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Background: A predictive model can provide physicians, relatives, and patients the

accurate information regarding the severity of disease and its predicted outcome. In

this study, we used an automated machine-learning-based approach to construct a

prognostic model to predict the functional outcome in patients with primary intracerebral

hemorrhage (ICH).

Methods: We retrospectively collected data on demographic characteristics, laboratory

studies and imaging findings of 333 patients with primary ICH. The functional outcomes

at the 1st and 6th months after ICH were defined by the modified Rankin scale.

All of the attributes were used for preprocessing and for automatic model selection

with Automatic Waikato Environment for Knowledge Analysis. Confusion matrix and

areas under the receiver operating characteristic curves (AUC) were used to test the

predictive performance.

Results: Among the models tested, the random forest provided the best predictive

performance for functional outcome. The overall accuracy for predicting the 1st month

outcome was 83.1%, with 77.4% sensitivity and 86.9% specificity, and the AUC was

0.899. The overall accuracy for predicting the 6th month outcome was 83.9%, with

72.5% sensitivity and 90.6% specificity, and the AUC was 0.917.

Conclusions: Using an automatic machine learning technique to predict functional

outcome after ICH is feasible, and the random forest model provides the best predictive

performance across all tested models. This prediction model may provide information

regarding functional outcome for clinicians that will help provide appropriate medical care

for patients and information for their caregivers.
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INTRODUCTION

Recent advances in medical and interventional treatments have improved the prognosis of
patients with ischemic stroke. However, despite the efforts related to the management of primary
intracerebral hemorrhage (ICH) in the past decades, the beneficial effects of medical treatment
and surgical intervention on the mortality and functional outcome of ICH patients have not been
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able to be demonstrated in recent trials (1, 2). Therefore, an
outcome prediction model based on initial clinical presentations,
laboratory data and imaging findings can ensure the optimal
possible care by providing the physicians, relatives, and patients
with information regarding to the severity of disease, potential
risk of complications and predicted outcome (3). The ICH score
is one of the most commonly used scales to grade severity of the
disease (4). However, the ICH score, as well as other existing
prognostication models of mortality and functional outcome
have not been proven to be useful and beneficial. In addition to
the diversification of the disease and its progression, the most
important limitations of these predictive models are related to
care limitations, such as the withdrawal of medical care, a do-
not-resuscitate order (DNR), and comfort or terminal care (5). A
prospective study showed that patients without early DNR orders
had substantially lower 30-day mortality than predicted by the
score (6). Another prospective study also questioned the validity
of formal prognostic scales, as early subjective clinical judgment
of physicians had a higher correlation with the 3-month outcome
than that of the ICH score (7).

Machine learning is a type of artificial intelligence that learns
patterns and rules from the given information. Machine learning
has several advantages in detecting the possible interactions
among many attributes and hence may be useful in clinical
prediction and in the identification of novel prognostic markers
(8). Recently, studies have applied machine learning to the
severity or outcome prediction model for neurological disorders
such as ischemic stroke (9, 10), aneurysmal subarachnoid
hemorrhage (8), and traumatic brain injury (11). However, the
application of machine learning in prediction of outcomes after
ICH is still rare.

Waikato Environment for Knowledge Analysis (WEKA)
machine learning software puts state-of-the-art machine learning
techniques for a user friendly application (12). However,
problems often encountered for novice users may include
how to choose the best one from the dozens of machine
learning techniques implemented inWEKA and to optimize each
procedure’s hyperparameter settings to achieve best performance
(13). Auto-WEKA is developed to addresses these problems
by treating the entire WEKA as one single, highly parametric
machine learning framework and by using Bayesian optimization
to find a strong instantiation for a given data set (13). This study
aimed to apply machine learning using Auto-WEKA to predict
the functional outcome in patients following ICH.

METHODS

Patient Data Acquisition
The study was approved by the Chang Gung Memorial Hospital
Institutional Review Board. The study included consecutive
patients who were admitted due to primary ICH diagnosed by
computerized tomography (CT) and enrolled in an integrated
stroke study during January 2009 to December 2016. Patients
with a history of head injuries, cerebral aneurysms, brain tumors,
arteriovenous malformations, and subarachnoid hemorrhage
were excluded. Patients who survived but dropped-out of the
study before the 1st months after ICH were also excluded.

Patients’ clinical data were collected from the Health Information
System. The data collected included the demographic data and
the results of initial assessment (including vital signs, imaging
findings, and laboratory tests). The demographic attributes
included age, medical history of hypertension and diabetes (DM),
blood pressure, and level of consciousness. The radiographic
attributes included volume and location of hematoma, presence
of intraventricular hemorrhage, ventricle compression, and
midline structure shift. The volume of the hematoma was
manually measured on the CT images using ImageJ software
(https://imagej.nih.gov/ij/) by a trained research assistant.
Laboratory attributes included the serum glucose level, aspartate
aminotransferase (AST), alanine aminotransferase (ALT), blood
urea nitrogen (BUN), creatinine (Cr), the BUN/creatinine ratio,
glycosylated hemoglobin (HbAlc), the complete blood count
(CBC), triglyceride (TG), total cholesterol, C-reactive protein
(CRP), uric acid (UA), prothrombin time (PT), activated partial
thrombin time (APTT), and hypersensitive CRP (hs CRP),
determined at the first evaluation.

Outcome Assessment
The primary outcomes of interest were the functional outcome
measured with the modified Rankin scale (mRS) at the 1st and
6th months. Patients expired at the time outcome was measured
(either at the 1st or 6th months) was scored as mRS of 6. Patients
with mRS of 0, 1, and 2 were defined as having a good outcome,
while those with mRS above 2 were defined as having a poor
functional outcome.

Construction of Predictive Models
All experiments were performed using Auto-WEKA software
(https://www.cs.ubc.ca/labs/beta/Projects/autoweka/#). Figure 1
shows the steps of the modeling process used in this study.

Class-Balanced Oversampling
Machine learning algorithms have trouble learning when some
classes dominate others; hence, oversampling and undersampling
techniques are used to adjust the class distribution of the data
set. In this study, we used the synthetic minority oversampling
technique (SMOTE), in which the minority class is oversampled
by creating synthetic examples rather than by oversampling with
replacements (14).

Attribute Selection
Selection of attributes used for training is important for building
a good model. This process applies a certain degree of cardinality
reduction to reduce the number of attributes used because
selecting the most important attributes can improve the accuracy
of the model (15). Another advantage of the attribute selection
is the reducing of processing time and space needed to build
the model. In this study, the InfoGain module of Auto-WEKA
was used for attribute selection. The information gain for each
attribute was calculated using the ranker search method. The
information gain measure is biased toward tests with many
outcomes and prefers to select attributes with a large number
of valid values (16). To reduce the effect of the bias due to the
use of information gain, a technique known as the gain ratio was
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developed by the Australian academic Ross Quinlan (17). The
gain ratiomodulates the information gain to allow for the breadth
and uniformity of attribute values for each attribute (18).

Building and Selection of the Machine Learning

Models
In this study, several machine learning methods were evaluated
and compared with Auto-WEKA to select the model that
achieves the best performance for outcome prediction. Using
recent innovations in Bayesian optimization, Auto-WEKA
provides a fully automated approach to more effectively identify

the machine learning algorithms and the hyperparameter
settings appropriate for their applications, hence improving
the performance of algorithm. There are 39 machine learning
methods supported currently by Auto-WEKA 2.0, and Auto-
WEKA uses a sequential model-based algorithm configuration
(SMAC) to determine the class with the best performance on the
given data (13).

Model Evaluation and Validation
In this study, we used a 10-fold cross validation and confusion
matrix to build and evaluate the accuracy of the modules.

FIGURE 1 | Machine learning method to predict the functional outcome in ICH patients.

TABLE 1 | Baseline characteristics.

1-month outcome 6-month outcome

Poor (N = 177) Good (N = 130) Poor (N = 112) Good (N = 131)

Age (year) 65.80 (14.36) 61.40 (13.47) 69.98 (12.89) 60.15 (13.87)

Gender (male) 86 (32.9%) 101 (28%) 57 (23.5%) 87 (35.8%)

HTN 130 (42.3%) 98 (31.9%) 79 (32.5%) 107 (42.8%)

DM 37 (12.1%) 27 (8.8%) 25 (10.3%) 18 (7.4%)

Respiration (min) 19.36 (2.81) 19.18 (1.76) 19.64 (3.22) 19.21 (1.77)

DBP (mmHg) 104.17 (21.89) 107.19 (19.06) 103.05 (21.51) 109.38 (18.99)

GCS 10.27 (4.09) 13.56 (2.79) 9.41 (4.23) 13.45 (2.81)

Laboratory studies

ALT (U/L) 30.84 (26.51) 33.22 (23.36) 30.18 (27.16) 34.80 (24.65)

BUN/Cr >15 90 (34.6%) 50 (19.2%) 57 (28.1%) 57 (28.1%)

Chol (mg/dL) 170.58 (44.33) 178.57 (28.66) 166.34 (44.32) 178.30 (36.50)

WBC (1000/uL) 9.76 (5.83) 8.73 (3.22) 9.79 (4.62) 8.50 (3.16)

Hgb (g/dL) 13.58 (1.8) 14.21 (1.66) 13.40 (1.76) 14.18 (1.62)

Hct (%) 39.84 (4.63) 41.68 (4.5) 39.16 (4.50) 41.43 (4.34)

APTT (sec) 27.37 (6.54) 27.7 (3.13) 27.76 (7.90) 27.07 (2.64)

hsCRP (mg/L) 24.55 (40.98) 12.24 (37.71) 26.96 (49.13) 13.35 (21.02)

Image finding

Location of the hematoma

Left lobar 11 (3.6%) 7 (2.3%) 11 (4.5%) 5 (2.1%)

Right lobar 11 (3.6%) 10 (3.3%) 9 (3.7%) 9 (3.7%)

Left thalamus 26 (8.5%) 14 (4.6%) 18 (7.4%) 13 (5.3%)

Right thalamus 29 (9.4%) 24 (7.8%) 15 (6.2%) 25 (10.3%)

Cerebellar 7 (2.3%) 10 (3.3%) 5 (2.1%) 7 (2.9%)

Brain stem 3 (1.0%) 1 (0.3%) 2 (0.8%) 2 (0.8%)

Left Basal ganglia 52 (16.9%) 36 (11.7%) 29 (11.9%) 38 (15.6%)

Right Basal ganglia 54 (17.6%) 27 (8.8%) 34 (14%) 34 (14%)

Other 0 (0.0%) 1 (0.3%) 0 (0.0%) 1 (0.4%)

IVH 83 (27.0%) 33 (10.7%) 58 (23.9%) 32 (13.2%)

Midline shift 106 (34.5%) 30 (9.8%) 65 (26.7%) 43 (17.7%)

Ventricle compression 109 (35.5%) 37 (12.1%) 66 (27.2%) 46 (18.9%)

ICH volume (cm3) 25.59 (31.54) 10.92 (13.94) 25.15 (24.53) 12.26 (13.99)
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The original samples were partitioned into 10 subsamples of
approximately equal size. One of the 10 subsample was used as
the validation data set for testing the models, and the remaining
nine subsamples were used as training data set. The cross-
validation process was then repeated 10 times with one of the
10 subsamples used sequentially for each validation. The 10
results from each of the repeated validation were then averaged
to produce a final estimation.

In the confusion matrix, true negative (TN) is the number of
negative examples correctly classified as negative, true positive
(TP) is the number of positive examples correctly classified as
positive, false negative (FN) is the number of positive examples
incorrectly classified as negative and false positive (FP) is the
number of negative examples incorrectly classified as positive.
The accuracy is the performance measure generally associated
with machine learning algorithms and is defined as (14)

Sensitivity = TP/(TP+ FN)

Specificity = TN/(FP+ TN)

Accuracy = (TP + TN)/(TP + FP + TN + FN)

Receiver operating characteristic curves (ROC) are based on the
false positive (1-specificity) of the x-axis and the true positive
(sensitivity) of the y-axis. The sensitivity is the probability that
the result is correctly judged to be positive. The specificity is
the probability that the result is correctly judged to be negative.
The closer the curve is to the top and the left, the higher the
sensitivity and the lower the false positive rate of the classifier;
that is, the discriminating power of the tool is better. Generally,
when judging the quality of the inspection tool, in addition to
looking at the graph of the curve, the area under the curve (AUC)
can also be used to determine the discriminating power of the
ROC curve. The AUC value ranges from 0 to 1, and the higher
the value is, the better the predictive accuracy.

RESULTS

A total of 333 patients with ICH were enrolled in this study.
The baseline demographic data for all patients are presented
in Table 1. Among the 333 patients enrolled, the functional
outcome data were available for 307 patients after the 1st month
and for 243 patients after the 6th month.

FIGURE 2 | Selected attributes for building the models for predicting outcome after ICH. The information gain method was used to identify the most important

attributes that significantly contribute to the accuracy of the models. Furthermore, the process of selection of attributes can help identify and remove irrelevant

attributes by ranking all attributes based on their importance. The top 22 attributes were selected and included in the final model. These attributes are listed: GCS,

Glasgow Coma Scale; HTN, hypertension; BUN/Cr >15, the ratio of blood urea nitrogen to creatinine exceeds 15; DM, diabetes mellitus; APTT, activated partial

thromboplastin time; DBP, diastolic blood pressure; Hgb, hemoglobin; WBC, white blood cell; IVH, intraventricular hemorrhage; Hct, hematocrit; ALT, alanine

aminotransferase; Cr, creatinine; hsCRP, high-sensitivity C-reactive protein; TG, triglyceride; R, right; L, left.
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Ranking of Attribute Importance
This study used the InfoGain module of Auto-WEKA to select
and to rank the importance of the attributes for the functional
outcome after the 1st and 6th months. The results are shown
in Figure 2. There were 26 attributes selected based on their
gain for the 1st month, including patient demographics (age and
gender), GCS and respiration rate on admission, cardiovascular
risk factors (hypertension and diabetes), labs on admission
(serum CRP, ALT, Hgb, the BUN/Cr ratio, cholesterol, Hct, and
APTT) and CT findings (locations of the hematoma, volume of
the hematoma, ventricle compression, IVH, and midline shift).
There were 22 attributes selected based on their gain for the 6th
month which were mostly overlapping with that of the 1st month
except for the white count level.

Selection of the Best Classifier
We used Auto-WEKA to select the best predictive algorithm. The
models were evaluated using 10-fold cross validation according
to the AUC metric. The random forest was selected as the best
classifier for predicting the outcomes at both the 1st and 6th
months after ICH. The accuracy for predicting the 1st month
outcome was 83.1%, with 77.4% sensitivity and 86.9% specificity,
and the AUC was 0.899. The accuracy for predicting the 6th
month outcome was 83.9%, with 72.5% sensitivity and 90.6%
specificity, and the AUC was 0.917 (Table 2; Figure 3).

DISCUSSION

In this study, we developed an automatic machine learning
model for predicting the outcome of ICH patients. We analyzed

TABLE 2 | Using Auto-WEKA to select the best predictive algorithm.

Time after

ICH

Case

number

Best

algorithms

Sensitivity Specificity Accuracy AUC

1-month 307 Random

forest

0.774 0.869 0.831 0.899

6-month 243 Random

forest

0.725 0.906 0.839 0.917

the medical history, laboratory and imaging findings of 333
ICH patients by reviewing their medical records. The results
showed that random forest was the most accurate algorithm
to predict the functional outcome using attributes that are
automatically selected with information gain. The information
about the severity of ICH and its predicted outcome is crucial for
decision making and for possible long-term care. Furthermore,
to find-out the associated risk factors which have not been
noticed in the conventional scoring system might provide a
clue for future study regarding to the patient management.
Using Auto-WEKA software, we can simultaneously develop and
evaluate the performance of several different machine learning
techniques. This approach is effective to overcome one of the
most challenging part of the machine learning process that
requires iterative and explorative experiments to build or to select
a model that can achieve the best accuracy and is more suitable
for general users.

In practice, the available past medical history and admission
data about the disease severity of ICH patients can provide
important information for predicting outcomes. The most
widely used risk stratification scale for ICH is the ICH score.
Independent predictors of 30-day mortality in the ICH score are
low score on GCS, greater ICH volume, older age, infratentorial
location of the hematoma, and intraventricular extension of the
hematoma (4). Notably, these 5 variables are all included in our
model for predicting 1-month outcome using the information
gain method. Although our model was designed to predict the
functional outcome instead of mortality, our results confirm
the importance of these factors. Other factors, such as evidence
of subfalcine brain herniation (midline structure shift) on CT,
history of DM and HTN, detailed locations of the hematoma
and laboratory studies, such as Hgb, hsCRP, cholesterol, WBC,
and the BUN/Cr ratio, are also associated with outcome. Using
machine learning techniques, we may be able to identify the
factors that have been previously neglected and to develop
new treatment methods to improve outcomes according to
these factors. Furthermore, the developed model in this study
is estimated from a small number of attributes which can be
recorded easily without extra clinical loading, yet it can provide
an optimal prediction of functional outcome. Thus, the model is
simple, reliable, and can be easily adopted in clinical practice.

FIGURE 3 | Receiver operating characteristic curves and areas under the curves of the predictive models for the functional outcome after the 1st month (left) and 6th

month (right).
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Among the 39 machine learning methods tested by Auto-
WEKA, the random forest prediction model was the most
accurate for predicting outcome after both the 1st and 6th
months. Random forest is a machine learning technique that
based on forming multiple decision trees by a random selection
of samples. The decision tree learns decision rules extracted
from the features of data. The deeper the tree is, the more
complex the decision rules are, resulting in a better fitting
of the model. For the classification of a new record from
an input vector, the input vector is put on every tree in the
forest. Each tree votes for a specific class label and the one
that gets most votes over all the trees in the forest will be
the final class label (19, 20). Random forests overcome the
problem of overfitting decision trees. However, as we know, the
performance of a machine learning algorithm can vary from
one data set to another and there are no algorithms that can
achieve good performance of all possible learning problems. In
fact, practitioner without enough experience of machine learning
techniques might choose a complicated and inappropriate
machine learning algorithm that could lead to poor results,
even with great effort and loss of time. To solve this problem,
several automatic machine learning techniques, including Auto-
WEKA, have emerged as a new subarea in machine learning
(13, 21). These tools can enable easier and faster deployment
of machine learning tools across institutions, efficiently validate
and test the performance of deployed solutions, and make
researchers focus more on problems with more applications and
clinical value.

Our study nonetheless had several limitations. First, some
patients with very large hematomas or very critical conditions
were not included in the study because of the family’s decision
not to be followed-up or participate in the study, which may
restrict the generalizability of the results. Early withdrawal of
care and self-fulfilling prophecies may also affect the accuracy of

this predictive model. Second, although the performances of the
algorithms are good, the sample size is relatively small. Studies
with larger samples may result in a higher predictive power.
Third, we did not enroll the information of early hematoma
growth and extension of edema which are both important
for outcome into this model. Finally, external validation to
test the generalizability and to exclude the institutional bias
is lacking.

In conclusion, the prediction of functional outcome after
ICH is a challenging undertaking. Our study using an automatic
machine-learning-based approach showed promising results.
The random forest algorithm provides the best predictive
performance across all tested models for both the 1st and 6th
month functional outcomes with considerable accuracy. This
prediction model may provide information regarding functional
outcome for clinicians to provide appropriate medical care for
patients and information for their caregivers.
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