
Research Article
A Selective Biogeography-Based Optimizer Considering Resource
Allocation for Large-Scale Global Optimization

Meiji Cui ,1 Li Li ,1,2 and Miaojing Shi3

1College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
2Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 201804, China
3Inria, Univ Rennes, CNRS, IRISA, 35000 Rennes, France

Correspondence should be addressed to Li Li; lili@tongji.edu.cn

Received 28 February 2019; Revised 2 June 2019; Accepted 26 June 2019; Published 10 July 2019

Academic Editor: Juan Carlos Fernández

Copyright © 2019 Meiji Cui et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Biogeography-based optimization (BBO), a recent proposed metaheuristic algorithm, has been successfully applied to many
optimization problems due to its simplicity and efficiency. However, BBO is sensitive to the curse of dimensionality; its per-
formance degrades rapidly as the dimensionality of the search space increases. In this paper, a selective migration operator is
proposed to scale up the performance of BBO and we name it selective BBO (SBBO).*e differential migration operator is selected
heuristically to explore the global area as far as possible whist the normal distributed migration operator is chosen to exploit the
local area. By the means of heuristic selection, an appropriate migration operator can be used to search the global optimum
efficiently. Moreover, the strategy of cooperative coevolution (CC) is adopted to solve large-scale global optimization problems
(LSOPs). To deal with subgroup imbalance contribution to the whole solution in the context of CC, a more efficient computing
resource allocation is proposed. Extensive experiments are conducted on the CEC 2010 benchmark suite for large-scale global
optimization, and the results show the effectiveness and efficiency of SBBO compared with BBO variants and other representative
algorithms for LSOPs. Also, the results confirm that the proposed computing resource allocation is vital to the large-scale
optimization within the limited computation budget.

1. Introduction

Evolutionary algorithms (EAs) are efficient tools to solve
complex optimization problems. Biogeography-based opti-
mization (BBO) [1], proposed by Simon in 2008, is inspired
by biogeography regarding the migration of species between
different habitats, as well as the evolution and extinction of
species. Assuming an optimization problem and some
candidate solutions, each habitat represents a candidate
solution, the suitability of the habitat is the fitness of the
optimization problem, and the habitat features represent
decision variables. According to the biogeography theory, a
superior solution tends to share more promising in-
formation with the inferior one by the way of migration,
specifically high emigration as well as low immigration in
this case, and vice visa. Also, mutation may occur with
certain probability in accordance with the biogeography
evolution.

As a new yet promising EA, BBO has been applied to
solve single-objective problems [2], multiobjective problems
[3, 4], and constrained problems [5] to some success. What’s
more, some extensions of BBO have been proposed to
improve its performance [6, 7]. BBO has been extensively
explored to deal with many real-word complex problems,
such as manufacturing system scheduling [8], supply chain
design optimization [9], and hub competitive location [10].
However, it has been reported that the performance of BBO
degraded rapidly when the problem dimension increases
[11]. With the advent of big data era, the scalability of an EA
is a significant indicator to be considered.

In comparison with traditional optimization problems,
modern optimization problems [12, 13] tend to involve a large
number of decision variables, which is also conceptualized as
large-scale optimization problems (LSOPs). Owing to the
explosion of search space and interdependencies among de-
cision variables, LSOPs cannot be tackled in reasonable time

Hindawi
Computational Intelligence and Neuroscience
Volume 2019, Article ID 1240162, 17 pages
https://doi.org/10.1155/2019/1240162

mailto:lili@tongji.edu.cn
https://orcid.org/0000-0002-9865-2095
https://orcid.org/0000-0001-5097-9972
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1240162


by conventional EAs. *is has made LSOPs an open and
challenging problem, which has attracted intensive attention
in recent trends.

Existing methods to deal with LSOPs can be divided into
two categories, i.e., decomposition methods and non-
decomposition methods. Nondecomposition methods refer
to those exploring some special operators [14], local search
[15], and hybrid algorithms [16], etc. to improve the search
ability of conventional EAs. While decomposition methods,
also known as divide and conquer (DC), take advantages of
the modularity characteristic of optimization problems and
divide the high-dimensional problem into several low-di-
mensional subproblems. *ese subproblems can thus be
evolved with a certain EA independently in a more efficient
manner. Due to the dimensionality mismatch brought by
DC, which implies that the subsolution cannot be evaluated
by the original objective function directly, it is a natural way
to complement the subsolution to be evaluated as a complete
solution by the combination of the representative of each
subproblem, also known as cooperative coevolution (CC).

Compared with nondecomposition methods, the DC
framework is more efficient and therefore more popular.
Recent works along this line mainly focus on the grouping
strategy for subproblem division, e.g., random grouping [17]
and recursive differential grouping [18]; on the other hand, the
performance of optimizers and the allocation of computing
resources among subproblems within limited computational
budget are also crucial but have not been largely explored yet.
*erefore, it is meaningful to investigate new algorithms for
LSOPs with the aim of making a new attempt for this difficult
problem as well as exploring extensions of BBO.

In this paper, we intend to scale up the performance of BBO
to solve the LSOPs. We propose a novel Selective Migration
Operator (SMO) to balance exploration and exploitation. If the
selected emigration individual is better than the immigration
one, once the migration occurs, a differential migration op-
erator with a relatively large value is chosen to share more good
information with the poor individual; otherwise, a normal
distributed random value with small variance is applied for
local search. *rough the selective migration operator, a more
rapid and efficient search process can be conducted in rea-
sonable time. Furthermore, the DC framework is adopted to
enhance the ability to solve high-dimensional problems. To
solve the problem of subgroup contribution imbalance in the
context of DC, a simple and efficient computing resource
allocation strategy is proposed in the end.

*e paper is set as follows. In Section 2, the BBO al-
gorithm and Large-Scale Optimization (LSO) are briefly
introduced. Section 3 presents our Selective Biogeography-
Based Optimization (SBBO) with selective migration op-
erator and a more efficient computing resource allocation
strategy for DC framework. Section 4 depicts the experi-
ments and corresponding results, followed by some analysis.
Finally, conclusion and future work are drawn in Section 5.

2. Background

2.1. Biogeography-Based Optimization. In biogeography,
there are two important terms, namely, habitat suitability

index (HSI) and suitability index variables (SIVs) [1]. HSI is
used to evaluate the living environment for each habitat while
SIVs are the influencing factors of HSI. For an optimization
problem, the population, i.e., habitats, represents a set of
candidate solutions, while the SIVs of habitats are considered
as the feature representations of the candidate solutions.
*erefore, the evolutionary algorithm inspired by bio-
geography, i.e., biogeography-based optimization, is naturally
used to solve different kinds of optimization problems.

*ere are two main operators in canonical BBO, i.e.,
migration operator and mutation operator. *e migration
operator is to share search information among individuals,
and the mutation operator is to enhance the population
diversity. *e immigration rate λi and emigration rate μi of a
habitatHi can be calculated by the migrationmodel, which is
shown in Figure 1 [1]. More specifically, we adopt a sim-
plified linear migration model to demonstrate the process,
where the migration model is the function of the number of
species. When the number of species increases, fewer species
can survive for immigration and more species tend to
emigrate to other habitats, and vice visa. *e corresponding
immigration and emigration rates are given by

λi � I 1−
Si

Smax
 , (1)

μi � E
Si

Smax
 , (2)

where I is the maximum immigration rate, E is the maxi-
mum emigration rate, Si is the number of species of the
habitat Hi, and Smax is the maximum number of species. In
BBO, the habitat with more species signifies a better solu-
tion. *at being said, a better solution has lower immi-
gration rate and higher emigration rate, so that it can share
promising information with other solutions and is less likely
to be destroyed due to migration.

Next, the migration can be expressed as

Hi(SIV)⟵Hj(SIV), (3)

where Hi is the immigration habitat and Hj is the selected
emigration habitat. SIV is a suitability index variable which
represents the feature of the habitat. Equation (3) means that
the SIV of the habitat Hi can be replaced by the SIV of the
selected habitat Hj.

Mutation operator is a probabilistic one that can modify
solution features, which is like mutation in many other EAs
[19]. *e purpose of mutation is to increase diversity among
the population. *e pseudocode of the canonical BBO is
described in Algorithm 1.

Extensive works have been analyzed and discussed
since BBO was proposed. With respect to different mi-
gration models corresponding to nature migration phe-
nomenon, Ma [20] proposed six different migration
models, among which sinusoidal migration curves per-
form the best. Additionally, some efficient migration
operators and mutation operators have also been proposed
to improve the performance of original BBO. Ma and
Simon [5] proposed BBO with blended operator to solve

2 Computational Intelligence and Neuroscience



constrained optimization problems. Guo et al. [7] further
proposed the uniform version of extended migration
operator (UEMO) to enlarge the space for offspring, thus
avoiding local optimum to some extent. Zhang et al. [2]
merged a differential mutation operator and a sharing
operator into BBO’s migration operator to balance the
global and local search ability. Mi et al. [21] combined
differential evolution mutation operators with simulated
binary crosser of genetic algorithms. Apart from the above,
some useful strategies borrowed from EAs have been
applied to BBO. Gong et al. [22] combined differential
evolution and BBO for numerical optimization. Zhang
et al. [6] proposed a novel hybrid algorithm based on BBO
and grey wolf optimizer to make full use of the two al-
gorithms’ search ability. Khademi et al. [23] took ad-
vantages of the feature-sharing capability of invasive weed
optimization to enhance the performance of BBO.
Lohokare et al. [24] accelerated BBO by adopting neigh-
borhood search. To enhance the population diversity in
BBO, opposition-based learning [25] and chaos strategy
[25] have been introduced. Some theoretical studies of
BBO can be found in [7, 26, 27].

Due to the simplicity and efficiency, BBO has been
widely adopted in many engineering and science tasks.
Bhattacharya and Chattopadhyay [28] solved both convex
and nonconvex economic load dispatch problems of thermal
plants with the assistance of BBO. Rahmati and Zandieh [29]
developed an improved BBO to deal with flexible job shop
scheduling problem. Niknamfar et al. [10] took advantage of
BBO to handle a new hub-and-center transportation net-
work problem. For further interest, readers can refer to some
comprehensive reviews of BBO in [30, 31].

BBO in general performs well for most low-dimensional
optimization problems; notwithstanding, its performance
deteriorates rapidly when it comes to the high-dimensional
problems. Unlike other optimization algorithms [17, 32, 33],
few works on BBO aimed to scale up its performance. To the
best of our knowledge, Guo et al. [7] made the first attempt
to test their improved BBO with UEMO on large-scale
optimization problems. However, UEMO does not out-
perform or cannot be even compared to the state-of-the-art
large-scale algorithms. UEMO is the first attempt to handle
LSOPs, but not yet scalable for LSOPs. With the advent of
big data era, more and more optimization problems tend to
involve thousands or even millions of decision variables.*e
scalable ability of EAs is crucial to deal with modern

optimization problems.*erefore, in this work, we intend to
scale up the performance of BBO.

2.2. Large-Scale Optimization. Large-scale optimization re-
fers to the optimization problems with large numbers of
decision variables. Although there is no formal definition of
LSOPs, it is typically referred to the optimization problems in
the high-dimensional space where conventional algorithms
[17] suffer from the “curse of dimensionality” and fail to locate
the optimum. *ree reasons account for the failure: (1) with
an increase of the decision variables, the corresponding search
space will exponentially increase, which makes it difficult to
optimize searching in such large space; (2) the characteristic
of problem may be altered due to the increase of di-
mensionality; (3) evaluating LSOPs is time-consuming and
sometimes unrealistic for real-world optimization problems
which require to be solved in a reasonable time. Over the last
decade, plenty of works have been proposed to copy with
LSOPs. Basically, they can be divided into two categories:
decomposition methods and nondecomposition methods.

2.2.1. Decomposition Algorithms. Decomposition methods
adopt the strategy of divide and conquer. It contains two
steps, namely, decomposition and optimization. In the
decomposition stage, a high-dimensional problem is
decomposed into several low-dimensional subproblems
which are easier to handle. In the optimization stage, each
subproblem is evolved independently using one or several
EAs. *e final solution is a concatenation of representatives
from each of the subproblem. *ree crucial issues should be
considered in this procedure, i.e., the decomposition ac-
curacy, selection of optimizer, and computing resource al-
location to the subcomponents.

*e purpose of decomposition is to divide the interacting
variables into a subcomponent, such that the global opti-
mum can be obtained by evolving each low-dimensional
subproblem independently. Early decomposition methods
[17, 34, 35] does not explore variable interactions, thus
failing to handle nonseparable problems. Recently, many
research works have started to address this issue by im-
plicitly or explicitly detecting the variable interactions. Sun
et al. [36] proposed a statistical variable interdependence
learning (SL) scheme based on nonmonotonic detection to
explore variable interdependence. Omidvar et al. [37]
proposed a differential grouping (DG) method based on
nonlinear detection. To enhance the accuracy and efficiency
of decomposition, some improved methods were proposed,
such as extended DG (XDG) [38], DG2 [39], and recursive
DG (RDG) [18].

Potter and De Jong [40] initially applied DC framework
to improve the performance of GA. Since then, many
metaheuristic algorithms, e.g., differential evolution [17],
particle swarm optimization [34], and artificial bee colony
[41], have demonstrated their superiorities in solving the
LSOPs in the context of DC. Nevertheless, few works have
focused on the scalability of some new yet efficient EAs,
while in our study, we specifically scale up BBO to deal with
LSOPs.

Immigration λ

Emigration
μ

I

E

SmaxS0

Ra
te

Number of species

Figure 1: Species migration model of an island.

Computational Intelligence and Neuroscience 3



In the original DC framework, each subgroup is evolved
in a round-robin fashion with equal computational
budget allocated. It has been reported that the contribution
of each subgroup to the global fitness of the individuals was
in fact varied [42]. Omidvar et al. [42] proposed a contri-
bution-based cooperative coevolution that selects the sub-
group to be evolved according to their contributions to the
global fitness. *e contribution was calculated accumula-
tively, which can be greatly favored from the components
with a good initial contribution. It cannot respond to the
timely change of objective value in particular in the late
phase of evolution. *erefore, Omidvar et al. [43] mended
the contribution calculation formula later. Yang et al. [44]
instead proposed to discard the stagnant components if
detected so that the limited computing resource can be
saved. Nevertheless, they might also remove the components
that could be temporal stagnant. Different from above
studies in serial computing environment, Jia et al. [45]
proposed an adaptive resource allocation scheme in the
distributed computing environment. Compared to other
issues in the DC framework, computing resource allocation
of subgroups has been paid less attention, however, which is
closely related to practical application.

2.2.2. Nondecomposition Algorithms. In addition to the CC,
another research line to address the LSOPs is to improve the
performance of traditional algorithms. Representative
techniques include efficient initialization methods [46];
special operators for sampling and mutations [47, 48]; and
hybrid algorithms [16] to accumulate strengths of different
algorithms. To reduce the computation cost, surrogate
model [49–51], and parallel computing [52, 53] have also
been investigated to solve LSOPs.

Overall, it is meaningful to scale up the performance of
BBO with the strategy of cooperative coevolution to deal
with LSOPs in the big data era. Although DC has been
embedded into canonical BBO, i.e., CBBO, it was only tested

on functions of 30 dimensions [54]. *e performance of
CBBO on high-dimensional problems (larger than 100 di-
mensions) is still unknown. Hence, we propose a selective
migration operator to balance the ability of exploration and
exploitation; the DC framework is utilized as well where we
introduce a more efficient strategy to allocate the limited
computational budget.

3. Proposed Approach

3.1. Selective Migration Operator. A Heuristic Migration
Operator (HMO) was proposed in reference [7]. Assuming
that Hj(SIV) is selected to immigrate from Hi(SIV), if the
fitness ofHj(SIV) is better than that ofHi(SIV), thenHj(SIV)
will share good information with Hi(SIV) by migration.
Otherwise, the migration will not happen. *e heuristic
migration operator can be represented as follows:

Hi(SIV)⟵Hi(SIV) + α Hj(SIV)−Hi(SIV) , fj ≤fi,

(4)

where α ∈ [0, 1], f is the fitness value (we consider the
minimization problem in our paper, unless otherwise
specified). What’s more, they extend the value of
α ∈ [−0.25, 1.25] to enlarge the search area, which is called
Uniform version of Extended Migration Operator (UEMO).
In HMO and UEMO, the good emigrated individual intends
to share promising information with the poor one, while the
poor emigrated individual will not influence the good one.
However, the current good individual will not be evolved in
this generation, which degrades the exploitation ability.
What’s more, the global optimum is more likely to be located
around these good individuals. *erefore, we design a Se-
lective Migration Operator (SMO) to enhance the exploi-
tation ability.

To accelerate the convergence of the local search with
better accuracy, we propose a normal distributed mi-
gration operator. *e normal distribution curves with

(1) For each Hk, calculate emigration rate μk according to equation (2), set immigration probability λk � 1− μk
(2) End for
(3) For each solution Hk, k ∈ [1, N], do
(4) For each solution feature SIV, do
(5) Use λk to decide whether or not to immigrate;
(6) If immigration, do
(7) z�Hk;
(8) Use μ  to select the emigration solution Hj (j≠ k);
(9) z(SIV)⟵Hj(SIV);
(10) End if
(11) End for
(12) Decide whether or not to mutate z{ }

(13) If mutation, do
(14) z⟵ lb + (ub− lb). ∗rand
(15) End if
(16) End for
(17) Hk ⟵ z{ }

ALGORITHM 1: One generation of the canonical BBO algorithm, where N is the population size, Hk is the kth candidate solution, H is the
entire solution, Hk(SIV) is the feature of Hk, z is a temporal solution, ub and lb are upper and lower bound of the search space, respectively.

4 Computational Intelligence and Neuroscience



various standard deviations are shown in Figure 2. Since
we focus on local search, smaller variations are preferred.
Inspired by the HMO, we propose a Selective Migration
Operator (SMO) to balance the exploration and exploi-
tation. *e selective migration operator can be repre-
sented as follows:

Hi(SIV)⟵Hi(SIV) + β Hj(SIV)−Hi(SIV) , fj ≤fi,

(5)

Hi(SIV)⟵Hi(SIV) + c Hj(SIV)−Hi(SIV) , fj >fi,

(6)

where β is a variable close to 1, and c is a normal distributed
random number with smaller variations. In SMO, the poor
immigrated individual will learn more useful information
from good emigrated one, while the good immigrated in-
dividual will exploit its neighborhood area.*e pseudocodes
of SMO are given in Algorithm 2. Since the individuals in
BBO are mutated towards random direction through mu-
tation operator which may destroy good individuals, the
mutation operator was removed. We use the selective mi-
gration operator to replace the original migration operator
and name the corresponding algorithm selective bio-
geography-based optimization (SBBO).

3.2. Resource Allocation Based on Contribution. Since co-
operative coevolution scheme is efficient for high-di-
mensional problems, we adopt DC framework for LSOPs in
our paper. As we discussed above, it is unwise to assign equal
computational budget to each subgroup due to the imbal-
anced contribution of them to the global fitness value. To
address this issue, a contribution-based resource allocation
scheme needs to be considered, which yields the essential
question about how to measure each subgroup’s contribution
to the overall fitness value. *e previous contribution cal-
culation methods either focus too much on the initial good
solutions [42] or brutally abandon the stagnant subgroups
[44]. We instead calculate the contribution by the Relative
Fitness Improvement (RFI). More specifically, the relative
fitness improvement of subgroup i at generation t (generation
refers to evolution of each subgroup) is defined as

RFIi �
ft−1 Hbest′( −ft Hbest( 

ft−1 Hbest′( 
, (7)

where ft−1(Hbest′ ) and ft(Hbest) refers to the best overall
fitness value before and after subgroup i undergoes the
evolution, respectively. In the first cycle (a cycle refers to a
complete evolution of all subgroups), each subgroup is
evolved by sequence. *e RFI values of each subgroup is
calculated according to equation (7) and stored in an ar-
chive.*en, the subgroup iwith largest RFI value is selected
to undergo evolution in the next generation. And the
RFI value of the subgroup i is updated after evolution so
that RFI is in a dynamic updated manner. *e pseudocodes
of resource allocation based on RFI are presented in
Algorithm 3.

3.3. Proposed Method. As discussed above, to deal with the
LSOPs in the context of DC, we propose to use SBBO as the
base optimizer and allocate the computing resource to dif-
ferent subcomponents according to the RFI. Nevertheless, the
computing resource will still be assigned to the subgroup of
extremely small RFI value in the late phase of evolution.
*ereby, the improvement of the overall best fitness value is
not obvious. Other subgroups considered as stagnant ones
before may be promising after several evolutions. Hence, to
avoid wasting the computing resource on stagnant subgroup,
an extra constraint is applied. If the RFI of subgroup i is
smaller than a small value, it can be regarded as a temporal
stagnant one and discarded from evolutionary cycle tem-
porarily. If all the subgroups are considered as stagnant ones,
each subgroup will be evolved equally, and the RFI will be
updated completely. *at is to say, the extra constraint added
to the resource allocation strategy can further enhance the
efficiency of computing budget. We name the SBBO, in the
context of CC, with the resource allocation strategy after
CC_SBBO_RA, although many different decomposition
strategies have been proposed. Given decomposition accuracy
and computational efficiency, we adopt RDG to divide the
optimization problems in this paper [18]. Instead of detecting
variables interactions in a pairwise manner, RDG can reduce
the time complexity of decomposition by recursively exam-
ining the interaction between a selected decision variable and
the remaining variables, such that more computational re-
source can be focused on the optimization stage. *e pseu-
docodes of CC_SBBO_RA are shown in Algorithm 4.

4. Experiments

Experiments consist of three parts. First, some parameters
need to be determined in CC_SBBO_RA. Hence, parameter
sensitivity is analyzed in the first part. Second, the SBBO
algorithm with DC framework is evaluated on CEC 2010
benchmark suite. BBO variants, SaNSDE [17], and CMA-ES

–4 –3 –2 –1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

µ = 0, σ = 1.5
µ = 0, σ = 1

µ = 0, σ = 0.5
µ = 0, σ = 0.2

Figure 2: Normal distribution with various standard deviations.

Computational Intelligence and Neuroscience 5



[55] for LSOPs are compared with SBBO in terms of solution
accuracy, since SaNSDE and CMA-ES are used in the
context of CC, named as CC_SaNSDE CC-CMAES in the
paper. In the third part, we provide the study of the con-
tribution-based resource allocation in DC framework to
show its effectiveness for LSOPs.

4.1. Benchmark Functions and Experimental Settings. *e
functions selected to evaluate the algorithm in our paper are
CEC 2010 benchmark suite for LSGO [56]. Almost all LSO
algorithms were evaluated on this benchmark suite. *e CEC
2010 benchmark consists of 20 functions, listed in Table 1.

4.2. Parameter Sensitivity. In the proposed method, three
parameters need to be determined before the experiment.
In SBBO, β, a learning constant, determines how much in-
formation will be shared between the individuals. To

investigate the constant β, we examine the change of fitness on
both uni- and multimodal test problems with varying degrees
of separability (f4, f5, f9, and f10 from Table 1). *e fitness
averaged over 25 independent runs as β increases is shown in
Figure 3, from which we note that the fitness profiles on both
uni- and multimodal problems with varying degrees of
separability are a bit different. It is straightforward that β� 0.9
performs best. *rough the fitness comparison, as we dis-
cussed above, only better individual’s information can be
emigrated to the evolved individual. As we all know, more
good information sharing can result in faster convergence.
*erefore, a large constant (close to 1) is preferred, which is
confirmed in the experiments. When β� 0.5 or β� 0.7, only a
relative small part of promising features can be shared, which
degrades the information communication between in-
dividuals to some extent. When β is larger than 1, more
uncertain information will be introduced to deteriorate the
evolved individual. Hence, β� 0.9 is adopted here.

(1) Select Hi according to immigration rate λi based on equation (1);
(2) For j� 1 to i, do
(3) Select Hj according to emigration rate μj based on equation (2);
(4) If fj≤ fi, do
(5) SIV in Hj migrate to Hi based on equation (5);
(6) Else
(7) SIV in Hj migrate to Hi based on equation (6);
(8) End if
(9) End for

ALGORITHM 2: Pseudocodes of selective migration operator.

(1) [imp_best, a]� sort (RFI);
(2) l� a (length (RFI));
(3) Evolve subgroup l by a certain EA; //SBBO is used here;
(4) RFIl � (ft−1(Hbest′ )−ft(Hbest))/ft−1(Hbest′ ); //Calculate the RFI of subgroup l;
(5) RFI (l, :)�RFIl; //Store the RFIl into an archive;

ALGORITHM 3: Pseudocodes of resource allocation based on RFI. *erein, RFI is the relative fitness improvement; imp_best is the largest
RFI, l is the corresponding subgroup number.

(1) Divide f into D exclusive subcomponents according to RDG [18];
(2) Initial imp_best� 0;
(3) Initial RFI� zeros (D, 1);
(4) If imp_best≤ ξ (ξ is a threshold value), do
(5) For i� 1:D, do
(6) Evolve subgroup i by Algorithm 2;
(7) Update RFI based on equation (7);
(8) End for
(9) Else
(10) Allocate computing resource to the subgroup l and evolve it according to Algorithm 3;
(11) End if
(12) Stop if halting criteria are satisfied; otherwise go to If for the next evolution.

ALGORITHM 4: Pseudocodes of CC_SBBO_RA. *erein, f is an objective function; D is the number of subcomponents.

6 Computational Intelligence and Neuroscience



In BBO, c is a normal distributed random number with
smaller variations, which determines the local search ability.
To investigate the appropriate variation, the same setting
except the variation (0.1, 0.2, and 0.3), the change of fitness is
shown in Figure 4. It is obvious that c � norm (0 and 0.2)

performs best except f10, which is a multimodal function. If
the variation is 0.1, the local area is too small to search.While
the variation is 0.3, the local search is too large so that it
cannot be exploited enough. In this paper, c � norm (0 and
0.2) is adopted.

Table 1: *e summary of functions in CEC 2010 benchmark suite.

Function name Properties Search range Separability
F1: shifted elliptic function Unimodal; shifted [−100, 100]D

Fully separableF2: shifted Rastrigin’s function Multimodal; shifted [−5, 5]D
F3: shifted Ackley’s function Multimodal; shifted [−32, 32]D

F4: single-group shifted 50-rotated elliptic function Unimodal; shifted [−100, 100]D

Single separable subcomponent

F5: single-group shifted 50-rotated Rastrigin’s
function Multimodal; shifted [−5, 5]D

F6: single-group shifted 50-rotated Ackley’s function Multimodal; shifted [−32, 32]D
F7: single-group shifted 50-dimensional Schwefel’s Unimodal; shifted [−100, 100]D
F8: single-group shifted 50-dimensional
Rosenbrock’s Multimodal; shifted [−100, 100]D

F9: 10-group shifted 50-rotated elliptic function Unimodal; shifted [−100, 100]D

D/2m separable subcomponents
F10: 10-group shifted 50-rotated Rastrigin function Multimodal; shifted [−5, 5]D
F11: 10-group shifted 50-rotated Ackley function Multimodal; shifted [−32, 32]D
F12: 10-group shifted 50-dimensional Schwefel’s Unimodal; shifted [−100, 100]D
F13: 10-group shifted 50-dimensional Rosenbrock’s Multimodal; shifted [−100, 100]D

F14: 20-group shifted 50-rotated elliptic function Unimodal; shifted [−100, 100]D

D/m separable subcomponents

F15: 20-group shifted 50-rotated Rastrigin’s function Multimodal; shifted [−5, 5]D
F16: 20-group shifted 50-rotated Ackley function Multimodal; shifted [−32, 32]D
F17: 20-group shifted 50-rotated Schwefel’s function Unimodal; shifted [−100, 100]D
F18: 20-group shifted 50-rotated Rosenbrock’s
function Multimodal; shifted [−100, 100]D

F19: shifted Schwefel’s function 1.2 Unimodal; shifted [−100, 100]D Fully nonseparableF20: shifted Rosenbrock’s function Multimodal; shifted [−100, 100]D

Note. m is the group size, and D is the dimension. In the CEC’2010 benchmark suite, m� 50, D� 1000.

0

0.5

1

1.5

2

2.5

f

×1013 Fun 04

0.5 0.7 0.9 1.1
Beta

(a)

×108 Fun 05

0.5 0.7 0.9 1.1
Beta

f

0

1

2

3

(b)

0.5

1

1.5

2

f

×109 Fun 09

0.5 0.7 0.9 1.1
Beta

(c)

Fun 10

0.5 0.7 0.9 1.1
Beta

f

3000

3500

4000

4500

5000

(d)

Figure 3: Change of the average fitness over the different β values (0.5, 0.7, 0.9, and 1.1) on f4, f5, f9, and f10.

Computational Intelligence and Neuroscience 7



In the CC_SBBO_RA, the threshold value ξ, an extra
constraint that determines which subgroup is in the
temporal stagnation condition, needs to be explored in
detail. As discussed above, RFI is used to measure each
subgroup contribution, based on which the subgroup to
be evolved is selected. *at is to say, the smaller the RFI,
the more likely the related subgroup to be stagnant. Since
RFI is a relative value, we observe the change of fitness
over different ξ values (0.1, 0.01, 0.015, and 0.001). When ξ
is a large value (such as 0.1), as shown in Figure 5, the
constraint will be too strict to determine stagnation.
When ξ is too small, limited computing resource will be
still assigned to stagnate subgroups. From the empirical
experiment, ξ � 0.015 performs best, which is adopted in
the paper.

4.3. Comparisons of BBO with Its Variants and Other Rep-
resentative Algorithms. To the best of our knowledge,
UEMO [7] was the first attempt to evaluate BBO variant’s
performance on LSOP benchmarks. UEMO adopted an
extended migration operator to avoid the issue of
shrinking the searching space due to blended migration
operator. UEMO outperformed the original BBO w.r.t
both best and average performance for LSOPs. As the best
BBO variant for LSOPs, we compare our SBBO with it.
Both algorithms are embedded into DC framework with
the strategy of cooperative coevolution, every algorithm
is called CC_Algorithm. *e decomposition method
adopted in our paper is RDG [18], which is the most
accurate and efficient method so far. *e total fitness

evaluations (FEs) is 3e6 both for decomposition and
optimization.

*e best, mean, standard deviation values are presented
in Table 2. CC_SBBO significantly outperforms CC_BBO
on all benchmark problems. Furthermore, CC_SBBO,
compared with CC_UEMO, achieves best solution quality
on 17 benchmark functions and is competitive for the rest 3
functions. CC_SBBO’s efficiency is attributed to the fact that
the selective migration operator keeps the good exploration
ability and focuses more on exploitation compared to the
other migration operators.

SaNSDE [17], as a base optimizer, is widely used to
solve LSOPs due to its efficiency, which adopts the strategy
of neighborhood search and adaptation [57]. As an effi-
cient and most used EA for LSOPs, CC_SaNSDE is
compared with CC_SBBO, as shown in Table 2. CC_SBBO
performs better than CC_SaNSDE on 5 benchmark
functions, especially for fully separable functions.
CC_SBBO can compete with CC_SaNSDE on function 6,
11, 14, 15, and 19. *e good performance of CC_SBBO
attributes to the proposed selective migration operator
which increases its global search diversity and local search
ability. In addition, migrated individuals and immigrated
individuals of SBBO are selected according to the mi-
gration curve with a certain probability rather than ran-
dom selection, which improves its performance to some
degree. CC_SaNSDE performs better than CC_SBBO on
the other 10 functions due to its varied neighborhood
search operators and parameter adaptation. From the
statistical results, CC_SBBO cannot beat CC_SaNSDE
completely but it still has some advantages over

0.1 0.2 0.3
Normal distribution with various

standard deviations

3

4

5

6

7

8

f

Fun 04×1012

(a)

0.1 0.2 0.3
Normal distribution with various

standard deviations

f

0

1

2

3
Fun 05×108

(b)

0.1 0.2 0.3
Normal distribution with various

standard deviations

f

2

2.5

3
Fun 09×108

(c)

0.1 0.2 0.3
Normal distribution with various

standard deviations

f

2000

2500

3000

3500
Fun 10

(d)

Figure 4: Change of the average fitness over c with different variations (0.1, 0.2, and 0.3) on f4, f5, f9, and f10.

8 Computational Intelligence and Neuroscience



f

0.001 0.015 0.01 0.1
Threshold value Xi

3
4
5
6
7
8

Fun 04×1012

(a)

f

0.001 0.015 0.01 0.1
Threshold value Xi

0

0.5

1

1.5

2
Fun 05×108

(b)

f

0.001 0.015 0.01 0.1
Threshold value Xi

2

2.5

3

3.5

4
Fun 09×108

(c)

f

0.001 0.015 0.01 0.1
Threshold value Xi

2900

3000

3100

3200

3300

3400
Fun 10

(d)

Figure 5: Change of the average fitness over c with different threshold value on f4, f5, f9, and f10.

Table 2: *e results of the CC_BBO, CC_UEMO, CC_SBBO, and CC_SaNSDE algorithms on the CEC’2010 benchmark problems.

Function Stats CC_BBO CC_UEMO CC_SBBO CC_SaNSDE CC_CMAES

f1
Best 1.99e+ 10↑ 7.94e+ 09↑ 3.40e+ 06 8.42e− 02↓ 1.31e+ 05↓
Mean 2.22e+ 10 1.17e+ 10 1.40e+ 09 2.07e + 00 2.84e+ 05
Std 1.60e+ 09 1.01e+ 10 1.13e+ 09 6.76e + 00 2.28e+ 04

f2
Best 3.98e+ 03↑ 5.40e+ 02‖ 4.62e + 02 4.12e+ 03↑ 2.81e+ 03↑
Mean 4.02e+ 03 7.96e+ 02 1.07e + 03 4.41e+ 03 4.43e+ 03
Std 6.43e+ 01 1.88e+ 02 2.06e + 02 1.68e+ 02 1.77e+ 02

f3
Best 1.52e+ 01↑ 9.71e+ 00‖ 2.42e + 00 1.64e+ 01↑ 8.66e+ 00↑
Mean 1.54e+ 01 1.04e+ 01 1.07e + 01 1.66e+ 01 1.06e+ 00
Std 1.31e− 01 8.01e− 01 1.21e + 00 3.05e− 01 3.49e− 01

f4
Best 4.11e+ 14↑ 3.99e+ 13↑ 1.25e+ 13 1.08e+ 12↓ 8.45e + 05↓
Mean 5.68e+ 14 4.89e+ 13 5.15e+ 13 2.74e+ 12 1.01e + 06
Std 1.19e+ 14 8.56e+ 12 2.96e+ 13 3.19e+ 12 9.37e + 04

f5
Best 4.93e+ 08↑ 2.13e+ 08↑ 5.26e+ 07 1.16e+ 08↑ 6.81e+ 07‖

Mean 5.12e+ 08 2.84e+ 08 1.88e+ 08 1.28e+ 08 9.52e+ 07
Std 1.15e+ 07 4.99e+ 07 7.20e+ 07 1.92e+ 07 2.23e+ 07

f6
Best 1.63e+ 07↑ 2.66e+ 06↑ 1.59e+ 01 1.73e+ 01‖ 8.64e− 01↓
Mean 1.65e+ 07 7.62e+ 06 9.19e+ 01 1.83e+ 01 9.17e− 01
Std 1.62e+ 05 3.41e+ 06 2.94e+ 00 5.70e+ 01 4.23e− 01

f7
Best 9.27e+ 10↑ 1.33e+ 10‖ 8.92e+ 09 2.07e+ 01↓ 6.84e− 19↓
Mean 1.02e+ 11 2.07e+ 10 2.44e+ 10 2.16e+ 01 7.41e− 19
Std 8.00e+ 09 1.01e+ 10 8.72e+ 09 7.57e+ 00 8.35e− 20

f8
Best 1.72e+ 15↑ 4.09e+ 12↑ 2.06e+ 08 3.14e+ 05↓ 1.21e− 17↓
Mean 2.34e+ 15 1.61e+ 15 5.95e+ 14 5.59e+ 05 7.97e + 05
Std 6.99e+ 14 3.26e+ 15 1.31e+ 15 2.97e+ 05 1.63e + 06

f9
Best 5.90e+ 09↑ 1.13e+ 09↑ 2.04e+ 08 4.28e+ 07↓ 4.23e + 06↓
Mean 6.26e+ 09 1.54e+ 09 1.11e+ 09 4.70e+ 07 4.82e + 06
Std 2.20e+ 08 3.31e+ 08 1.58e+ 09 5.22e+ 06 5.25e + 05

Computational Intelligence and Neuroscience 9



CC_SaNSDE in some aspects as we mentioned before.
Although both CC_SaNSDE and CC_SBBO perform worse
than CC_CMAES on most functions, SaNSDE is still
widely used as a base optimizer to deal with LSOPs due to
its fast convergence. Analogue to SaNSDE, CC_SBBO
provides us an alternative algorithm to deal with LSOPs,
especially for some fully separable problems.

As an efficient algorithm for LSOPs, covariance matrix
adaptation evolution strategy (CMA-ES) possesses a
specific sampling strategy which samples offspring
through a multivariate Gaussian distribution [58]. Also,
this distribution is updated according to the offspring.
From Table 2, CC_CMAES achieves best results on 13
functions due to its sampling strategy. *e distribution
estimated from the population can represent the corre-
lation between decision variables. *us, it is natural that
CC_CMAES performs best on most partial separable and
nonseparable functions, as indicated in [58]. Moreover,
CC_CMAES can achieve good performance dealing with
functions of rotation characteristic, and most test func-
tions used in the paper possess the rotation characteristic.

However, the performance of CC_CMAES deteriorates
when it deals with fully separable and multimodal func-
tions, such as function 2 and 3. Since there is no correlation
between decision variables, the advantage of its sampling
strategy declines to some extent. Moreover, CC_CMAES is
more prone to getting stuck in local optimum when
dealing with large-scale multimodal problems with no
correlation between decision variables. We cannot ignore
that some fully separable and multimodal problems do
exist in the real world. In that cases, CC_SBBO can per-
form better than CC_CMAES according to Table 2. It is
worth noting that, as pointed in [59], the initial candidate
solution x ∈ Rn and the initial global step size σ ∈ R+ of
CMA-ES must be chosen problem dependent, also, the
optimum should presumably be within the cube
x ± 2σ(1, . . . , 1)T. *at is to say, the parameters of CMA-
ES need elaborate adjustment for different problems, while
SBBO and SaNSDE are random initialized avoiding
complex parameter tuning and are not limited to the
region of the optimum. Furthermore, it is of promising
potential to improve the performance of both SBBO and

Table 2: Continued.

Function Stats CC_BBO CC_UEMO CC_SBBO CC_SaNSDE CC_CMAES

f10
Best 7.03e+ 03↑ 3.12e+ 03↑ 2.48e+ 03 4.26e+ 03↑ 2.64e+ 03‖

Mean 7.07e+ 03 3.41e+ 03 3.08e+ 03 4.33e+ 03 2.88e+ 03
Std 4.90e+ 01 1.82e+ 02 3.97e+ 02 1.39e+ 02 1.29e+ 02

f11
Best 1.82e+ 02↑ 6.58e+ 01↑ 2.18e+ 01 2.34e+ 01‖ 1.49e− 12↓
Mean 1.84e+ 02 7.93e+ 01 6.50e+ 01 5.96e+ 01 3.58e− 02
Std 9.94e− 01 1.03e+ 01 2.12e+ 01 2.75e+ 01 1.79e− 01

f12
Best 1.24e+ 06↑ 2.49e+ 05↑ 1.49e+ 04 1.25e+ 03↓ 3.12e− 22↓
Mean 1.28e+ 06 2.89e+ 05 2.19e+ 04 1.53e+ 03 4.23e− 22
Std 2.32e+ 04 4.15e+ 04 1.11e+ 03 4.66e+ 02 8.39e− 23

f13
Best 2.97e+ 10↑ 1.29e+ 10↑ 1.98e+ 08 6.59e+ 02↓ 3.21e + 00↓
Mean 3.19e+ 10 1.55e+ 10 8.50e+ 09 7.41e+ 02 5.90e + 00
Std 2.19e+ 09 1.91e+ 09 7.23e+ 09 2.57e+ 02 4.01e + 00

f14
Best 1.13e+ 10↑ 1.12e+ 09↑ 3.62e+ 08 3.88e+ 08‖ 3.17e− 20↓
Mean 1.17e+ 10 1.43e+ 09 8.11e+ 08 3.97e+ 08 3.91e− 20
Std 2.73e+ 08 2.79e+ 08 5.62e+ 08 2.31e+07 2.12e− 21

f15
Best 1.01e+ 04↑ 4.45e+ 03‖ 4.41e+ 03 5.78e+ 03‖ 1.91e+ 03‖

Mean 1.02e+ 04 4.82e+ 03 5.13e+ 03 5.84e+ 03 1.95e+ 03
Std 9.09e+ 01 3.35e+ 02 4.37e+ 02 1.01e+ 02 1.11e+ 02

f16
Best 3.31e+ 02↑ 1.26e+ 02↑ 4.79e+ 01 2.56e− 13↓ 8.24e− 13↓
Mean 3.33e+ 02 1.46e+ 02 9.00e+ 01 2.67e− 13 8.44e− 13
Std 1.33e+ 00 1.80e+ 01 1.49e+ 01 9.81e− 15 2.10e− 14

f17
Best 2.04e+ 06↑ 3.27e+ 05↑ 3.13e+ 04 4.01e+ 04↑ 6.72e− 24↓
Mean 2.14e+ 06 3.57e+ 05 4.27e+ 04 4.08e+ 04 6.91e− 24
Std 8.06e+ 04 1.99e+ 04 3.64e+ 03 2.56e+ 03 2.06e− 25

f18
Best 5.85e+ 10↑ 2.01e+ 10‖ 3.51e+ 08 1.01e+ 03↓ 1.46e + 01↓
Mean 6.19e+ 10 3.88e+ 10 3.42e+ 10 1.19e+ 03 1.50e + 01
Std 1.95e+ 09 1.70e+ 10 1.48e+ 10 1.69e+ 02 7.20e + 00

f19
Best 3.96e+ 07↑ 6.26e+ 06↑ 1.29e+ 06 1.71e+ 06‖ 5.31e + 03↓
Mean 4.51e+ 07 9.14e+ 06 1.77e+ 06 1.73e+ 06 5.47e + 03
Std 7.12e+ 06 3.61e+ 06 5.50e+ 05 7.52e+ 04 7.08e + 02

f20
Best 3.74e+ 12↑ 2.56e+ 11↑ 2.23e+ 11 3.87e+ 03↓ 8.47e + 02↓
Mean 9.98e+ 12 9.86e+ 11 3.54e+ 11 4.09e+ 03 8.27e + 02
Std 4.46e+ 11 4.94e+ 11 1.25e+ 11 3.29e+ 03 6.35e + 01

Note. *e notation “↑/‖/↓” represents that CC_SBBO generated statistically “better/equally-well/worse” solution than the other algorithms. *e best
performances are highlighted bold.

10 Computational Intelligence and Neuroscience



Table 3: *e results of the CC_SBBO_CB, CC_SBBO_FR, CC_UEMO_RA, and CC_SBBO_RA algorithms on the CEC’2010 benchmark
problems.

Function Stats CC_SBBO_CB CC_SBBO_FR CC_UEMO_RA CC_SBBO_RA

f1
Best 1.29e+ 11↑ 1.35e+ 11↑ 1.34e+ 07↑ 0.00e + 00
Mean 1.37e+ 11 1.45e+ 11 4.26e+ 07 6.14e− 26
Std 1.04e+ 10 1.08e+ 10 2.35e+ 07 1.08e− 25

f2
Best 5.24e+ 03↑ 1.13e+ 03↑ 2.34e+ 02↑ 4.37e + 01
Mean 5.28e+ 03 1.19e+ 03 5.65e+ 02 6.24e + 01
Std 4.97e+ 01 4.16e+ 01 4.41e+ 02 2.40e + 01

f3
Best 2.05e+ 01↑ 1.22e+ 01↑ 3.21e− 01↑ 1.17e− 12
Mean 2.05e+ 01 1.26e+ 01 5.67e− 01 1.79e− 11
Std 2.74e− 02 2.05e− 01 4.82e− 01 4.00e− 11

f4
Best 9.35e+ 14↑ 1.00e+ 14↑ 8.53e+ 12↑ 7.99e + 08
Mean 9.52e+ 14 1.23e+ 14 9.62e+ 13 9.17e + 08
Std 1.07e+ 13 2.42e+ 13 8.64e+ 12 2.37e + 08

f5
Best 6.12e+ 08↑ 4.07e+ 08↑ 7.22e+ 07↑ 3.98e + 06
Mean 6.40e+ 08 4.24e+ 08 8.01e+ 07 4.21e + 06
Std 7.46e+ 07 1.80e+ 07 5.26e+ 07 3.60e + 06

f6
Best 1.98e+ 07↑ 1.08e+ 03↑ 2.18e+ 06↑ 7.10e− 09
Mean 2.00e+ 07 3.85e+ 03 3.54e+ 06 8.90e− 09
Std 3.69e− 01 2.39e+ 03 2.43e+ 06 3.82e− 09

f7
Best 2.66e+ 11↑ 8.15e+ 08↑ 7.23e+ 09↑ 1.23e + 01
Mean 3.72e+ 11 8.69e+ 08 8.92e+ 09 2.18e + 01
Std 3.86e+ 02 4.44e+ 07 7.18e+ 09 1.13e + 01

f8
Best 2.21e+ 08↑ 1.11e+ 08↑ 9.62e+ 07↑ 4.82e + 04
Mean 3.12e+ 08 1.93e+ 08 1.57e+ 08 5.33e + 04
Std 6.34e+ 07 6.28e+ 07 8.29e+ 07 1.02e + 04

f9
Best 3.45e+ 10↑ 6.90e+ 09↑ 2.50e+ 08‖ 1.73e + 08
Mean 4.36e+ 10 8.20e+ 09 2.82e+ 08 1.77e + 08
Std 1.65e+ 09 9.71e+ 08 7.82e+ 06 5.22e + 06

f10
Best 4.29e+ 03↑ 5.18e+ 03↑ 2.31e + 03‖ 2.99e+ 03‖

Mean 5.03e+ 03 5.28e+ 03 2.41e + 03 3.00e+ 03
Std 3.09e+ 02 7.76e+ 01 1.43e + 02 1.19e+ 01

f11
Best 2.22e+ 02↑ 4.29e+ 01↑ 9.10e+ 01↑ 8.52e− 14
Mean 2.24e+ 02 5.44e+ 01 9.43e+ 01 9.87e− 14
Std 1.34e+ 00 1.33e+ 01 3.42e+ 00 1.06e− 14

f12
Best 2.05e+ 06↑ 4.21e+ 05↑ 7.18e+ 04↑ 4.04e + 04
Mean 2.06e+ 06 4.53e+ 05 7.59e+ 04 4.47e + 04
Std 2.63e+ 04 2.88e+ 04 4.25e+ 03 4.26e + 03

f13
Best 2.31e+ 08↑ 2.02e+ 05↑ 1.54e+ 04↑ 1.11e + 03
Mean 2.46e+ 08 2.18e+ 05 1.76e+ 04 1.60e + 03
Std 1.16e+ 07 1.03e+ 04 1.84e+ 02 1.13e + 02

f14
Best 2.50e+ 09↑ 2.82e+ 09↑ 2.03e+ 09↑ 9.20e + 08
Mean 2.76e+ 09 2.98e+ 09 2.75e+ 09 9.97e + 08
Std 2.69e+ 08 1.04e+ 08 2.47e+ 08 7.49e + 07

f15
Best 1.00e+ 04↑ 7.83e+ 03‖ 5.29e + 03‖ 6.09e+ 03
Mean 1.01e+ 04 7.95e+ 03 5.81e + 03 6.24e+ 03
Std 1.01e+ 02 1.22e+ 02 1.64e + 02 1.25e+ 02

f16
Best 3.85e+ 02↑ 6.51e+ 01↑ 9.24e+ 01↑ 9.05e− 10
Mean 3.86e+ 02 8.47e+ 01 9.94e+ 01 1.18e− 09
Std 1.92e+ 00 1.63e+ 01 5.48e+ 01 9.80e− 10

f17
Best 2.09e+ 06↑ 5.77e+ 05‖ 9.64e+ 05↑ 2.13e + 05
Mean 2.19e+ 06 5.91e+ 05 1.02e+ 06 3.12e + 05
Std 7.14e+ 04 1.60e+ 04 3.28e+ 06 2.14e + 05

f18
Best 4.32e+ 08↑ 3.20e+ 03‖ 5.52e+ 07↑ 2.75e + 03
Mean 4.76e+ 08 4.81e+ 03 5.64e+ 07 2.96e + 03
Std 3.91e+ 07 1.07e+ 03 1.25e+ 07 2.32e + 03

Note. *e notation “↑/‖/↓” represents that CC_SBBO_RA generated statistically “better/equally-well/worse” solution than the other algorithms. *e best
performances are highlighted bold.

Computational Intelligence and Neuroscience 11



0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5 ×1011

×104

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

1 2 3 4 5 60
f01

(a)

×104

×104

0

0.5

1

1.5

2

2.5

3

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

1 2 3 4 5 60
f02

(b)

×104

0

5

10

15

20

25

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

1 2 3 4 5 60
f03

(c)

×104

1012
1012.5

1013
1013.5

1014
1014.5

1015
1015.5

1016
1016.5

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

1 2 3 4 5 60
f04

(d)

×104

×108

0

2

4

6

8

10

12

14

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

1 2 3 4 5 60
f05

(e)

×104

10–10
10–8
10–6
10–4
–102

100
102
104
106
108

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

1 2 3 4 5 60
f06

(f )

Figure 6: Continued.

12 Computational Intelligence and Neuroscience



×104

100

102

104

106

108

1010

1012

1014

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

43 5 61 20
f07

(g)

×104

104

106

108

1010

1012

1014

1016

1018

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

1 2 3 4 5 60
f08

(h)

×104

108

108.5

109

109.5

1010

1010.5

1011

1011.5

1012

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

5 63 41 20
f09

(i)

×104

×104

0

0.5

1

1.5

2

2.5

3

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

42 3 5 610
f10

(j)

×104

0

50

100

150

200

250

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

1 2 3 4 5 60
f11

(k)

×104

104.5

105

105.5

106

106.5

107

107.5

108

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

1 2 3 4 5 60
f12

(l)

Figure 6: Continued.

Computational Intelligence and Neuroscience 13



SaNSDE to cope with rotated functions by taking ad-
vantage of the characteristic of CMA-ES.

4.4. Efficiency of Resource Allocation. Contribution-based
cooperative coevolution was first proposed to deal with im-
balanced large-scale problems [42]. Each group is measured
by the accumulated contribution, which shows preference for

the good initial groups. *e calculated contribution for each
group i at cycle t can be expressed as follows:

Δfi
t � Δfi

t−1 + ft−1 Hbest′( −ft Hbest( , (8)

where ft−1(Hbest′ ) and ft(Hbest) refer to the best overall
fitness value before and after subgroup i undergoes the
evolution, respectively, and Δfi

t−1 is the calculated

×104

103
104
105
106
107
108
109

1010
1011
1012
1013

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

52 3 4 60 1
f13

(m)

×104

108.5

109

109.5

1010

1010.5

1011

1011.5

1012

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

52 3 4 60 1
f14

(n)

×104

×104

0.5

1

1.5

2

2.5

3

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

43 5 61 20
f15

(o)

×104

0
50

100
150
200
250
300
350
400
450

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

1 2 3 4 5 60
f16

(p)

×104

105.5

106

106.5

107

107.5

108

108.5

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

5 63 41 20
f17

(q)

×104

103
104
105
106
107
108
109

1010
1011
1012
1013

CC_SBBO_CB
CC_SBBO_FR

CC_UEMO_RA
CC_SBBO_RA

42 3 5 610
f18

(r)

Figure 6: *e evolution process of the best values on the CEC’2010 benchmark suite. *e results were averaged over 25 runs. *e vertical
axis is the function value and the horizontal axis is the number of generations.

14 Computational Intelligence and Neuroscience



contribution of group i at cycle t−1. In this paper, we
combine the aforementioned contribution measurement
method with SBBO in the context of CC as the comparison
algorithm, named as CC_SBBO_CB, and take it in
comparison.

To save computation resource, the subgroups are out of
evolution if they are considered as stagnant ones [44]. If
mean and standard deviation of individuals remain un-
changed for several successive generations, this subgroup is
regarded as stagnation. To weaken the importance of initial
good groups, they calculated the contribution of each group i
at cycle t can be expressed as follows:

Δfi
t � Δfi

t−1 +
ft−1 Hbest′( −ft Hbest( 




2
. (9)

we consider the framework of resource allocation in the
context of CC, and name it CC_SBBO_FR.

Our proposed computing resource allocation (RA) is
considered both in CC_UEMO and CC_SBBO, called
CC_UEMO_RA and CC_SBBO_RA correspondingly. *e
results are presented in Table 3, and the evolutionary process is
shown in Figure 6. It can be seen from Figure 6 that our
contribution-based computing resource allocation scheme can
greatly enhance the convergence rate and the solution accu-
racy except for problems f10 and f15, which are multimodal
functions and easy to be trapped in local optimum. It is
obvious that CC_SBBO_CB can trap in local optimum easily
due to its preference to good initial subgroups. Compared to
CC_SBBO_CB and CC_SBBO_FR, our proposed resource
allocationmethod can react quickly to the contribution change
during evolution and hence decrease the computation budget
on stagnant groups. Since f19 and f20 are totally nonseparate
functions, we do not consider resource allocation between
subgroups on these two scenarios. *erefore, CC_SBBO_RA
performs best on separable and partial separable functions. To
conclude, our proposed contribution-based resource alloca-
tion scheme performs efficiently for LSOPs.

5. Conclusion

In this paper, we propose a selective migration operator for
BBO. *e selective migration operator can enhance the
exploitation ability as well as keep its good exploration
ability compared with the original migration operator.
When dealing with LSOPs, the cooperative coevolution
framework is adopted in our paper. To address the im-
balance contribution of each subgroup to the overall fit-
ness value in the context of DC, a more efficient
contribution-based resource allocation method is pro-
posed. *e relative performance improvement is utilized
to measure the contribution as it reflects the recent im-
provements timely. Also, a threshold strategy, as an extra
constraint, is adopted to measure whether the subgroup is
stagnant. Computing resource will not be assigned to the
stagnant subgroup in the cycle. *e CEC’2010 large-scale
benchmark functions were used to evaluate the perfor-
mance of CC_SBBO_RA. From our experimental results,
several conclusions can be drawn.

Firstly, BBO with selective migration operator can sig-
nificantly improve the performance for LSOPs compared
with other BBO variants, especially for those fully separable
problems. Secondly, our proposed contribution-based re-
source allocation method can clearly enhance the EAs’
performance when embedded into the DC framework.

In the future, we intend to improve the performance of
BBO dealing with large-scale multimodal optimization
problems. Also, it is interesting to explore an adaptive value
for stagnation measurements with high accuracy.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Disclosure

*e paper was reported in Doctoral Workshop on Appli-
cation of Artificial Intelligence in Manufacturing, organized
by Tongji University and Lorraine University, in June 2019.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is research has been supported by the Key Research and
Development Project of National Ministry of Science and
Technology under grant no. 2018YFB1305304, the National
Natural Science Foundation of China under grant no.
61873191, and the International Joint Training of In-
terdisciplinary Innovative Talents for Postgraduates of
Tongji University under grant no. 2019XKJC-007.

References

[1] D. Simon, “Biogeography-based optimization,” IEEE Trans-
actions on Evolutionary Computation, vol. 12, no. 6,
pp. 702–713, 2008.

[2] X. Zhang, Q. Kang, Q. Tu, J. Cheng, and X. Wang, “Efficient
and merged biogeography-based optimization algorithm for
global optimization problems,” Soft Computing, vol. 23,
no. 12, pp. 4483–4502, 2019.

[3] H. Ma, Z. Yang, P. You, and M. Fei, “Multi-objective bio-
geography-based optimization for dynamic economic emis-
sion load dispatch considering plug-in electric vehicles
charging,” Energy, vol. 135, pp. 101–111, 2017.

[4] W. Guo, L. Wang, and Q. Wu, “Numerical comparisons of
migration models for multi-objective biogeography-based
optimization,” Information Sciences, vol. 328, pp. 302–320,
2016.

[5] H. Ma and D. Simon, “Blended biogeography-based opti-
mization for constrained optimization,” Engineering Appli-
cations of Artificial Intelligence, vol. 24, no. 3, pp. 517–525,
2011.

[6] X. Zhang, Q. Kang, J. Cheng, and X. Wang, “A novel hybrid
algorithm based on biogeography-based optimization and
grey wolf optimizer,” Applied Soft Computing, vol. 67,
pp. 197–214, 2018.

Computational Intelligence and Neuroscience 15



[7] W. Guo, L. Wang, C. Si, Y. Zhang, H. Tian, and J. Hu, “Novel
migration operators of biogeography-based optimization and
Markov analysis,” Soft Computing, vol. 21, no. 22, pp. 6605–
6632, 2017.

[8] A. P. Rifai, H.-T. Nguyen, H. Aoyama, S. Z. M. Dawal, and
N. A. Masruroh, “Non-dominated sorting biogeography-
based optimization for bi-objective reentrant flexible
manufacturing system scheduling,” Applied Soft Computing,
vol. 62, pp. 187–202, 2018.

[9] G. Yang and Y. Liu, “Optimizing an equilibrium supply chain
network design problem by an improved hybrid biogeography
based optimization algorithm,” Applied Soft Computing,
vol. 58, pp. 657–668, 2017.

[10] A. H. Niknamfar, S. T. A. Niaki, and S. A. A. Niaki, “Op-
position-based learning for competitive hub location: a bi-
objective biogeography-based optimization algorithm,”
Knowledge-Based Systems, vol. 128, pp. 1–19, 2017.

[11] H. Ma and D. Simon, Evolutionary Computation with Bio-
geography-Based Optimization, John Wiley & Sons, Hoboken,
NJ, USA, 2017.

[12] Z. Yang, B. Sendhoff, K. Tang, and X. Yao, “Target shape
design optimization by evolving B-splines with cooperative
coevolution,” Applied Soft Computing, vol. 48, pp. 672–682,
2016.

[13] H. F. Teng, Y. Chen,W. Zeng, Y. J. Shi, and Q. H. Hu, “A dual-
system variable-grain cooperative coevolutionary algorithm:
satellite-module layout design,” IEEE Transactions on Evo-
lutionary Computation, vol. 14, no. 3, pp. 438–455, 2010.

[14] M. Weber, F. Neri, and V. Tirronen, “Shuffle or update
parallel differential evolution for large-scale optimization,”
Soft Computing, vol. 15, no. 11, pp. 2089–2107, 2011.

[15] D. Molina, M. Lozano, A. M. Sánchez, and F. Herrera,
“Memetic algorithms based on local search chains for large
scale continuous optimisation problems: MA-SSW-Chains,”
Soft Computing, vol. 15, no. 11, pp. 2201–2220, 2011.

[16] Y. Wang, B. Li, and T. Weise, “Estimation of distribution and
differential evolution cooperation for large scale economic
load dispatch optimization of power systems,” Information
Sciences, vol. 180, no. 12, pp. 2405–2420, 2010.

[17] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary
optimization using cooperative coevolution,” Information
Sciences, vol. 178, no. 15, pp. 2985–2999, 2008.

[18] Y. Sun, M. Kirley, and S. K. Halgamuge, “A recursive de-
compositionmethod for large scale continuous optimization,”
IEEE Transactions on Evolutionary Computation, vol. 22,
no. 5, pp. 647–661, 2018.

[19] D. Whitley, “A genetic algorithm tutorial,” Statistics and
Computing, vol. 4, no. 2, pp. 65–85, 1994.

[20] H. Ma, “An analysis of the equilibrium of migration models
for biogeography-based optimization,” Information Sciences,
vol. 180, no. 18, pp. 3444–3464, 2010.

[21] Z. Mi, Y. Xu, Y. Yu, T. Zhao, B. Zhao, and L. Liu, “Hybrid
biogeography based optimization for constrained numerical
and engineering optimization,” Mathematical Problems in
Engineering, vol. 2015, Article ID 423642, 15 pages, 2015.

[22] W. Gong, Z. Cai, and C. X. Ling, “DE/BBO: a hybrid dif-
ferential evolution with biogeography-based optimization for
global numerical optimization,” Soft Computing, vol. 15, no. 4,
pp. 645–665, 2010.

[23] G. Khademi, H.Mohammadi, andD. Simon, “Hybrid invasive
weed/biogeography-based optimization,” Engineering Appli-
cations of Artificial Intelligence, vol. 64, pp. 213–231, 2017.

[24] M. R. Lohokare, S. S. Pattnaik, B. K. Panigrahi, and S. Das,
“Accelerated biogeography-based optimization with

neighborhood search for optimization,” Applied Soft Com-
puting, vol. 13, no. 5, pp. 2318–2342, 2013.

[25] M. Ergezer, D. Simon, and D. Du, “Oppositional bio-
geography-based optimization,” in Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics,
pp. 1009–1014, San Antonio, TX, USA, October 2009.

[26] D. Simon, M. Ergezer, D. Dawei Du, and R. Rarick, “Markov
models for biogeography-based optimization,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B (Cyber-
netics), vol. 41, no. 1, pp. 299–306, 2011.

[27] H. Ma, D. Simon, and M. Fei, “Statistical mechanics ap-
proximation of biogeography-based optimization,” Evolu-
tionary Computation, vol. 24, no. 3, pp. 427–458, 2016.

[28] A. Bhattacharya and P. K. Chattopadhyay, “Biogeography-
based optimization for different economic load dispatch
problems,” IEEE Transactions on Power Systems, vol. 25, no. 2,
pp. 1064–1077, 2010.

[29] S. H. A. Rahmati and M. Zandieh, “A new biogeography-based
optimization (BBO) algorithm for the flexible job shop scheduling
problem,” International Journal of Advanced Manufacturing
Technology, vol. 58, no. 9–12, pp. 1115–1129, 2012.

[30] W. Guo, M. Chen, L. Wang, Y. Mao, and Q. Wu, “A survey of
biogeography-based optimization,” Neural Computing and
Applications, vol. 28, no. 8, pp. 1909–1926, 2017.

[31] H. Ma, D. Simon, P. Siarry, Z. Yang, and M. Fei, “Bio-
geography-based optimization: a 10-year review,” IEEE
Transactions on Emerging Topics in Computational In-
telligence, vol. 1, no. 5, pp. 391–407, 2017.

[32] B. Akay and D. Karaboga, “Artificial bee colony algorithm for
large-scale problems and engineering design optimization,”
Journal of Intelligent Manufacturing, vol. 23, no. 4,
pp. 1001–1014, 2012.

[33] W. Dong, T. Chen, P. Tino, and X. Yao, “Scaling up estimation
of distribution algorithms for continuous optimization,” IEEE
Transactions on Evolutionary Computation, vol. 17, no. 6,
pp. 797–822, 2013.

[34] X. Li and X. Yao, “Cooperatively coevolving particle swarms
for large scale optimization,” IEEE Transactions on Evolu-
tionary Computation, vol. 16, no. 2, pp. 210–224, 2012.

[35] M. N. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative co-
evolution for large scale optimization through more frequent
random grouping,” in Proceedings of the IEEE Congress on
Evolutionary Computation (CEC), pp. 1754–1761, Barcelona,
Spain, July 2010.

[36] L. Sun, S. Yoshida, X. Cheng, and Y. Liang, “A cooperative
particle swarm optimizer with statistical variable in-
terdependence learning,” Information Sciences, vol. 186, no. 1,
pp. 20–39, 2012.

[37] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-
evolution with differential grouping for large scale optimi-
zation,” IEEE Transactions on Evolutionary Computation,
vol. 18, no. 3, pp. 378–393, 2014.

[38] Y. Sun, M. Kirley, and S. K. Halgamuge, “Extended differential
grouping for large scale global optimization with direct and
indirect variable interactions,” in Proceedings of the Confer-
ence on Genetic and Evolutionary Computation, pp. 313–320,
Madrid, Spain, July 2015.

[39] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, “DG2: a
faster and more accurate differential grouping for large-scale
black-box optimization,” IEEE Transactions on Evolutionary
Computation, vol. 21, no. 6, pp. 929–942, 2017.

[40] M. A. Potter and K. A. De Jong, “A cooperative co-
evolutionary approach to function optimization,” in Pro-
ceedings of the International Conference on Parallel Problem

16 Computational Intelligence and Neuroscience



Solving from Nature, pp. 249–257, Jerusalem, Israel, October
1994.

[41] Y. Ren and Y. Wu, “An efficient algorithm for high-di-
mensional function optimization,” Soft Computing, vol. 17,
no. 6, pp. 995–1004, 2013.

[42] M. N. Omidvar, X. Li, and X. Yao, “Smart use of computa-
tional resources based on contribution for cooperative co-
evolutionary algorithms,” in Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation,
pp. 1115–1122, Dublin, Ireland, July 2011.

[43] M. N. Omidvar, B. Kazimipour, X. Li, and X. Yao, “CBCC3-
a contribution-based cooperative co-evolutionary algo-
rithm with improved exploration/exploitation balance,” in
Proceedings of the IEEE Congress on Evolutionary Compu-
tation (CEC), pp. 3541–3548, Vancouver, BC, Canada, July
2016.

[44] M. Yang, M. N. Omidvar, C. Li et al., “Efficient resource
allocation in cooperative co-evolution for large-scale global
optimization,” IEEE Transactions on Evolutionary Compu-
tation, vol. 21, no. 4, pp. 493–505, 2017.

[45] Y. H. Jia, W. N. Chen, T. Gu et al., “Distributed cooperative
co-evolution with adaptive computing resource allocation for
large scale optimization,” IEEE Transactions on Evolutionary
Computation, vol. 23, no. 2, pp. 188–202, 2018.

[46] E. Segredo, B. Paechter, C. Segura, and C. I. González-Vila,
“On the comparison of initialisation strategies in differential
evolution for large scale optimisation,” Optimization Letters,
vol. 12, no. 1, pp. 221–234, 2018.

[47] Z. Yang, K. Tang, and X. Yao, “Scalability of generalized
adaptive differential evolution for large-scale continuous
optimization,” Soft Computing, vol. 15, no. 11, pp. 2141–2155,
2011.

[48] S. Tuo, J. Zhang, X. Yuan, and L. Yong, “A new differential
evolution algorithm for solving multimodal optimization
problems with high dimensionality,” Soft Computing, vol. 22,
no. 13, pp. 4361–4388, 2018.

[49] R. G. Regis, “Evolutionary programming for high-di-
mensional constrained expensive black-box optimization
using radial basis functions,” IEEE Transactions on Evolu-
tionary Computation, vol. 18, no. 3, pp. 326–347, 2014.

[50] E. Li, H. Wang, and F. Ye, “Two-level multi-surrogate assisted
optimization method for high dimensional nonlinear prob-
lems,” Applied Soft Computing, vol. 46, pp. 26–36, 2016.

[51] C. Sun, Y. Jin, R. Cheng, J. Ding, and J. Zeng, “Surrogate-
assisted cooperative swarm optimization of high-dimensional
expensive problems,” IEEE Transactions on Evolutionary
Computation, vol. 21, no. 4, pp. 644–660, 2017.

[52] H. Wang, S. Rahnamayan, and Z. Wu, “Parallel differential
evolution with self-adapting control parameters and gener-
alized opposition-based learning for solving high-di-
mensional optimization problems,” Journal of Parallel and
Distributed Computing, vol. 73, no. 1, pp. 62–73, 2013.

[53] A. Cano and C. Garćıa-Mart́ınez, “100 million dimensions
large-scale global optimization using distributed GPU com-
puting,” in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC), pp. 3566–3573, Vancouver, BC, Canada,
July 2016.

[54] X.-W. Zheng, D.-J. Lu, X.-G. Wang, and H. Liu, “A co-
operative coevolutionary biogeography-based optimizer,”
Applied Intelligence, vol. 43, no. 1, pp. 95–111, 2015.

[55] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive
divide-and-conquer algorithm for unconstrained large-scale
black-box optimization,” ACM Transactions on Mathematical
Software, vol. 42, no. 2, pp. 1–24, 2016.

[56] K. Tang, X. Yáo, P. N. Suganthan et al., Benchmark Functions
for the CEC’ 2008 Special Session and Competition on Large
Scale Global Optimization, Nature Inspired Computation and
Applications Laboratory, USTC, Hefei, China, 2007.

[57] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential
evolution with neighborhood search,” in Proceedings of the
IEEE Congress on Evolutionary Computation (CEC),
pp. 1110–1116, Hong Kong, China, June 2008.

[58] N. Hansen, “*e CMA evolution strategy: a tutorial,” 2016,
https://arxiv.org/abs/1604.00772.

[59] C. Igel, N. Hansen, and S. Roth, “Covariance matrix adap-
tation for multi-objective optimization,” Evolutionary Com-
putation, vol. 15, no. 1, pp. 1–28, 2007.

Computational Intelligence and Neuroscience 17

https://arxiv.org/abs/1604.00772

