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Machine learning has been widely used to solve complex problems in engineering
applications and scientific fields, and many machine learning-based methods have
achieved good results in different fields. SNAREs are key elements of membrane
fusion and required for the fusion process of stable intermediates. They are also
associated with the formation of some psychiatric disorders. This study processes the
original sequence data with the synthetic minority oversampling technique (SMOTE) to
solve the problem of data imbalance and produces the most suitable machine learning
model with the iLearnPlus platform for the identification of SNARE proteins. Ultimately, a
sensitivity of 66.67%, specificity of 93.63%, accuracy of 91.33%, and MCC of 0.528 were
obtained in the cross-validation dataset, and a sensitivity of 66.67%, specificity of 93.63%,
accuracy of 91.33%, and MCC of 0.528 were obtained in the independent dataset (the
adaptive skip dipeptide composition descriptor was used for feature extraction, and
LightGBM with proper parameters was used as the classifier). These results demonstrate
that this combination can perform well in the classification of SNARE proteins and is
superior to other methods.
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INTRODUCTION

Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins
are a small superfamily of proteins. They have an uncomplicated domain structure, and a feature of
them is the SNARE motif—an evolutionarily conserved heptanucleotide repeat consisting of 60–70
amino acids. (Jahn and Scheller, 2006) They can be divided into Q-SNAREs and R-SNAREs pursuant
to the structural characteristics of SNAREs. Functionally, SNAREs are most likely associated with
various aspects of membrane transport specificity, and they are a key element in membrane fusion
and are necessary for stable fusion intermediates. (Schoch et al., 2001) SNARE proteins are involved
in membrane vesicle transport, such as synaptic transmission between nerve cells (synaptic vesicle
transport) and plant disease resistance (disease resistance signaling). In addition, SNAREs are also
implicated in the formation of some mental disorders. (Wang et al., 2018)

It is relatively complex to explore the function of a particular protein in the field of biology, the
general prediction method is based on Protein-Protein-Interaction (PPI) (Hu et al., 2011; Zhai et al.,
2020; Sundar and Narmadha, 2021) and protein structure information (Kinjo and Nakamura, 2012;
Sharma and Srivastava, 2021). In the subsequent process, the specific function of detection through
the complex biological experiment needs to be clear, which greatly increases the difficulty and the
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resources required of the properties that determine protein
function, thus reducing the efficiency due to unavoidable time
consumption.

In recent years, with the development of machine learning,
many methods have achieved good results in various fields, such
as Nature Language Processing (NLP) and computer vision (Jin
et al., 2021). In addition, the classification task is one of the most
basic applications in machine learning, and relevant research is
has matured. (Ke et al., 2017) Nguyen Quoc Khanh Le, et al. (Le
et al., 2019) employed PSSM profiles and 2D CNN to identify
SNARE proteins. Su, Xin, et al. (Su et al., 2019) applied the
multiscale convolutional network to the identification of
antimicrobial peptides, so it is appropriate to apply machine
learning to protein classification tasks.

In this paper, multiple feature extraction algorithms are used
to extract different features, obtain the best performance
descriptor through performance comparison, and then
perform data enhancement processing on the extracted
features of this descriptor to address the problem of sample
imbalance in the data to a certain extent. Finally, the
processed feature data and raw data of the independent test
set were used to train the classifier to obtain the eventual model.

MATERIALS AND METHODS

The task of protein sequence classification models based on
machine learning generally includes five main steps: protein
sequence data collection, feature extraction and processing,
classifier construction and optimization, model performance
evaluation, and result visualization. (Liu et al., 2019; Guo
et al., 2020; Tao et al., 2020; Chen Z et al., 2021; Li et al.,
2021) The details of the first three steps determine whether
the classification performance is satisfactory, while the last two
steps are only a further explanation of the experimental results
and determined by objective evaluation indicators, so the
sequence classification task is mainly carried out using the first
three steps. Figure 1 illustrates the research flow of this paper.

Datasets
The research object of this paper are SNARE proteins, which
are generally downloaded from the UniProt database. As the
research object is a specific type of protein, less sequence data
can be obtained for a specific protein compared to other non-
specific types of common proteins, which leads to the final
dataset being easily unbalanced, i.e., the number of nonspecific
proteins in the dataset is greater than the number of specific
proteins. The dataset used in this study was from other similar
tasks. (Le and Nguyen, 2019) The number of SNARE proteins
in this dataset was only one-tenth that of non-SNARE
proteins, including 697 SNARE proteins as positive samples
and 7,378 vesicle transport proteins as negative samples.
During the experiment, 90% of them were extracted for the
training of the model, and the rest were used as independent
validation sets to evaluate the generalization ability of
the model.

Feature Extraction and Processing
Biological sequence data are generally stored in a FASTA file
format, and each sequence data is represented by the letter of the
nucleotide or amino acid constituting the molecule. As the
number of molecules composing the biological sequence is not
fixed, the length of the sequence is inconsistent. However,
traditional machine learning models can only deal with fixed-
dimension data in digital format, so it is necessary to encode
source sequence data into restricted-length digital data to meet
the input requirements of the model, which is the feature
extraction of sequential data. Descriptors are used in the first
step of biological sequence analysis. They extract various
biological sequence features from multiple perspectives, such
as amino acid composition, biochemical characteristics, and
residue composition, with different emphases and features.
Consequently, these algorithms may have different
performances for various sequence analysis tasks. Typically,
the most appropriate algorithm for a given task needs to be
obtained by testing various feature extraction algorithms on the
dataset and comparing the performance of each algorithm.

Treatment of Data Imbalance
As mentioned above, the number of positive samples in the
dataset used in this paper is only one 10th of the number of
negative samples, which will lead to unbalanced recognition of
positive and negative samples in training process and affect the
final classification results (Zou et al., 2016; Cheng et al., 2018;
Azad et al., 2019; Priya and Sivaraj, 2021; Shao et al., 2021). The
model trained with unbalanced data will be more inclined to fit
the negative instances with a large number, which will lead to the
degradation of the model’s classification performance for the
small number of positive samples. Since there are more negative
samples in the dataset than positive samples, if the source files are
directly used for training, the classifier will learn too many
negative samples, thus reduce the recognition ability of the
model for positive samples, but this is contrary to our main
purpose. Therefore, it is necessary to adopt some strategies to
alleviate the problem of sample imbalance. The relatively small
number of specific proteins in nature and the widespread sample
imbalance in the field of biological sequence classification had
also led to abundant research on the processing of unbalanced
data. (Chao et al., 2019; Kaur et al., 2019; Yang et al., 2020; Ao
et al., 2021a; Shao and Liu, 2021) The most common are
oversampling and downsampling. Oversampling is balanced by
adding redundant samples to a small number of positive samples,
and the strategy can improve the recognition ability of positive
samples to a certain extent, but it simply repeats positive
examples and overemphasizes existing positive examples,
which would urge the risk of overfitting positive examples. In
the downsamplingmethod, only a portion of the negative samples
is selected for lower sampling to reduce the number of negative
samples. However, this method can only improve the model’s
classification ability of positive samples to a certain extent.
Because a few of the counterexample data are discarded, their
influence in the overall sample is reduced, which may result in a
large deviation model, and greatly affect the overall performance.
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Considering the serious imbalance between positive and
negative samples in this dataset, only one unbalanced strategy
may not work well; it needs to be sampled up and down
simultaneously. This article uses a combination of sampling
partial negative samples and the synthetic minority
oversampling technique (SMOTE) to generate new positive
samples to address sample imbalance. (Chawla et al., 2002;
Riaz and Li, 2019; Zhang C H et al., 2020; Zhao et al., 2020)

SMOTE is an oversampling technique that balances the
quantity gap between two categories by finding the nearest
neighbor of certain data in a positive example and then using
the K-nearest neighbor algorithm to generate new positive
samples. For each sample x in the positive sample, calculate
the K positive samples xk {k � 1, 2, K} closest to x, and determine
the sampling ratio n according to the unbalanced proportion of
samples. For the k nearest neighbor samples of each sample x, n
samples are randomly selected, and the newly constructed sample
xnew can be obtained through the following formula:

xnew � x + rand(0, 1)p|x − xn| (1)

In the experiment, part of the negative sample is treated with
simple undersampling at first. SMOTE is used to generate positive
samples to ensure that the number of positive and negative
samples is consistent. Then, a balanced dataset of sample size
can be obtained, which will be used in subsequent model training
experiments.

RESULT AND DISCUSSION

Evaluation Indexes
To objectively evaluate the performance of various algorithms,
some convincing indicators of these algorithms need to be
compared after the experiment (Wei et al., 2017; Wei et al.,
2018; Wei et al., 2019; Wang et al., 2020; Ding et al., 2021; Shang
et al., 2021; Wu and Yu, 2021; Yang et al., 2021). Next, the
algorithm with the best performance is selected for subsequent
research according to these indices. Similarly, common metrics
are used to compare the performance of each algorithm. The four
values of TP, FP, TN, and FN (representing true positive, false-
positive, true negative, and false negative values, respectively) can
be obtained for the classifier test (Jiang et al., 2013; Cheng et al.,
2016; Xiao et al., 2019; Zhang L et al., 2020; Huang et al., 2020; Li
and Liu, 2020; Liu et al., 2020; Mo et al., 2020; Tang et al., 2020;
Han et al., 2021; Wang et al., 2021; Xu et al., 2021). Accuracy,
MCC, sensitivity, and specificity can then be calculated based on
these values.

Sensitivity � TP

TP + FN
(2)

Specificity � TN

TN + FP
(3)

Accuracy � TP + TN

TP + FP + TN + FN
(4)

FIGURE 1 | The research flow diagram of SNARE protein identification using a decision tree model.
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MCC � TP × TN − FP × FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (5)

Selection of the Descriptors
In this paper, the iLearnPlus platform (Chen Z et al., 2021) was
used to compare the performance of various extraction
algorithms: multiple descriptors were applied to obtain the
feature vectors of the source FASTA file, followed by training
and testing the obtained features using several classification
algorithms and analyzing the performance of different feature
extraction algorithms. To eliminate the influence of other
subjective factors, the area under the receiver operating
characteristic curve (AUROC) index was adopted to evaluate
the performance of the algorithm.

Accuracy and MCC are widely adopted to measure model
performance in classification problems. These two values can be
regulated by artificially setting thresholds so that the specific
performance of each algorithm cannot be truly reflected. The
AUROC index takes TPR [TP/(TP + FN)] and FPR[FP/(FP +
TN)] as the horizontal and vertical coordinates to obtain the area
under the curve. The larger the area is, the higher the coincidence
degree between the prediction label of the model and the source
label is. It is necessary to take the AUROC as the evaluation
standard so that the algorithm with the best overall performance
can be selected.

According to the experiment, several feature extraction
algorithms and classifiers with better performance can be
obtained. Some experimental results are shown in Table 1.

The experimental results show that the performance of
adaptive skip dipeptide composition (ASDC), CKSAAP, and
QSOrder feature extraction algorithms outperform other
algorithms. Among them, the optimal algorithm is the ASDC,

and the subsequent multiple numbers also use ASDC to extract
features.

ASDC is a feature extraction algorithm based on GDC (G-gap
dipeptide composition) algorithm. Dipeptide composition is the
fraction of any two adjacent residues as a dipeptide pair, and it
measures the correlation of any two adjacent residues in the
peptide sequence. GDC encapsulates the composition and local
order information of any two spacer residues in the peptide
sequence, it has a hyperparameter g to determine the gap between
two adjacent residues. And ASDC calculates all values of g and
accumulates them. For a given protein read R with L length, the
feature vector for ASDC is represented by:

ASDC � (fv1, fv2..., fv400) (6)

where fvi is calculated by

fvi �
∑L−1
g�1

Og
i

∑400
i�1

∑L−1
g�1

Og
i

(7)

where g represents the g-gap (g � 1, 2, L-1) dipeptide and fvi is the
occurrence frequency of the ith (i� 1, 2, 400) adaptive skip dipeptide.
It is worth mentioning that if the cumulative term with g is removed
from Eq. 7, it becomes the formula for the GDC features.

Since there are approximately 8,000 samples in the dataset, the
400 dimension is relatively moderate. Another is that ASDC
considers the frequency of any two unconnected amino acids in
the whole protein and can capture all the information of
dipeptide composition. It also shows that the SNARE proteins
have a high correlation with their dipeptide composition. This
information may bring biological assistance to the final SNARE
protein recognition.

TABLE 1 | Feature dimensions of partial feature extraction algorithms and AUROC performance under multiple classifiers.

Feature dimension RandomForest (Breiman, 2001) LightGBM (Ke et al.,
2017)

XGBoost (Chen and
Guestrin, 2016)

ASDC (Wei et al., 2018) 400 0.8599 0.8829 0.8839
QSOrder (Chou, 2000) 44 0.8401 0.864 0.8604
DDE (Saravanan and Gautham, 2015) 400 0.824 0.8604 0.849
CKSAAP (Chen et al., 2007) 1,600 0.8337 0.8664 0.8588
AAC (Bhasin and Raghava, 2004) 20 0.8467 0.8514 0.8428

The meaning of the bold values is the feature extraction algorithm that performs best under a particular classification algorithm.

TABLE 2 | Model performance under different n values.

n Cross-validation Independent

Sens Spec Acc MCC Sens Spec Acc MCC

628 82.97 82.954 82.486 0.6522 94.2 60.84 63.69 0.3102
1,256 95.148 89.886 92.516 0.8523 73.91 76.56 76.33 0.3152
2,510 98.486 91.832 95.158 0.9055 76.81 86.34 85.5 0.4492
3,764 99.07 94.394 96.73 0.936 65.22 93.22 90.83 0.5071
5,019 99.302 94.682 96.99 0.941 62.32 94.04 91.33 0.5081
6,640 99.292 94.414 96.852 0.9384 59.42 94.99 91.95 0.5149
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However, the results also showed that several other algorithms
performed only slightly worse than ASDC, so it was considered
that features stitched together after using multiple feature
extraction algorithms could be used to train the model. After
experimental verification, when the feature data extracted by
algorithms such as ASDC and QSOrder were spliced together
and then used to train the model, it was found that instead of
improving the results, there was a slight decrease. In response to
this result, it is believed that the data dimensionality is too large,
and the resulting redundant data will not only have a positive
effect on the training of the model but also degrade the model
performance. Therefore, the spliced features were subsequently
selected again, and relevant experiments were conducted.
However, the model trained with these data still performed
poorly on the independent set. After comparing the feature
vectors extracted by the feature extraction algorithms used, it
was concluded that the main reason was that the feature values
obtained by each algorithm did not fall within the same range of
values. For example, the feature matrix extracted by the QSOrder
algorithm is a sparse matrix containing a large number of 0 or
very close to 0 values, and there are some negative numbers in the

DDE features, which when mixed together may affect the
direction of the model iteration and thus the final results.

Unbalanced Processing
In the step of dealing with the data imbalance problem, n negative
samples are first downsampled from the original dataset to ensure
that n is greater than the number of positive samples 628. Then,
the SMOTE algorithm is used to expand the number of positive
samples to n to build a balanced dataset. When n � 628, the
strategy is equivalent to complete downsampling, and when n �
6,640 (the total number of negative samples), the strategy is
equivalent to complete oversampling, so the value of n is in the
range (628, 6,640). After sampling the negative samples, all data
were tested with the same independent test set to determine their
generalization ability.

To analyze the effect of the number of down samples n on the
classification performance, several sets of parameters were set for
experiments in this paper, and the best performing n value was
selected based on the results. n values were set, and the related
performance is shown in Table 2. To partially eliminate the error
caused by the randomness of the data, no put-back sampling was

TABLE 3 | The performance of the three classifiers on the independent test set
(n � 2,510).

n = 2,510 Sensitivity (%) Specificity (%) Accuracy (%) MCC

RandomForest 63.77 90.92 88.6 0.444
LightGBM 76.81 86.31 85.5 0.4492
XGBoost 73.91 86.99 85.87 0.4412

The meaning of the bold values is the feature extraction algorithm that performs best
under a particular classification algorithm.

TABLE 4 | The performance of the three classifiers on the independent test set
(n � 5,019).

n = 5,019 Sensitivity (%) Specificity (%) Accuracy (%) MCC

RandomForest 46.38 95.66 91.45 0.435
LightGBM 60.87 95.39 92.44 0.5386
XGBoost 60.87 94.58 91.7 0.5132

The meaning of the bold values is the feature extraction algorithm that performs best
under a particular classification algorithm.

FIGURE 2 | The relationship between the number of leaves and model
performance.

FIGURE 3 | The relationship between the number of maxdepth and
model performance.

FIGURE 4 | The relationship between learning rate and model
performance.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8188415

Ma et al. SNARE Protein Identification

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


performed in downsampling, and the set of negative samples
sampled was denoted by S (n). Then, there was S(n)⊂S(m), where
n < m.

Parameter Optimization
In the recognition problem, it is also very important to select the
appropriate classifier. There are also multiple classifiers in the
field, each with a different focus, so their performance in a
particular task may be different. Therefore, to select a classifier
that best fits the task, we follow the same approach as in the
selection of the descriptors subsection, where different classifiers
are used to train and classify the same feature data, and the best
performing algorithm is selected for subsequent experiments.
After using three mainstream classifiers, the model performance
corresponding to the parameters of Part n is shown in Tables 3
and 4. It can be concluded that LightGBM with n � 5,019 is the
best performer and most in line with this task. LightGBM (Light
Gradient Boosting Machine) is a framework for implementing
the GBDT (Gradient Boosting Decision Tree) algorithm, which is
an iterative decision tree algorithm consisting of multiple
decision trees. LightGBM improves on the traditional GBDT
algorithm in many ways, such as using a Histogram-based
decision tree algorithm and using a leaf-wise strategy instead
of level-wise.

In this experiment, the number of leaf nodes, the maximum
depth of the tree and the learning rate of the LightGBM algorithm
were adjusted (Ao et al., 2021b). First, we compared the impact of
the number of leaf nodes of the tree on the performance of the
algorithm when the maximum depth of the tree was not limited.
The result is shown in Figure 2 (The MCC values in the figure
have been normalized with the other three indicators for plotting
purposes, and the following similar charts have been followed in
the same way). Through a series of comparative experiments, the
number of leaf nodes can be set to 31 while considering the
efficiency of the algorithm operation.

This is followed by choosing the depth of the tree given the
number of leaf nodes, as there is a maxdepth>2̂leaves-1
constraint, and the leaf value has been set to 31; the
maximum depth of the tree cannot be less than 5 (log2 (31 +
1). The result is shown in Figure 3. Similarly, the optimal
maxdepth can be chosen as 10.

Then, it is time to adjust the learning rate and compare the
impact of changes in the learning rate on performance, and the
results are shown in Figure 4. In the end, the optimal parameters
are leaves � 31, maxdepth � 10, and learning rate � 0.08.

Comparison With the Other Method
In comparison with 2D CNN, the data of this paper needed
to be modified because the data allocation differed. It used a

cross-validation set of 644 positive and 2,234 counterexamples
and an independent dataset of 38 positive and 349
counterexamples. Similar experiments were conducted using
this setup in this paper. In this sequence classification task, the
focus is on the classification performance of the SNARE protein,
which in the model performance evaluation is the size of the
specificity. The experimental results are shown in Table 5. It
can be found that all the metrics performed better except for
the specificity on the cross-validation set, which was
slightly weaker than 2D CNN, and the method had an
AUROC value of 0.9671 under the independent set, which
further proves that the algorithm in this paper has a high
generalization capability. The main reason for this result is
that the original paper used more positive samples for
training the model, with fewer positive examples remaining
to evaluate the applicability of the model. However, a set
partitioning ratio of 9:1 (cross validation dataset:
independent dataset) was applied in this experiment, and
although this may lead to some performance loss, the best
results obtained in the independent dataset were still good:
sensitivity of 66.67%, specificity of 93.63%, accuracy of
91.33%, and MCC of 0.528.

CONCLUSION

In this paper, we used the SMOTE algorithm with different
parameters to address the sample imbalance of the dataset.
The results show that this strategy can obtain a better result in
terms of managing sample imbalance. In this process, ASDC as
the feature extraction algorithm and LightGBM as the
classification algorithm by comparing the results of various
algorithms and descriptors. The combination obtained the best
performance, and compared to other advanced neural networks,
it achieved a significant improvement in all the typical
measurement indexes. Under the same experimental setup, the
method in this paper improves the accuracy by 5.64% in the
independent test set and 0.2239 in theMCCmetric relative to 2D-
CNN. For the future research, graph neural networks (Zeng et al.,
2020; Chen Y et al., 2021) and unsupervised learning (Xu et al.,
2019a; Xu et al., 2019b) can be considered for performance
improvement.
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