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Abstract 

Regeneration of the epithelium of mammalian lungs is essential for restoring normal function 
following injury, and various cells and mechanisms contribute to this regeneration and repair. Club 
cells, bronchioalveolar stem cells (BASCs), and alveolar type II epithelial cells (ATII) are dominant 
stem/progenitor cells for maintaining epithelial turnover and repair. Epithelial Na+ channels 
(ENaC), a critical pathway for transapical salt and fluid transport, are expressed in lung epithelial 
progenitors, including club and ATII cells. Since ENaC activity and expression are development- 
and differentiation-dependent, apically located ENaC activity has therefore been used as a 
functional biomarker of lung injury repair. ENaC activity may be involved in the migration and 
differentiation of local and circulating stem/progenitor cells with diverse functions, eventually 
benefiting stem cells spreading to re-epithelialize injured lungs. This review summarizes the 
potential roles of ENaC expressed in native progenitor and stem cells in the development and 
regeneration of the respiratory epithelium. 
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Introduction 
Epithelial Na+ channels (ENaC) are of 

importance in Na+-absorptive epithelium, such as in 
the airway, the alveolus, the kidney, and the distal 
colon, and control the overall rate of transapical Na+ 
transport. ENaC proteins are mainly located in the 
apical membrane of polarized epithelial cells and 
have four homologous subunits (i.e., the α, β, γ and δ 
subunits) [1, 2]. The α or δ ENaC subunit, which is 
essential for acting as a sodium channel, forms the 
channel pore, whereas the β and γ ENaC subunits are 
critical for amplifying the efficiency of Na+ influx. In 
mouse, the gene scnn1d, which encodes δ ENaC, is 
assumed to be a pseudogene [2]. 

In the lungs, alveolar lining fluid is critical for 
efficient gas exchange, and ENaC complexes play a 
crucial role in alveolar fluid clearance to maintain 
homeostasis of the luminal liquid. Pulmonary 

diseases, including acute lung injury, cystic fibrosis, 
chronic obstructive pulmonary disease, and asthma 
result from or are associated with the dysfunction or 
dysregulation of ENaC, and the regeneration of 
epithelial cells and the restoration of ion transport are 
two key steps in recovery from those diseases. In this 
article, we review the progress of research on 
ENaC-mediated lung injury repair, in particular the 
role of ENaC proteins in re-epithelialization by 
endogenous and allogeneic stem/progenitor cells. 

Stem/progenitor cells for pulmonary 
epithelium 

The mammalian pulmonary epithelium, a 
multilevel, branched network, can be functionally 
divided into the proximal conducting airways and the 
distal gas-exchange domain. The development of the 
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airways and the lung is the result of specification and 
separation of a group of progenitor cells from the 
ventral region of the anterior foregut. In humans, the 
development of the airways and alveoli from fetal to 
adult stage was investigated by Gaillard et al [3]. 
Before the 10th week of gestation, the airway 
epithelium consists of undifferentiated columnar 
cells, and then ciliated cells, secretory cells, club cells, 
alveolar type I (ATI) and type II (ATII) cells 
differentiate from these progenitor cells at different 
stages of gestation (Figure 1). A recent study indicated 
that both ATI and ATII cells are derived from a 
lineage of bipotential progenitors during embryonic 
development and that ATII cells undergo a switch 
that functions both to self-renew and to generate ATI 
cells [4]. Lineage hierarchies constructed using 
single-cell RNA-seq unveiled the differentiation steps 
of these bipotential progenitors [5]. 

In adults, the lung not only undergoes a slow 
turnover, but also repairs itself rapidly, indicating the 
existence of a subpopulation of stem cells or 
progenitors with preserved differentiation potential. 
The stem/progenitor cells able to repair injured lungs 
include club cells, bronchioalveolar stem cells 
(BASCs), and ATII cells. In addition, submucosal 
gland duct stem cells and neuroendocrine cells have 
the potential to differentiate into club, basal, serous, or 
ciliated cells, as well as into distal airway epithelium.  

Club cells, BASCs, and ATII cells are dominant 
in the pulmonary epithelium and have been generally 
well studied. Club cells are able to self-renew, 
differentiate into ciliated epithelial cells, and 
contribute to the replenishment of both ATI and ATII 
cells in lungs injured by bleomycin or infection with 
H1N1 influenza [6-8]. BASCs are located in 
bronchioalveolar duct junctions, and following 

catastrophic alveolar epithelial injury, can replenish 
cell lineages in the alveolus [8]. In addition to club 
cells, distal airway stem cells (DASCs) and basal cells 
contribute to replenishing other pulmonary epithelial 
cells. ATII cells are involved in the regeneration of 
alveoli, maintaining a slow self-renewal in normal 
lungs and then differentiating into ATI cells during 
lung injury repair. Additionally, a subpopulation of 
alveolar epithelial cells expressing integrin α6/β4 and 
DASCs has the potential to differentiate into ATII and 
club cells [9, 10]. Recently, a new type of basally 
located DASCs that express Trp63 and keratin 5 was 
also reported to be crucial for epithelium regeneration 
in airways and alveoli [11-13]. 

Expression of ENaC in pulmonary 
epithelial stem/progenitor cells 

The expression of ENaC in the human 
respiratory system was confirmed in a 
development-dependent manner [3]. At the early 
stage of embryonic development (≤ 16 wk of 
gestation), the β- and γ-ENaC subunits were not 
detected in human airways [3]. Near birth, increased 
ENaC activity was present on the apical surface of 
lung epithelial cells, and active Na+ transport was 
promoted [14]. In adult airways, the expression 
pattern of ENaC was similar to that in the canalicular 
period (17-24 wk) (Figure 1). Transcripts of α-ENaC 
were expressed in club cells throughout fetal lung 
development [15], and all four subunits (α, β, γ and δ) 
were detected in adult club cells [1, 16]. ENaC mRNA 
was distributed in ATII cells after 28 wk of gestation 
[17], and ENaC subunits were also expressed in ATII 
cells (Figure 1) [2, 18, 19].  

 

 
Figure 1. The expression of ENaC in respiratory epithelial cells at different stages of human fetal development and after birth. The distribution of ENaC is shown by 
the green line. 
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Table 1. Differentiation potential and ENaC expression in 
pulmonary epithelial cells  

Cell type Differentiation potential Expression of ENaC 
Ciliated cell - + 
Club cell + + 
Goblet cell - - 
Submucosal glands duct 
stem cell 

+ + 

Neuroendocrine cell + ? 
Basal cell + - 
Bronchioalveolar stem cell + ? 
Distal airway stem cell + ? 
Serous cell - + 
Alveolar type I cell - + 
Alveolar type II cell + + 
+, have differentiation potential or express ENaC; -, do not have differentiation 
potential or do not express ENaC; ?, status is unclear. 

 

Regulation of ENaC in pulmonary 
epithelial stem/progenitor cells 

In postnatal pulmonary epithelium, Na+ ions 
flow into epithelial cells via apically located ENaC 
proteins and are actively pumped out of the cells by 
Na+-K+-ATPase at the basolateral membrane. The 
subsequent osmotic gradients prompt transepithelial 
liquid re-absorption. ENaC has been functionally 
detected in both human club cells and ATII cells. 
Apical fluid volume regulated the activity and 
abundance of ENaC in H441 cells originally derived 
from human club cells. Dexamethasone, a 
corticosteroid, regulated ENaC activity in club- and 
ATII-like cell cultures, by promoting the expression of 
ENaC [20] subsequent to activating the SGK1, PI3K 
and cAMP/PKA signaling pathways [21]. Treatment 
with dexamethasone and cAMP-elevating agents can 
lead to the differentiation of the aforementioned 
native stem cells to club cells or alveolar cells [22, 23]. 
SGK1 and PKA can phosphorylate the ubiquitin ligase 
Nedd4-2, which mediates the internalisation and 
degradation of ENaC by binding to the proline-rich 
domains of ENaC [24]. Moreover, a number of 
signaling molecules, such as hydrogen sulfide, nitric 
oxide, UTP, and CPT-cGMP regulate ENaC activity in 
H441 cells [25-27], and respiratory syncytial virus can 
inhibit ENaC-mediated alveolar fluid clearance by 
upregulating the synthesis of UTP and nitric oxide 
[28].  

Bacterial impairment of ENaC activity is 
controlled by the phosphorylation of ERK. 
Phosphorylation of ERK1/2 results in a decrease in 
the expression and function of ENaC in ATII cells [29]. 
Nedd4-2 facilitates the effects of PKC on ENaC 
activity in ATII [29] and club cells [24], and PKC may 
also play a role in ENaC-PIP2-MARCKS complexes, 
which regulate the open probability of ENaC and can 
be stabilized by binding with TNF [18], another factor 

that may also enhance ENaC activity in ATII cells [30, 
31]. PKC, cAMP/PI3K, PKA and cGMP mediate the 
regulation of ENaC by LPS in ATII and club cells [32, 
33], and PKC was shown to mediate Wnt signaling, 
which regulates the differentiation of mesenchymal 
stem cells (MSCs) to ATII cells and of ATII to ATI cells 
[34]. Additionally, cGMP levels were inversely related 
with the expression of ATII markers when 
undifferentiated lung epithelial cells were treated 
with inhaled nitric oxide [35]. Therefore, regulation of 
ENaC by ERK, PKC, cAMP, PKA, and TNF may play 
a role in the differentiation of endogenous 
progenitor/stem cells.  

ENaC-mediated epithelial repair 
In postnatal lungs, epithelial stem/progenitor 

cells are reserved for injury repair. Whenever injury 
occurs, the epithelial stem/progenitor cells go 
through essentially the same process, including 
migrating to the injured region to cover the denuded 
airway and alveolar sac, and proliferating vigorously 
to provide enough cells for epithelium repair, 
differentiation, and remodeling, and finally the 
normal airways and lungs are regenerated 
structurally and functionally. For example, in 
naphthalene-induced airway epithelial injury, BASCs 
exhibit highly proliferative activity in response to the 
injury of club cells [36]. 

ENaC subunits are thought to be involved in 
injury repair and wound healing. Methylation of 
ENaC is an important event while aldosterone 
promotes the wound healing in BeWo cells and other 
epithelial cells. Mechanistically, migration of cultured 
epithelial and nonepithelial cells occurs in an 
ENaC-dependent manner [37, 38], and serum- and 
glucocorticoid-induced kinase 1 (SGK1) regulates cell 
proliferation through an ENaC-associated process.  

Cell migration generally undergoes several 
processes, including depolarization, membrane 
elongation, adhesion, contraction, and de-adhesion, 
that are regulated by interactions between cells, and 
between cells and the extracellular matrix. Chifflet et 
al. reported that actin reorganization and membrane 
depolarization depend on ENaC-regulated 
extracellular Na+ ions during wound healing of 
bovine corneal endothelial cells [39]. ENaC proteins 
are the central part of a complex that links the 
cytoskeleton with the extracellular matrix [40], and 
the binding of the C-termini of α- and β-ENaC with 
filamins exerts an inhibitory effect on ENaC function 
[41]. ENaC proteins are also a critical part of the 
mechanotransducer for myogenic contraction [42].  

Rooj et al. found that a deficiency in ENaC 
caused more D54-MG cells to arrest in G0/G1 phase, 
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with fewer cells accumulating in the S and G2/M 
phases [43]; it was suggested that cell division is 
depressed when ASIC1 and ENaC are inhibited and 
that phosphorylation of ERK1/2 may be an 
underlying mechanism [43]. This group also found 
that interactions between amiloride-sensitive cation 
channels (ASIC1 and ENaC) and integrin-β1, 
mediated by α-actinin, could in part regulate the 
proliferation and migration of glioma cells [44]. In 
addition, ENaC is involved in the proliferation and 
migration of various cancer cells [38]. 

The effects of ENaC on osteoblast differentiation 
have been studied by several groups who found that 
the expression of ENaC mRNA accompanied the 
osteoclastogenesis of rat osteoblasts. Stimulation of 
osteoblast differentiation by 8-pCPT-cGMP is also 
dependent on the expression of ENaC [45] and 
therefore, ENaC activity is apparently required for the 
differentiation of both osteoblasts and osteoclasts. 

In club and ATII cells, the aberrance of ENaC 
expression usually leads to Na+ absorption disorder, 
hydropic degeneration and necrosis of club cells, 
goblet cell metaplasia, failure of airway mucus 
clearance, susceptibility to spontaneous bacterial 
infection, airway inflammation, and even death 
caused by airway obstruction and asphyxiation [24].  

ENaC as a biomarker for injury repair 
ENaC proteins are electrically detectable as 

functional biomarkers of differentiated epithelial cells. 
Because of the role of ENaC in the migration and 
proliferation of stem/progenitor cells, it can be 
speculated that normal ENaC function would be 
critical in the repair of injured lungs by MSCs [46, 47]. 
Goolaerts and colleagues reported that impaired 
ENaC activity under hypoxic and cytomixic 
conditions was restored by co-cultured MSCs and 
paracrine KGF [48]. Moreover, impaired ENaC 
function of alveolar fluid clearance was recovered by 
human MSCs delivered intratracheally in a clinically 
related, human lung injury model [49]. The 
improvement of ENaC function and the contribution 
of ENaC to re-epithelialization potentially explain the 
promising results of clinical trials that show a 
significant reduction in lung injury score in acute 
respiratory distress syndrome (ARDS) and other lung 
injury treated with stem cells [50-53]. 

Future Perspective 
Lung injury is associated with defective 

epithelium and dysfunctional ion transport, and stem 
cell therapy to repair injured tissue has broadened the 
prospects for treatment beyond supportive 
approaches. The functional consequences of 
normalizing injured epithelium are usually evaluated 

by detecting the expression and activity of ENaC. 
However, our understanding of the mechanisms by 
which ENaC regulates differentiation of lung 
stem/progenitor cells is incomplete, for example, 
whether ENaC contributes to the release of paracrines 
from allogeneic MSCs, and what are the roles of ENaC 
in the re-epithelialization mediated by these 
paracrines. Further mechanistic studies are required 
to address these essential issues. 
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