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Abstract

Objective

Accumulating evidence suggests the possibility that early life exposures may contribute to

risk of Alzheimer’s Disease (AD). This paper explores geographic disparities in AD mortality

based on both state of residence in older age as well as state of birth measures in order to

assess the relative importance of these factors.

Methods

We use a subset of a large survey, the NIH-AARP Diet and Health Study, of over 150,000

individuals aged 65–70 with 15 years of mortality follow-up, allowing us to study over 1050

cases of AD mortality. We use multi-level logistic regression, where individuals are nested

within states of residence and/or states of birth, to assess the contributions of place to AD

mortality variation.

Results

We show that state of birth explains a modest amount of variation in AD mortality, approxi-

mately 4%, which is consistent with life course theories that suggest that early life conditions

can produce old age health disparities. However, we also show that nearly all of the variation

from state of birth is explained by state of residence in old age.

Conclusions

These results suggest that later life factors are potentially more consequential targets for

intervention in reducing AD mortality and provide some evidence against the importance of

macro-level environmental exposures at birth as a core determinant of later AD.
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Introduction

Place-based differences in later life mortality and health are a well-documented and increasing

body of literature [1,2]. While life expectancy has improved for decades, there still remains a

gap of 7.5 years across states [3]. Existing research has predominantly focused on individual

level factors in health outcomes but have increasingly included information on the influence

of place [4]. Research has found that an individual’s place of birth is connected with the devel-

opment of chronic illnesses later in life such as cancer, diabetes, and heart disease [5–7]. Con-

textual factors also are considered as principal indicators of population health, but when and

how these contexts come into play is not fully understood. Additionally, little is known on

how early environmental factors affect mortality later in life.

The Developmental Origins of Adult Heath and Disease (DOHaD) and life course frame-

works state that health disparities in later life could be a result of place-based exposures

throughout the lifespan, not just current exposures [8]. The impact that these life exposures

have can both accumulate into later life and influence other health outcomes [9–11]. This

accumulation of risk across the life course, rather than at a particular stage, may be what is ulti-

mately detrimental for individual’s health and well-being [12].

The past and present exposures individuals are subject to can be distinguished by migra-

tion. About one third of individuals in the United States live in a state in which they were not

born in [13]. Therefore, a significant portion of the inequalities in health and mortality might

be linked to exposures that people encountered early in life, opposed to a later period in the

life course. Nevertheless, since mortality is often examined through the lens of the late period

of one’s life, little consideration is given to the exposures early in an individual’s lifespan.

Past research has consistently documented key social conditions of health that persist

throughout the life course and impact individual mortality risk [14]. Looking at the specific

effects that state residence contexts have on mortality and health in adulthood, they typically

examine a myriad of predictors, such as socioeconomic status, policy, social capital, and

income inequality [15,16]. Conversely, other studies have examined the effects of state of birth

on health outcomes in early life. State-level policies on poverty reduction and health care cov-

erage have been shown to have an impact on infant health, such as birth weight [17,18]. Such

poor health outcomes in early life have the potential to leave long lasting effects on lifetime

health [19,20]. Moreover, unhealthy environments in early life typically can lead to challenges

in learning, being employed, or have earning capability [21,22]. In turn, these difficulties

undoubtedly have significant ramifications for health, well-being, and mortality in later life.

One poor health outcome that individuals encounter later in life is Alzheimer’s disease

(AD). AD is a debilitating disease which shortens life expectancy, impairs memory, and is a

key cause of physical disability and lower quality of life to older adults [23–25]. Since occur-

rence of AD is associated with an increase in age [26], it is presumed that the disease will have

a higher prevalence due to greater population aging in society. Thus, there is a fundamental

need to attempt to ascertain the determinants of the disease that is the sixth leading cause of

death in the United States [27].

However, despite the prevalence of AD, few studies have attempted to connect early life

exposures with mortality from the disease later in life. This is because a great deal of mortality

studies in the United States often lack the ability to consider exposures at different points

throughout the life course. Moreover, AD mortality studies often examine the period from the

diagnosis to the point of death because it is a progressive disorder [24]. Related research

focuses on either demographic or clinical factors that show a higher likelihood of mortality of

those who already have the disease [28,29].
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AD prevalence and mortality have been associated with a growing set of factors: race/eth-

nicity [25,30], educational attainment [31], nutrition [32], mental health [33], and air pollution

[34,35]. While all of the factors outlined are indeed significant determinants of health, there is

little literature on early life contexts and their impact on AD mortality. Moreover, there is no

existing research regarding the association of one’s state of birth with AD mortality. As a crude

measure of early life exposure, state of birth could provide an omnibus test of whether varia-

tion in early environments across the US are consequential for developing AD later in life.

This study is unique in the sense that it takes advantage of data that can link information

regarding state of birth and state of residence for a large and representative sample of individu-

als in the United States. Most other research is limited to smaller convenience samples that are

not well powered to examine state-level variation in AD mortality. Specifically, this paper

addresses the following: (1) the impact that early environments and contexts contribute to dif-

ferences in AD mortality and (2) what impact state of birth effects differ by social categories

such as race/ethnicity, sex, and educational attainment. Ultimately, the aim of this paper is to

increase the understanding of the critical determinants of health and health behaviors and

effect that early environments have regarding outcomes throughout the life course.

Materials and methods

Data

This data utilized in this research was taken from the NIH-AARP Diet and Health Study

(DHS). The DHS is a large prospective cohort from members of the American Association of

Retired Persons (AARP), ranging from 50 to 71 years old, who responded to a mailed ques-

tionnaire between 1995 and 1996 [36]. Initially, over 3.5 million members of the AARP were

mailed the questionnaire, resulting in 620,000 responses. Of those responses, nearly 570,000

provided data that was usable for analysis. The participants of this study were from six states

(California, Florida, Louisiana, New Jersey, North Carolina, and Pennsylvania) and from two

cities (Atlanta, Georgia and Detroit, Michigan) in the US. All cohort participants signed a writ-

ten informed consent at enrollment, and the study protocol was approved by Special Studies

Institutional Review Board of the National Cancer Institute.

DHS asked a comprehensive questionnaire which assessed lifestyle factors and diet of the

participants at baseline. Specifically, the questionnaire addressed information on nutrient

intake, along with health questions, family illness history, and other health-related conditions.

Demographic information was collected from participants as well, such race/ethnicity, sex,

and educational attainment, along with other variables to measure health outcomes and well-

being. This source of data is unique due to its large sample sizes, which is essential in order to

examine the rare outcome of AD mortality. Moreover, it is necessary to have large sample sizes

in order to appropriately examine state-level variation. Other datasets (e.g., Health and Retire-

ment Study) that include the variables laid out in this study are rather limited, due to the much

smaller number of cases of AD mortality.

Starting from the initial 566,398 respondents in the original study, specific observations

were dropped. First, of the original sample, we dropped 165,917 with invalid states of birth, or

those born in United States territories (American Samoa, Guam, Puerto Rico, and the Virgin

Islands), and those with missing values. Specifically, the observations dropped with missing

values were about missing social security numbers, which would have prevented state identifi-

cation in our analysis. Next, in order to focus on individuals at higher risk of experiencing AD

mortality over a 15-year follow-up, a further 248,108 observations were dropped so that the

sample is of individuals between the ages of 65 and 70. The final sample that was used for sta-

tistical analysis was 152,373 (Fig 1). We found that older adults are more likely to be in the
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analytic sample and those of other race groups are less likely to be in the analytic sample than

non-Hispanic whites (S1 Table). Despite this, our final sample size provides more statistical

power than alternative datasets available like the Health and Retirement Study, with about five

times the amount of observations to examine [37].

Measures

AD mortality. The key outcome variable in this study is AD mortality, which is ascer-

tained from the follow-up of the DHS. The vital status of the individual was obtained by the

annual linkage of the cohort in the DHS to the Social Security Administration Death Master

Files in the US verification of vital status [38]. Cause of death information will then come from

follow-up searches of the National Death Index, focused on death from AD (ICD-10 Code

G30). Our data is linked to the NDI through 2011, allowing 15 years of follow up.

State of birth. State of birth was created by using the first three digits of the individual

social security number of each in the cohort (asked in initial survey), allowing information by

state and year to be obtained [39].

State of residence. State of residence was ascertained from the original survey, which

asked the participants which state they lived in at the time. The eight states of residence

reflected in this study are: California, Florida, Georgia, Louisiana, Michigan, New Jersey,

North Carolina, and Pennsylvania.

Fig 1. A flow chart of the study sample.

https://doi.org/10.1371/journal.pone.0254174.g001
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Covariates. Sex was used as a variable to account for the difference in mortality risk that

exists between men and women. Likewise, race and ethnicity (non-Hispanic white, black and

others) were utilized to account for the differential risk that exists along the boundaries of race

and ethnicity. Educational attainment levels (less than high school, high school, some college,

and college grade or more) were included to account for the influence that schooling provides

throughout the life course with regard to health outcomes. Age is included as a covariate as

well, specifically those that are between the ages of 65 and 70 years old to see the differences in

health outcomes are impacted later in the life course of individuals. It is worth noting that we

did not control for personal characteristics, such as physical and mental health status and func-

tional status, because those characteristics are likely mechanisms, not confounders of state of

birth.

Analytic strategy

In this study, a series of multi-level logistic regression models are used with state of residence

and/or state of birth random effects. The full model is specified as the following equation:

ln
pijk

1 � pijk

 !

¼ b0 þ b1agei þ b2sexi þ b3race=ethnicityi þ εj þ εk þ εijk

where εj � N 0; s2
j

� �
and εk � N 0; s2

k

� �
. In the model, b0 is the average log-odds of mortality

among individuals in the sample, εk is the effect of state of birth and εj is the effect of state of

residence. Both are assumed to be normally distributed. εijk is the error term at the individual

level. We control for a limited set of factors in order to not “over control” for the effects of

state of birth on later life AD mortality. Our age control removes composition differences

between the states.

The first and second model in the series includes state of birth random effects, with the sec-

ond of the two incorporating all fixed effects. Then, the third and fourth run identical analyses,

but with state of residence random effects, with the fourth including all fixed effects. The fifth

and final model analyzes all fixed and random effects, in order to see differences between state

of residence and state of birth variations.

The main results are first presented and include analysis from all states. Supplementary

tables provide subsequent results that display the same models but exclude each individual

state of residence to demonstrate the robustness of the models. Other models focus specifically

on sex, race/ethnicity, and education to explore reductions in cross-state variation. These anal-

yses are stratified in order to explore heterogeneity that may exist in the variation. Finally, two

results tables are presented that exclude states which account for small portions of the sample.

The first excludes states that make up less than one percent of the sample, and the second

shows those with less than five percent. This is done to see if it is consequential for state of

birth random effects, for they could be difficult to estimate with very small sample sizes.

In this study, Stata software version 16.1 (College Station, TX) were used for all statistical

analyses. Likelihood Ratio (LR) tests were used to determine significance. All statistical tests

were two-tailed, with the null hypothesis of no difference being rejected if p< 0.05.

Results

Descriptive statistics of the study sample are presented in Table 1. Among the 152,373 individ-

uals in the sample, all states, save for Alaska, are accounted for with regard to state of birth.

Approximately 55,142 (36.2%) were women and 97231 (63.8%) were men, and mean age

among the sample was 67.4 (SD = 1.672). Over 90% of individuals were non-Hispanic white,
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Table 1. Descriptive statistics (N = 152,373).

Total Female Male

Mean Min Max Mean Mean

AD mortality 0.007 0.0 1.0 0.007 0.007

Age 67.404 65.0 70.0 67.381 67.418

Female 0.362 0.0 1.0 1.000 0.000

Race/ethnicity
Non-Hispanic white 0.934 0.0 1.0 0.919 0.943

Non-Hispanic black 0.027 0.0 1.0 0.040 0.019

Non-Hispanic others 0.013 0.0 1.0 0.013 0.014

Hispanic 0.016 0.0 1.0 0.016 0.015

Missing 0.010 0.0 1.0 0.011 0.009

Education
<HS 0.071 0.0 1.0 0.068 0.073

Completed high school 0.296 0.0 1.0 0.375 0.251

Some college 0.218 0.0 1.0 0.241 0.206

College graduate + 0.387 0.0 1.0 0.285 0.444

Missing 0.028 0.0 1.0 0.031 0.026

State of residence
CA 0.307 0.0 1.0 0.320 0.300

FL 0.237 0.0 1.0 0.233 0.239

GA 0.022 0.0 1.0 0.023 0.022

LA 0.035 0.0 1.0 0.035 0.034

MI 0.041 0.0 1.0 0.041 0.041

NC 0.082 0.0 1.0 0.080 0.083

NJ 0.121 0.0 1.0 0.120 0.122

PA 0.155 0.0 1.0 0.149 0.159

State of birth
Alabama 0.006 0.0 1.0 0.006 0.006

Alaska 0.000 0.0 1.0 0.000 0.000

Arizona 0.003 0.0 1.0 0.003 0.003

Arkansas 0.003 0.0 1.0 0.003 0.003

California 0.139 0.0 1.0 0.153 0.132

Colorado 0.005 0.0 1.0 0.005 0.005

Connecticut 0.010 0.0 1.0 0.010 0.011

Delaware 0.002 0.0 1.0 0.002 0.002

District of Columbia 0.006 0.0 1.0 0.007 0.005

Florida 0.031 0.0 1.0 0.035 0.029

Georgia 0.015 0.0 1.0 0.016 0.015

Hawaii 0.002 0.0 1.0 0.002 0.002

Idaho 0.002 0.0 1.0 0.002 0.002

Illinois 0.038 0.0 1.0 0.036 0.039

Indiana 0.014 0.0 1.0 0.013 0.015

Iowa 0.009 0.0 1.0 0.008 0.010

Kansas 0.005 0.0 1.0 0.005 0.005

Kentucky 0.006 0.0 1.0 0.005 0.006

Louisiana 0.025 0.0 1.0 0.027 0.024

Maine 0.004 0.0 1.0 0.003 0.004

Maryland 0.009 0.0 1.0 0.008 0.009

(Continued)
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with those who were not non-Hispanic whites accounting for 6.6%. For education, over one-

third (38.7%) had a college education or greater, while those with some college, high school, or

less than high school accounted for 21.8%, 29.6%, and 7.1%, respectively.

Table 2 presents the rate of concordance/discordance in state of birth and residence among

our sample. For the pooled sample, about a quarter of the sample (22.79%) lived in a state that

they were not born in. The discordance differs greatly by state of residence, ranging from

4.26% for California to 47.24% for Georgia.

The main results for all states are presented in Table 3, in the form of multi-level regression

models that include both fixed and random effects in each model. Diagnostic statistics would

indicate that the final model, which includes random effects of both state of birth and resi-

dence, performs best. Models 1 and 2 show that state of birth accounts for approximately 4.5%

of the variance in AD mortality in the data, which is similar to results from Xu et al. (in press)

Table 1. (Continued)

Total Female Male

Mean Min Max Mean Mean

Massachusetts 0.023 0.0 1.0 0.022 0.024

Michigan 0.058 0.0 1.0 0.058 0.058

Minnesota 0.010 0.0 1.0 0.010 0.010

Mississippi 0.004 0.0 1.0 0.004 0.004

Missouri 0.011 0.0 1.0 0.010 0.011

Montana 0.002 0.0 1.0 0.001 0.002

Nebraska 0.005 0.0 1.0 0.005 0.005

Nevada 0.001 0.0 1.0 0.001 0.001

New Hampshire 0.003 0.0 1.0 0.003 0.003

New Jersey 0.096 0.0 1.0 0.098 0.094

New Mexico 0.001 0.0 1.0 0.001 0.002

New York 0.121 0.0 1.0 0.112 0.125

North Carolina 0.044 0.0 1.0 0.049 0.041

North Dakota 0.002 0.0 1.0 0.002 0.002

Ohio 0.035 0.0 1.0 0.034 0.035

Oklahoma 0.005 0.0 1.0 0.005 0.005

Oregon 0.005 0.0 1.0 0.006 0.005

Pennsylvania 0.172 0.0 1.0 0.163 0.178

Rhode Island 0.004 0.0 1.0 0.003 0.004

South Carolina 0.004 0.0 1.0 0.004 0.004

South Dakota 0.002 0.0 1.0 0.002 0.002

Tennessee 0.006 0.0 1.0 0.007 0.006

Texas 0.011 0.0 1.0 0.011 0.011

Utah 0.003 0.0 1.0 0.003 0.003

Vermont 0.002 0.0 1.0 0.002 0.002

Virginia 0.009 0.0 1.0 0.009 0.009

Washington 0.008 0.0 1.0 0.008 0.007

West Virginia 0.005 0.0 1.0 0.005 0.006

Wisconsin 0.012 0.0 1.0 0.011 0.012

Wyoming 0.001 0.0 1.0 0.001 0.001

Observations 152373 55142 97231

Note: AD = Alzheimer’s disease.

https://doi.org/10.1371/journal.pone.0254174.t001
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for all-cause mortality using alternative data. Regarding the fixed effects, ages 65 through 68

are statistically significant across all models they are included in (models 2, 4, and 5). Mean-

while, for race/ethnicity, it shows that non-Hispanic blacks are significant across all models,

whereas other racial groups are not. Models 3 and 4 then show that state of residence accounts

Table 2. Distribution of stayers and movers, by state of residence.

Stayers Movers

CA 95.74 4.26

FL 84.50 15.50

GA 52.76 47.24

LA 88.24 11.76

MI 53.65 46.35

NC 87.29 12.71

NJ 69.64 30.36

PA 70.99 29.01

Total 77.21 22.79

Note: “Stayers” are those who lived in the state where they were born and “movers” are those who lived in a different

state from where they were born.

https://doi.org/10.1371/journal.pone.0254174.t002

Table 3. Results of multilevel logistic regression models.

(1) (2) (3) (4) (5)

AD mortality AD mortality AD mortality AD mortality AD mortality

Age group Full Full Full Full Full

Fixed effects

Age = 65 0.414��� 0.413��� 0.413���

Age = 66 0.526��� 0.525��� 0.525���

Age = 67 0.643��� 0.641��� 0.641���

Age = 68 0.730�� 0.729�� 0.729��

Age = 69 0.847 0.845 0.845

Female 1.056 1.052 1.052

Race/ethnicity
Non-Hispanic black 0.395�� 0.401�� 0.401��

Non-Hispanic others 0.897 0.842 0.842

Hispanic 0.815 0.785 0.785

Missing 1.008 1.000 1.000

Random effects

State of birth (s2
k) 0.0459 0.0453 3.81e-14

State of residence (s2
j ) 0.0765 0.0763 0.0762

N 152373 152373 152373 152373 152373

LL -6217.0 -6169.3 -6204.5 -6156.7 -6156.7

AIC 12438.0 12362.7 12413.1 12337.4 12339.4

BIC 12457.9 12481.9 12432.9 12456.6 12468.5

Note: LL = log likelihood; AIC = Akaike information criterion; BIC = Bayesian information criterion.

� p < 0.05,

�� p < 0.01,

��� p< 0.001.

https://doi.org/10.1371/journal.pone.0254174.t003
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for more than the state of birth models, at approximately 7.5% of the variation in AD mortal-

ity. However, since state of birth and state of residence are highly correlated, we estimate a

final set of models that includes both random effects.

Our final models estimate the variance of state of residence in this model to be 7.6% and

show that variation from state of birth can no longer be estimated. We interpret this finding to

mean that a larger proportion of the variance in the risk of AD mortality could be explained by

state of residence random effects, as opposed to state of birth.

In addition to our main results, we also conducted robustness and heterogeneity analyses.

Analysis stratified by social determinants of health such as sex, race/ethnicity, and education

show that there is limited heterogeneity in terms of how much variation there is between state

of birth and state of residence (See S2–S4 Tables). Regarding sex and race/ethnicity, analysis

showed that state of residence was the predominant factor in the risk of AD mortality, similar

to the main results. Education, particularly those with some college education, shows that state

of birth does make up a larger share of the variance; however, this is the only instance of this

occurring in all result models. For other education levels, only college education or more is

responsible for some of the variation (14%) in AD mortality.

S5–S12 Tables show that our results are not driven by any particular state of residence in

the analysis and are similar for sociodemographic groups. S13 and S14 Tables exclude states of

birth with small numbers of respondents and show the results are unchanged. In S15 Table, we

also find that the results are robust to excluding those who lived in the state where they were

born.

Discussion

Previous research has made significant contributions to the literature surrounding place-based

differences in later life mortality. Despite this, much of this research has put greater emphasis

on individual level factors and contemporaneous (i.e. old age) geographic contexts [4,5]. The

aim of this study was to test the extent of the importance of broad-based early environments

and contexts in accounting for variation in AD mortality. The analyses in this paper show that

state of residence random effects explained the majority of geographic variance in the risk of

AD mortality. This was the case across the main results and in supplementary robustness

checks. An explanation for this could be that, while state of birth may explain health outcomes

in later life as indicated in previous studies [9,15], they may not explain outcomes regarding

AD mortality specifically.

These findings do partially support previous research done on how AD mortality is influ-

enced by an individual’s level of educational attainment [31]. Further variables were to be

included in the analysis, primarily those on health behaviors, but initial results suggested no

need to examine those factors.

There are important limitations in this study. First, the data used for analysis only includes

eight states of residence (California, Florida, Georgia, Louisiana, Michigan, New Jersey, North

Carolina, and Pennsylvania). This limits the generalizability of our findings. Results from sup-

plemental analyses suggest that no single state was responsible for the results. Future studies

would benefit by employing larger sample sizes and additional states of residence. Another

limitation is that our measure of early life context is state of birth rather than place of child-

hood. We also cannot estimate the impacts of durations of place-based exposures. Building

from this, given that many people may move internally in their state of residence [13], it is dif-

ficult to ascertain the exposures that individuals faced without knowing if or when they

moved. Thus, focusing on the state as the geographic unit of analysis will mask disparities

within states, particularly those in which people were born and continued to reside in
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throughout their lives. Future studies should also examine inter-state heterogeneity to further

document life course effects of exposures. A third limitation is the measurement bias of AD

mortality. Many studies often use death certificates for the study of AD mortality, but often

suffer from an underreporting of death due to uncertainties regarding coding practices in the

cause of death [40,41]. However, when it comes to measurement of AD mortality, there is no

agreed upon gold standard for measurement.

Conclusion

This study is one of the first studies to examine the independent and joint associations of state

of birth and state of residence with AD mortality. Results point to state of residence having a

larger role in geographic disparities that exist in AD mortality later in life. These findings show

that there should be a greater focus on contemporaneous exposures, compared to early life

ones to fully ascertain what influences the likelihood death from AD. Moreover, the boarder

implications of this study are that specific conditions are better explained through a place of

birth lens, such as diabetes, heart disease, or cancer [5–7], while illnesses such as AD are best

looked at by place of residence, in this study at least. In short, this research highlights the

importance of later life factors in the examination of degenerative chronic illnesses that dispro-

portionately impact individuals towards the end of the life span.
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