings.31 When we altered the classifier by
reducing the number of SNPs, not only did the predictive accuracy
suffer but also the relatives merged into the control group. This
suggests that use of relatives as controls in SNP GWAS studies is
only valid when examining small numbers of SNPs and may not
be appropriate when assessing genetic interactions.

There was considerable overlap in the pathways implicated in
both the CEU and Han Chinese populations. The analysis
demonstrated that SNPs in the Wnt signaling pathway contributed
to a diagnosis of ASD in the CEU cohort, but not in the Han
Chinese population. Although of interest, a firm conclusion
regarding these differences and similarities will require replication
in a larger Han Chinese population. Completion of diagnostic
classification studies for other ethnic groups will invariably aid in
identification of common pathological mechanisms for ASD.

The SNPs contributing most to diagnosis in our classifier
corresponded to genes for KCNMB4, GNAO1, GRM5, INPP5D and
ADCY8. The three SNPs that markedly skewed an individual
towards ASD were related to the genes coding for KCNMB4,

GNAO1 and GRM5. Homozygosity for KCNMB4 SNP carries a higher
risk of ASD than SNPs related to GNAO1 and GRM5. By contrast, a
number of SNPs protected against ASD, including rs8053370
(GNAO1), rs12317962 (KCNMB4), rs6483362 and rs905646 (GRM5).
KCNMB4 is a potassium channel that is important in neuronal
excitability and has been implicated in epilepsy and dyskine-
sia.32,33 It is highly expressed within the fusiform gyrus, as well as
in superior temporal, cingulate and orbitofrontal regions (Allen
Human Brain Atlas, http://human.brain-map.org/), which are areas
implicated in face identification and emotion face processing
deficits seen in ASD.34 GNAO1 protein is a subgroup of Ga(o), a
G-protein that couples with many neurotransmitter receptors.
Ga(o) knockout mice exhibit ‘autism-like’ features, including
impaired social interaction, poor motor skills, anxiety and
stereotypic turning behavior.35 GNAO1 has also been shown to
have a role in nervous development co-localizing with GRIN1 at
neuronal dendrites and synapses,36 and interacting with GAP-43
at neuronal growth cones,37 with increased levels of GAP-43
demonstrated in the white matter adjacent to the anterior
cingulate cortex in brains from ASD patients.38

In our findings, GRM5 SNPs have both a contributory
(rs11020772) and protective (rs905646, rs6483362) effect on
ASD. GRM5 is highly expressed in hippocampus, inferior temporal
gyrus, inferior frontal gyrus and putamen (Allen Human Brain
Atlas), regions implicated in ASD brain MRI studies.39 GRM5 has a
role in synaptic plasticity, modulation of synaptic excitation, innate
immune function and microglial activation.40–43 GRM5-positive
allosteric modulators can reverse the negative behavioral effects
of NMDA receptor antagonists, including stereotypies, sensory

Table 2. List of 15 most contributory (Table 2a) and 15 most protective (Table 2b) SNPs for ASD diagnosis in the CEU Cohort

SNP Weight lower (0.95) Weight Weight higher (0.95) delta Gene number Gene symbol

(a) Risk SNPs and their weightings
rs968122 1.5465 1.5555 1.5645 0.0090 27 345 KCNMB4
rs876619 0.9476 1.2092 1.4708 0.2616 2775 GNAO1
rs11020772 0.8553 0.8641 0.8729 0.0088 2915 GRM5
rs9288685 0.5856 0.5998 0.6140 0.0142 3635 INPP5D
rs10193128 0.5836 0.5946 0.6056 0.0110 3635 INPP5D
rs7842798 0.5298 0.5386 0.5474 0.0088 114 ADCY8
rs3773540 0.5125 0.5208 0.5291 0.0083 55 799 CACNA2D3
rs1818106 0.5002 0.5161 0.5320 0.0159 80 310 PDGFD
rs2384061 0.4195 0.4306 0.4417 0.0111 109 ADCY3
rs12582971 0.3983 0.4295 0.4607 0.0312 5288 PIK3C2G
rs10409541 0.4067 0.4189 0.4311 0.0122 773 CACNA1A
rs2300497 0.3782 0.3889 0.3996 0.0107 801 CALM1
rs7562445 0.3741 0.3843 0.3945 0.0102 2066 ERBB4
rs7313997 0.3382 0.3567 0.3752 0.0185 5801 PTPRR
rs2239118 0.3348 0.3552 0.3756 0.0204 775 CACNA1C

(b) Protective SNPs and their weightings
rs17629494 � 0.5242 � 0.5070 � 0.4898 0.0172 5592 PRKG1
rs4648135 � 0.5807 � 0.5260 � 0.4713 0.0547 4790 NFKB1
rs17643974 � 0.5527 � 0.5424 � 0.5321 0.0103 1488 CTBP2
rs1243679 � 0.5771 � 0.5674 � 0.5577 0.0097 341 799 OR6S1
rs2240228 � 0.5942 � 0.5816 � 0.5690 0.0126 26 532 OR10H3
rs260808 � 0.5938 � 0.5836 � 0.5734 0.0102 80 310 PDGFD
rs4128941 � 0.6166 � 0.6082 � 0.5998 0.0084 8313 AXIN2
rs769052 � 0.6321 � 0.6235 � 0.6149 0.0086 7322 UBE2D2
rs984371 � 0.7273 � 0.7181 � 0.7089 0.0092 219 437 OR5L1
rs4308342 � 1.0196 � 0.8938 � 0.7680 0.1258 1633 DCK
rs11145506 � 0.9400 � 0.9172 � 0.8944 0.0228 9630 GNA14
rs905646 � 0.9700 � 0.9624 � 0.9548 0.0076 2915 GRM5
rs6483362 � 0.9894 � 0.9661 � 0.9428 0.0233 2915 GRM5
rs12317962 � 1.4869 � 1.3200 � 1.1531 0.1669 27 345 KCNMB4
rs8053370 � 1.7162 � 1.6956 � 1.6750 0.0206 2775 GNAO1

Abbreviations: ASD, Autism spectrum disorder; CEU, of Central (Western and Northern) European origin; SNP, single-nucleotide polymorphism.
Weight indicates the contribution of each SNP to ASD clinical status. ‘Weight lower’ indicates the 0.95 lower error bar of the estimate; ‘Weight higher’ indicates
the 0.95 upper error bar for that SNP. Note that some genes have SNPs that contribute to risk for ASD and SNPs that protect against ASD.
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motor gating deficits and deficits in working, spatial and
recognition memory,44 features described in ASD.45,46 With
regard to GRM5’s involvement with neuroimmune function, this
receptor is expressed on microglia,40,47 with microglial activation
demonstrated by us and others in frontal cortex in ASD.48,49

Further, as GRM5 signaling is mediated via signaling through
Gene Protein Couple Receptors, a possible interaction between
GNAO1 and GRM5 is plausible. Genes such as PLCB2, ADCY2,
ADCY5 and ADCY8 encode for proteins involved in G-protein
signaling. Given this association, GRM5 may represent a pivotal
etiological target for ASD; however, further work is needed in
demonstrating these potential interactions and contribution to
glutamatergic dysregulation in ASD.

In conclusion, within genetically homogeneous populations, our
predictive genetic classifier obtained a high level of diagnostic
accuracy. This demonstrates that genetic biomarkers can correctly
classify ASD from non-ASD individuals. Further, our approach of
identifying groups of SNPs that populate known KEGG pathways
has identified potential cellular processes that are perturbed in
ASD, which are common across ethnic groups. Finally, we
identified a small number of genes with various SNPs of influential
weighting that strongly determined whether a subject fell within
the control or ASD group. Overall these findings indicate that a
SNP-based test may allow for early identification of ASD. Further
studies to validate the specificity and sensitivity of this model
within other ethnic groups are required. A predictive classifier as
described here may provide a tool for screening at birth or during
infancy to provide an index of ‘at-risk status’, including probability
estimates of ASD-likelihood. Identifying clinical and brain-based
developmental trajectories within such a group would provide the
opportunity to investigate potential psychological, social and/or
pharmacological interventions to prevent or ameliorate the
disorder. A similar approach has been adopted in psychosis
research, which has improved our understanding of the disorder
and prognosis for affected individuals.50
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