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ABSTRACT

Motivation: Molecular association of phenotypic responses is an
important step in hypothesis generation and for initiating design of
new experiments. Current practices for associating gene expression
data with multidimensional phenotypic data are typically (i) performed
one-to-one, i.e. each gene is examined independently with a
phenotypic index and (i) tested with one stress condition at a time,
i.e. different perturbations are analyzed separately. As a result, the
complex coordination among the genes responsible for a phenotypic
profile is potentially lost. More importantly, univariate analysis can
potentially hide new insights into common mechanism of response.
Results: In this article, we propose a sparse, multitask regression
model together with co-clustering analysis to explore the intrinsic
grouping in associating the gene expression with phenotypic
signatures. The global structure of association is captured by learning
an intrinsic template that is shared among experimental conditions,
with local perturbations introduced to integrate effects of therapeutic
agents. We demonstrate the performance of our approach on both
synthetic and experimental data. Synthetic data reveal that the multi-
task regression has a superior reduction in the regression error when
compared with traditional L;-and L,-regularized regression. On the
other hand, experiments with cell cycle inhibitors over a panel of 14
breast cancer cell lines demonstrate the relevance of the computed
molecular predictors with the cell cycle machinery, as well as the
identification of hidden variables that are not captured by the baseline
regression analysis. Accordingly, the system has identified CLCA2
as a hidden transcript and as a common mechanism of response for
two therapeutic agents of CI-1040 and Iressa, which are currently in
clinical use.

Contact: b_parvin@Ibl.gov

1 INTRODUCTION

Genome-wide association studies of expression and phenotypic
data are becoming a routine methodology for identifying potential
biomarkers. While the literature is rich with supervised or
unsupervised clustering of genomic information, methods for
studying the relationships between genomic and phenotypic data
remain relatively limited. Existing association methods are typically
based on the univariate correlation analysis, which either correlates a
single gene to the resultant phenotype(s) or vice versa. This is known
as the gene- and phenotype-based approaches, respectively (Dryja,
1997). More recently, (Yi et al., 2008) quantized large number
of transcript data through clustering, and associated them with
physiological responses or clinical metadata. In contrast, another
group of researchers have taken a new direction by first clustering
morphometric data and then associating with the transcript data (Han
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et al., 2010). However, in both cases, correlation is based on the
independent, pairwise univariate analysis.

Pairwise univariate correlation analysis can quickly provide
important association information, as well as candidates for further
screening. However, it treats the genes and the phenotypes
as independent and isolated units, therefore the underlying
interacting relationships between the units might be lost. It
is well-known that some transcripts act as regulatory nodes,
driving other transcripts in a coordinated manner to determine the
phenotypic profile. Additionally, incubation with each therapeutic
reagent simultaneously interferes with a subset of genes. Here,
we hypothesized that simultaneous incorporation of genome-
wide expression data coupled with phenotypic data computed
from multiple perturbation conditions, each targeting a different
molecular region, can elucidate a common mechanism of response
that may be hidden otherwise. In fact, perturbation and molecular
diversity of the model system have shown to be capable of reducing
the samples needed for biological inference, thus enhancing
robustness of biological conclusion (Ideker et al., 2001; Sachs
et al., 2005; Tegnér et al., 2003). Thus, we ask the following
questions. How can traditional univariate associations be modeled
simultaneously and in the absence of a correlation threshold? How
can the inherent sparsity of association be formalized within an
optimization framework? How can one compensate for the lack of
replicates due to the high experimental cost associated with gene
expression profiling? To address these issues, we have developed
an integrated platform that simultaneously and systematically takes
into account an ensemble of gene and phenotypic signatures.
Such an enterprise must incorporate an experimental design with
sufficient degree of molecular diversity for increased computational
robustness. In this context, molecular diversity is achieved by using
a panel of breast cancer cell lines that are well-characterized and
readily available through American Type Culture Collection.

Our computational framework consists of two major steps. First, a
vector-valued, multitask regression formulation is adopted to model
the relationships between transcripts and phenotypes under multiple
experimental conditions. In particular, the regression coefficients
are factorized into two parts. One part is a shared template that
suggests a common mechanism of action under various treatments.
The second part is related to the perturbation that is induced locally in
the transcript network under individual perturbation. The regression
has to be sparse, because only a subset of genes is typically involved
in a specific phenotypic response. Sparsity is enforced through
Li-norm regularization, which inherently removes outliers and
irrelevant associations. The end result is a sparse regression matrix
that captures intrinsic properties of gene—phenotype association.
This matrix is reordered for improved visualization of the gene—
phenotype grouping, where the reordering aims at an optimum
permutation of rows and columns of the regression matrix such that
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the underlying saliency becomes apparent. In this context, reordering
reveals dominant association between subsets of genes (with the
similar expression profile) and subset of phenotypic indices (with
the similar measurements).

We have demonstrated the efficacy of our method with synthetic
and experimental data, where the main purpose of synthetic data
is to profile the robustness and precision of the proposed method.
Experimental data consist of baseline gene expression data for a
panel of breast cancer cell lines, which are associated with cell-cycle
inhibitor data. The proposed method can be used as a complementary
tool besides baseline regression techniques, to provide a richer and
a more promising list of candidate molecular predictors for further
biological verifications.

Section 2 presents our computational model and detailed
optimization procedures. Section 3 provides results on synthetic
and experimental data. Section 4 concludes with a discussion on
the molecular predictors and system performance.

2 MODELS

2.1 Description of basic computational models

In this section, we introduce our basic computational models for
exploring the associations between genes and phenotypic responses.
To reduce excessive costs associated with the collection of gene
expression data, we assumed that the gene expression were collected
under a baseline (unperturbed) condition, as denoted by X € REXN,
Here, C is the number of cell lines and N is the number of genes. On
the phenotypic side, assume that we obtained measurements Y, €
RCXM>g for d =0,1,2,....,D, where M is the number of phenotypic
features, d =0 denotes the controlled, baseline condition and d =
1,2, ...,D corresponds to the drug-perturbed conditions. We used the
linear regression model to measure the dependency between genes
and phenotypes, as illustrated in Figure 1. The design matrix X was
mapped to the phenotype responses Y eREM yig a regressing
matrix Ty e RV*M | a5

XoTs— Yy (D

The coefficient matrices T ;’s reflect the dependency (or correlation)
between the genes and the phenotypes of interest, i.e. its ij-th entry
is the weight associated with the i-th gene in reconstructing the j-th
feature in the phenotypic profile under the d-th condition.

There are a number of complexities in estimating 7. These
complexities originate from low sample size, high dimensionality
of the data and coupling between different perturbation conditions.
However, majority of the transcript data can be considered as
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Fig. 1. The linear regression model used to compute the sparse association
between baseline gene expression data and phenotypic responses.

noisy background, as it believed that only a subset of genes
are involved in each specific cellular process. To address these
issues, we propose a sparse, regularized multitask regression
framework with co-clustering. The novelty of our method involves:
(1) leveraging the locality of the molecular interactions as a result of
treatment with therapeutic agents, and modeling multiple treatments
simultaneously; (ii) coupling it with a L;-regularized solution that
enforces sparsity and simultaneously compensates for small sample
size; and (iii) grouping associations with co-clustering.

First, a multitask regression framework is used to model the
molecular interactions under multiple conditions in a systematic
way. The Multitask learning (Caruana, 1997; Lee et al., 2007; Xiong
et al., 2007) is aimed at information sharing among learners from a
set of different but related tasks, with the hope to boost the overall
performance. In this context, regression (1) under each experimental
condition is deemed as a task. As phenotypic profiles arise from
the original gene regulatory network and its local perturbation, we
can assume that phenotypic responses are triggered by different
experimental conditions are lying on the same low-dimensional
space, i.e.

T,=T-P, ford=0,1,2,...,D. 2)

In other words, task relatedness is enforced by requiring that
T,’s associated with each task are local perturbations of a shared
subspace T. Here, T € RNV*K represents the shared structure (related
to the gene regulatory network), P, e REKxM compensates for the
perturbation of different experimental conditions and K is the
dimension of the latent space in which the phenotypic responses
are supposed to reside. In our formulation, K is set to be equal to
M for practical reasons, and P;’s are diagonal matrices. The actual
structure of P; is an open problem at this point, and it is possible
that a non-diagonal matrix can produce a better reconstruction result.
The structure of P; and the choice of K is one of the topics for our
continued research. Nevertheless, the shared template matrix T has
the potential to summarize association descriptor between N genes
and M phenotypes. An advantage of decomposing the T; matrices
is a significant reduction in the number of variables for estimation.

Second, the L regularization technique is used to mathematically
guarantee the robustness of the system against irrelevant genes. The
L regularization typically leads to sparse learning models, and has
been independently discovered in several research areas such as
regression shrinkage and variable selection (Tibshirani, 1996), basis
pursuit (Donoho et al., 2001), compressive sensing (Donoho, 2006)
and feature vector machine (Li et al., 2005). By penalizing the L;-
norm of the variables, part of the regression coefficients will be
driven to zero with the level of sparsity controlled by the strength
of regularization. This is a desirable property considering the highly
localized functionalities of genes as they relate to specific phenotypic
signatures.

By combining the multitask learning frame with the L
regularization, we established sparse multitask regression as
follows:

: D 2
min f=> ;_olIXoTP;—Y4llz+AlITI;. (3)
TeRVM =0 £
PdG]RMxM
s.t. IPsllp=1,ford=1,2,...,D.
Here, |- ||F is the matrix Frobenius norm and ||-||; is the matrix

Li-norm. The first term enforces a fit between the gene expression

i98



Sparse multitask regression

Fig. 2. The co-clustering procedure transforms a randomly displayed
association table (a) of 50 genes and 40 phenotypes to a organized partition

(b).

and the phenotypic signature under each condition, while the
second term enforces sparsity on the shared template T. The
constraints ||P;||=1 are used to prevent trivial solutions (i.e.
T approaches zero and P;’s approach infinity). Alternatively, this
can be achieved by penalizing |P4||F with a extra regularization
parameter. More recently, a heterogeneous multitask learning
framework that considers both continuous (regression) and discrete
(classification) variables was successfully used to discover genetic
markers that jointly influence multiple correlated traits (Yang et al.,
2009). In comparison, our method considers pure regression setting
only, where the phenotypic measurements are continuous.
Formulation (3) allows us to obtain condition-specific regression
matrices T;’s based on a common template T. Note that for each
Ty, its non-zero rows signify important genes under the d-th
condition. Therefore, template T, which is shared among multiple
T;’s, defines a combined list of genes that are important to the
phenotypes studied under these conditions. In other words, T is
an integrated association descriptor that summarizes correlating
relations between genes and phenotypes under multiple conditions;
and we want to read out useful structures (such as the grouped
correlation between subsets of genes and subsets of phenotypes)
encoded in T. To achieve this goal, we performed co-clustering
analysis (Hartigan, 1972) on T. Co-clustering analysis has been used
to find clusters in various tabulated data such as the co-occurrence
of documents/words (Dhillon, 2001), or the expression of genes
under various conditions (Ding, 2003; Kluger et al., 2003; Tanay
et al., 2002), by simultaneously grouping rows and columns of the
association table. However, it has rarely been applied to interpret
associations between genes and phenotypes, where the association
table is not directly available from raw data but instead has to be
learned. In fact, co-clustering can reorganize regression coefficients
in a perceptually meaningful manner to bring more insights into our
analysis. This is illustrated by synthetic data, as shown in Figure 2.
For example, assume we have learned an association table of 50 rows
(e.g. genes) and 40 columns (e.g. phenotypes) where it is difficult
to observe any meaningful structures. However, if we permute the
rows and columns of the table by co-clustering (Dhillon, 2001),
we will discover four dominant correlation groups, as shown in
the Figure 2B. Such a grouping can be regarded as a distinctive
‘watermark’ of the gene—phenotypic association. Furthermore, rows
(genes) grouped into the same block are more likely to participate
together in affecting corresponding columns (phenotype responses).
In summary, the sparse multitask regression has three advantages:
(i) it allows us to reduce the number of variables from O(MND) to
O(NM +DM?); (ii) the sparsity of T easily transfers to those of T;’s

due to the simple linear relation T; =T -P; and (iii) as we shall see,
the template matrix T is a platform from which explorative analysis
can be carried out in identifying important, grouped correspondences
between genes and phenotypic signatures.

2.2 Optimization procedures

Formulation (3) is a vector-valued regression with intrinsic T
and perturbation-specific P;’s. It can be solved by an alternating
optimization strategy, i.e. iteratively fixing P;’s and solving T, and
then fixing T and solving P;’s. We will show that both T and P;’s
subproblems are convex. Thus a locally optimal solution of the
problem (3) can always be guaranteed. In the following, we present
details on the alternating optimization (Parts I, II and III) and the
co-clustering procedure (Part IV).

(I) Fix {Pd}dD=0 and solve T: We will show that when P;’s
are fixed, T can be solved through quadratic programming. First,
use the operator vec(-): RP*4 — RP4*! (o denote the mapping that
transforms a p x ¢ matrix into a pg x 1 vector via concatenating the
columns in the matrix, and let ivec(-) be the inverse mapping. Let
t=vec(T) e RMN*1 Then define a 3D matrix Aye REXM>MN o
d=0,1,2,...,D, such that

AyGi,j,)=vec (Xo(i, )P, j)T). ()

Here, X((i,:) is the i-th row in Xg, P;(:,/) the j-th column in P; and
each (i,j)-pair locates an MN x 1 vector denoted by A;(i,J,:). Now,
computing T is equivalent to the following quadratic program

min ' Qt—2b"t+A|tl; )
teRMNx1
D C M
where Q:ZZZAd(i’j’:)Ad(i’j’:)T 6)
d=0i=1j=1
D C M
b= Yl )Aq(ii.). )
d=0i=1j=1

It can be easily verified that the residual term

YD o IXoTP;—Y,||% in (3) is identical to t' Qt—2b "t up to a
constant that is independent of the optimization variables. Note that
the Hessian of the above quadratic programming problem is positive
semi-definite: for any x e RMN *1 we have

D C M
XTQX = ZZZXTAd(i,j, DAq(,J, I)TX
d=0i=1j=1
D C M )
— ZZZ(Ad(i,j,:)Tx> >0.
d=0i=1j=1

On the other hand, the L; regularization term A[|t]{ is a convex
function. Therefore, the problem is convex, and there exists a unique,
globally optimal solution for the subproblem (5).

The main computational barrier is that the Hessian matrix Q is
MN-by-MN, which can be very large and does not fit in a modern
desktop computer. However, this matrix is symmetric, positive-
definite Hessian matrix Q and has very low rank in practice, i.e.
its eigen-spectrum decays very quickly to zero. This is shown in
Figure 3, where we chose N=1210 genes and M =3 phenotypes
to construct the matrix Q (6) with size 3630 x 3630. It is clear that
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Fig. 3. Spectrum of a 3630x3630 matrix Q, computed from our
experimental data, indicates that only the largest 48 eigenvalues are strictly
positive and the rest are insignificant. The spectrum clearly reflects the low-
rank nature of the matrix Q and the feasibility of low-rank approximation.

the spectrum of Q decays rapidly, with only the top 48 eigenvalues
being strictly non-zero, thus substantiating the low-rank nature of
the Q matrix. As a result, the Hessian matrix can be represented by
the ‘low-rank approximation’ to alleviate prohibitive computational
requirements. To do this, we searched for a rank-R matrix L that best
represents the Q matrix in a least square sense, miny crumvxr [|Q —
LLT ||12p, where R<NM, LeRMNXR 5 5 rectangular matrix with
low row-rank and LLT is called the rank-R approximation of Q.
This approximation QA LL’ dramatically reduces memory usage
from O(N2M?) to O(NMR).

Mathematically, the optimal rank-R matrix L is given by the
eigenvectors of Q (Golub and Loan, 1996), which is computationally
expensive. We therefore pursued an approximate solution by
adopting the sampling-based low-rank approximation scheme,
known as the Nystrom method, which originated from the numerical
treatment of integral equations of the second type (Baker, 1997). The
basic idea of the Nystrom method is to randomly sample R columns
from the Q matrix, which, due to its symmetry, also corresponds to
R rows. Let E and E’ denote the sampled columns and its transpose,
respectively, where E € RMNXR [ et W e RR*R be the intersection
of the selected rows and columns. Then Q can be decomposed as
Q~EWLE' In our specific context, Q is represented as the sum
of multiple outer products (6). By utilizing this property, £ and W
can be computed efficiently as follows:

D C M
Ep.g)=)_Y " Adli.j.p)Ad(i.j.q),
d=0i=1j=1
W=E,I),1<p<MN,qel,

where I={1,2,..., MN}® is the index of selected columns. Given W
and E, the low-rank approximation of Q is then expressed as

Q~LLT, where L=EW™3. (8)

As W is a positive semi-definite (PSD) matrix, there exists
theoretically a real square root of W. In practice, we could encounter
diminishing eigenvalues. A robust way is to first perform the
eigenvalue decomposition W=UAU T, remove those diminishing
eigenvalues and then let W% =U Az u'l.

The low-rank decomposition (8) allows us to rewrite the Lj-
regularized quadratic programming problem (5) into a standard least

square problem (with L regularization),

. / 2

Jmin L t—q| "+t ©)
Here, q R %1 can be determined by expanding the quadratic term
in (9), comparing it with (3) and requiring L’q=b. Formulation
of (9) is a good approximation to the original problem (5) and it
has been widely examined in statistics, optimization and machine
learning. We use the 11-1s solver (Kim et al., 2007) for large-scale L -
regularized least square problems, which are based on the truncated
Newton interior-point method. Empirically, it can solve large sparse
problems with a million variables with high accuracy in a few tens
of minutes on a modern desktop computer.

(II) Fix T and solve {Pd}gzlz By fixing T, entries of P;’s can
be computed using simple scalar equations. Let the i-th column
of the matrix X-T be denoted by XT(:,i) and the i-th column in
Y, be Y;(:,0). It’s easy to verify that the i-th diagonal entry in Py
can be solved easily as Pd(i,i)=XT(:,i)TXT(:,i)/||Yd(:,i)||%. To
guarantee that P;’s all have Norm 1, we will normalize them by
P;=P;/||P4||F.- This can be deemed as iteratively projecting the
solutions on the feasible region |Py||F=1.

Note that rescaling both T and P;’s with —1 does not affect the
prediction performance of the multitask regression, but will reverse
the signs of associations learned in T. To solve this problem, we
require that the signs of the resultant matrix T should be maximally
correlated with those of the standard correlation coefficients on the
same set of genes. From a practical standpoint, because P;’s are
initialized with identity matrices, we have always observed that they
continue to be PSD during the optimization procedure. Empirically,
our method converges rapidly in about 5 to 10 iterations on our
current datasets.

(IIT) Initialization and parameter selection: By fixing one of the
two groups of variables, T or P;’s (d=1,2,...,D), the other can be
computed. Here, we choose to initialize P;’s as identity matrices
for d=1,2,...,D. Note that initialization of the T,;’s is usually
much easier than that of 7, where degrees of freedom are M2D
and MN, respectively. We used leave-one-out cross-validation to
choose the hyperparameter A since the sample size is very small.
This involves selecting one sample as a testing sample and the rest
as training. We repeated this process for each sample and computed
the averaged predictor error on the testing sample at each grid point
re{1073,1072, 1071, 1,10}

(IV) Co-clustering: Template T is an intrinsic regression
coefficient matrix linking the gene expression and phenotypic
signature under the multiple conditions studied: the ij-th entry
signifies the strength of the relationship between the i-th gene
and the j-th phenotype. To reveal the clustered structure in these
associations, we used co-clustering to permute the rows and
columns of T, so that the underlying saliency becomes apparent
and can be visualized. We have adopted the bipartite spectral
clustering (Dhillon, 2001) for simultaneously clustering the genes
and phenotypes. Bipartite spectral clustering uses a bipartite graph
where vertices are divided into two types, each from one dimension
of the given contingency table (T). In our case they are genes and
phenotypes, denoted by G and P, respectively, and the number
of vertices will be M+N. The edge weights are determined by
W___{ TGl vied.vieP,

b 0 Vl',VjegOI‘Vi,VjEP.
exist between a gene vertex and a phenotype vertex. By applying

In other words, edges only
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spectral clustering on this bipartite graph, simultaneous groupings on
gene and phenotype vertices can be computed. Mathematically, we
need to compute the singular value decomposition of the degree-

1 1

normalized association matrix, S:DI_ETD:E, where D; is an
N x N diagonal degree matrix whose i-th entry is the summation
of the i-th row in T, and D, is a M x M diagonal degree matrix
whose i-th diagonal entry is the summation of the i-th column of T.
Interestingly, the left and right singular vectors of S (corresponding
to the second largest singular value) not only provide a partitioning
of the rows and columns of T, but also provide a natural ordering
(embedding) of the required row and column permutations.

3 RESULTS

Our proposed method has been tested with both synthetic and
experimental data. The synthetic data is used for method validation
and profiling against other known techniques. Our studies with
experimental data identified molecular predictors of cell cycle data
from baseline gene expression data.

3.1 Evaluation with synthetic data

In the synthetic case: (i) a data matrix X eRI0X300 was created
from the Gaussian distribution; (ii) a sparse intrinsic template
T eR390%5 with 50 non-zero rows and a small set of randomly
generated perturbation matrices Py €R3*5 were created for each
d=1,2,...,D task; and (iii) the responses (e.g. target values) were
then determined by Y; =XyTP; + ¢, where € is the noise term. We
examined how well the system recovers T;’s, and compared the
proposed method with (i) independent Li-regularized regression,
and (ii) independent L,-regularized regression, also known as
regularized least squares (RLS). First, we set D=10 and selected
one of the tasks to visualize the regression qualities against the
competing methods. Reconstruction results are shown in Figure 4.
Notice that the L and L, regressions (Fig. 4c and d) ‘contaminated’
the true regression coefficients. In practical association analysis,
this can lead to a number of false predictions. In contrast,
multitask regression (Fig. 4b) reliably recovered the regression
coefficients. Second, we varied D from 1 to 50 and quantified the
average per-task-error for each of the three methods, as shown in
Figure 5. It is clear that the error in multitask regression decreases
monotonically with the number of tasks, while the errors in pure
L and L, regressions remain stationary. Although this experiment
demonstrates an improved error profile for multitask learning, we
have not yet designed a synthetic experiment that maintains a
correlation between transcripts.

3.2 Experimental design and quantification of
biological endpoints

We applied our method to a set of publicly available gene
expression data for a panel of breast cancer cell lines collected
with Affymetrix HG-U133A (Neve et al., 2006). We used the
following 14 cell lines: MCF12A, HCC38, HCC1428, AU5650,
MDAMB415, SUMI185PE, ZR75B, MCF7, MDAMB361, LY2,
T47D, MDAMB436, MDAMB468 and ZR751. From the original
N =22215 probe sets, we chose 5706 by removing those with a
variance of <0.3. This is slightly above the noise level of the
Affymetrix U133 platform. Notice that the gene expression data
were collected under baseline (e.g. unperturbed) condition. Our main

(c)

(@)° (b)
0.8] 0.8]
07 07
05, 08

05
05,

0.4
0.4

03]
03 02
02 01
01 0
0 0.1
o 5
o
08
07,
056,
05
0.4
03
02,
01
o

0 100 150 200 250 300 o 50 100 150 200 250 300
0 100 150

-01
0

5 200 250 300 0 50 100 150 200 250 300

Fig. 4. Reconstruction of the regression coefficient matrix indicates that
multitask learning is more accurate when compared with L;- and L;-
regularized regressions. Ty is a 300-by-5 matrix and each column is
represented by a unique color. (a) Ground-truth solution, (b) Multitask
regression, (¢) standard L; regression and (d) regularized least square
regression.
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Fig. 5. Multitask learning has an improved error rate profile as the number
of tasks is increased.

hurdle has been the prohibitive cost of collecting necessary data (e.g.
three conditions, 14 lines, and at least three biological replicates).
Thus, we assumed that perturbed expression data would be linearly
predictable from the control data.

Cell cycle data where collected for cells exposed to three
conditions: control condition (e.g. DMSO solvent alone), the MEK
inhibitor CI1040 and the tyrosine kinase inhibitor Iressa. Both these
inhibitors induce cell cycle arrest, but through different mechanisms.
Each cell line was plated in triplicate and incubated for 48 h with
CI1040 and Iressa at 5.6 and 4.0 uM, respectively. Subsequently,
samples were fixed and stained with Hoechst and BrdU, and
25 fields of view were imaged using the Celomics high-throughput
system. These images were uploaded into the BioSig imaging
bioinformatics system (Parvin et al., 2003), and then analyzed
for their morphometric and BrdU incorporation on a cell-by-cell
basis (Raman et al., 2007; Wen et al., 2009). Figure 6 shows a
sample of images that have been registered with the BioSig and
one segmented image. Each segmented nucleus is represented using
a multidimensional feature (Han er al., 2010) and stored in the
database. In our experiment, the pertinent features are total BrdU and
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Fig. 6. (a) Biological images are registered with BioSig and (b) each nucleus
is segmented to quantify total DNA and BrdU incorporation on a cell-by-cell
basis.

DNA content on a cell-by-cell basis. By aggregating these features,
within each well, percentages of cells being G, S and G, Phase can
be quantified as a function of their treatment, as shown in Figure 7.
The main advantage of microscopy for evaluating cell cycle arrest
is a significant reduction in the number of required cells. Finally,
outliers were removed. Summary results are shown in Figure 8.

3.3 Evaluation with therapeutic agents

First, we examined associations of gene expression and cell
cycle data using independent L-regularized regression that learns
the regressing coefficients T;’s separately for each experimental
condition. The results enabled us to contrast traditional L regression
with multitask learning. Predicted results are shown in Figure 9,
where each subfigure corresponds to the regression matrix Ty
under one condition. Here, zero rows in the regression matrix were
removed, and the rows and columns of T;’s have been reordered by
the co-clustering procedure. The positive and negative association
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Fig. 7. By aggregating total DNA and BrdU, on a cell-by-cell basis for all
images in each well, the percentages of cells in Gy, S, and G, phase are
quantified.
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Fig. 8. Percentage of each cell line being arrested in G| phase with DMSO,
CI1040, and Iressa treatment conditions.

between each gene—phenotype pair is encoded by green and red
blocks, respectively. Second, we applied the proposed multitask
regression to learn a common template of correlation between genes
and cell cycle data for the two inhibitors (e.g. CI1040 and Iressa),
as shown in Figure 10. Again, we assumed that each therapeutic
reagent would perturb a small molecular region in the cell cycle
progression. In this experiment, both CI1040 and Iressa induced
cell cycle arrest by targeting different molecular moieties. However,
if there is a common mechanism of action, then we would like
to infer that. We observed that the genes identified by multitask
regression (Fig. 10) contained subset of genes that were identified
separately by independent L regression, shown in Figures 9b and c.
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Fig. 9. The regression matrices (a) Ty, (DMSO) (b)T; (C11040), and (¢)T, (Iressa) learned by the independent regression using 14 cell lines and reordered

by co-clustering.

Fig. 10. The intrinsic template T learned by the multitask regression using 14 cell lines and the two drug conditions (CI1040 and Iressa) and reordered by

co-clustering.

However, there are certain genes that can only be predicted through
the multitask regression. These are hidden markers that are relevant
to the effect of the therapeutic reagent and provide potential new
hypothesis for further studies. The total computation time on a
modern desktop computer is approximately 6500 s.

4 DISCUSSION

Our experiments with synthetic data have clearly demonstrated that
multitask learning offers the following advantages over independent
L regression: (i) regression is less noisy; (ii) regression error
is reduced as a function of the number of tasks; and (iii)
hidden variables are revealed since traditional L regression can
push non-zero coefficients to zero and vice versa. Therefore, the
bulk of the discussion in this section is devoted to the experimental
data by focusing on a few important genes and their independent
analysis through Ingenuity Pathway Analysis (IPA) and Pathway
Studio.

(I) CLCAZ2 is a hidden variable that has been identified through
multitask regression and is shown to be negatively associated with
the S phase. We hypothesized that CLCA?2 is a common mechanism
of response for inhibitors CI1040 and Iressa. This gene is known to
be downregulated in breast cancer cell lines. In addition to being

a p53 client (Gruber and Pauli, 1999), its knockdown leads to
increased invasiveness (Walia et al., 2009), and it is epigenetically
regulated (Li et al., 2004). It is also a tumor suppressor gene that
may be a potential target for therapy. It is likely that CLCA2 acts as
a common molecular switch to inhibit DNA synthesis and initiate
apoptosis as a result of treatment with either therapeutic agent.
Therefore, it not only serves as a therapeutic target, but can also
be used in combination with other therapeutic targets used today for
improved lethality.

(II) NLRP2 is regulated by NF«B and is shown to be expressed
in MDA-MB-436 and MCF-7 (Bruey et al., 2004) breast cancer cell
lines. This particular gene appears in both independent and multitask
regression. Furthermore, the Gene Ontology annotation indicates
that NLRP2 is in involved in caspase activities and apoptosis. We
hypothesized that strong G1 arrest and complementary negative
correlation with cells being in S is the result of treatment with
the therapeutic agent. This particular gene is reflected in multitask
regression and independent regression analysis corresponding to
CI1040 and Iressa. It is also a potential common mechanism of
response for further analysis.

(IIT) CDKN2A (also known as pl6) expression is positively
associated with G1 arrest in normal cells and tissues, but is
negatively associated with the S phase in our analysis of the human
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Fig. 11. Interaction of CSTA with JUN and FOS curated through IPA.

breast tumor cell lines (in both the independent regression of Fig. 9b
and the multitask regression of Fig. 10). This discrepancy is likely
explained by the fact that most of the malignant cell lines in the
panel have aberrations in downstream effectors of the product of
this gene. The aberrations result in continued proliferation in the
presence of pl6 expression that ordinarily would yield cell cycle
arrest and senescence (Gauthier ef al., 2007).

(IV) CSTA is involved in apoptosis and differentiation, and is
normally regulated by JUN and FOS (Takahashi et al., 1998), whose
gene products together constitute the AP1 transcription factor. AP1
drives the expression of a number of genes that are necessary for cell
cycle progression. The relationships between these protein—protein
interactions are shown in Figure 11. This gene appears in multitask
and one of the independent regression analysis.

(V) CA2 is an example of the gene that is reported by both
independent association of gene expression data with CI1040
(Fig. 9b) and the multitask regression analysis (Fig. 10). CA2 is
ordinarily involved in differentiation and apoptosis, overexpressed
in MCF7 and MDA-MB-231 and negatively correlated with the S
phase in the drug-treated cells. SIRNA-mediated interference with
human CA2 gene expression has been shown to decrease survival
of MDA-MB-231 cell lines (Mallory et al. , 2005).

Finally, we performed an independent analysis by using Ingenuity
Pathway Analysis and Pathway Studio, scientific software that helps
researchers more effectively search, explore, visualize, and analyze
biological and chemical findings related to genes, proteins and small
molecules. We selected the set of genes that was correlated with the
S phase, and uploaded them into IPA and Pathway Studio. The IPA
analysis indicated that this group of genes is largely involved in (i)
cell cycle and signaling networks and (ii) cancer. The net result is a
more substantial support for gene-by-gene analysis. Similar results
have been obtained from Pathway Studio, which provides gene set
enrichment analysis (GSEA) and identifies common regulators with
the user-defined number of neighbors. Gene enrichment analysis
revealed that predicted gene groups are involved in response to toxin,
drug, negative regulation of cell proliferation, negative regulation of
peptidase activity where S phase is one of them and apoptosis among
top-ranked groups. Furthermore, a number of common regulators
with high P-values were also inferred that are associated with the
cell cycle machinery. Figure 12 shows three regulators of MAPK,
Jun/Fos, and GF, and their target entities.

Fig. 12. Three common regulators that have been inferred from a subset of
genes associated with the S phase.

In summary, multitask learning has the potential to summarize
a vast amount of data, compute biologically relevant markers and
identify hidden variables that traditional regressors may fail to
capture. Although the technique is currently applied for integration
of gene expression data with cell cycle data, it can also be used for
other integrative biology applications.
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