
ORIGINAL RESEARCH
published: 08 November 2021

doi: 10.3389/fmed.2021.740123

Frontiers in Medicine | www.frontiersin.org 1 November 2021 | Volume 8 | Article 740123

Edited by:

Alexandros-Apostolos A.

Boulogeorgos,

University of Piraeus, Greece

Reviewed by:

Stylianos E. Trevlakis,

Aristotle University of

Thessaloniki, Greece

Ilias Siniosoglou,

University of Western

Macedonia, Greece

Tobias Goehring,

University of Cambridge,

United Kingdom

*Correspondence:

Nengheng Zheng

nhzheng@szu.edu.cn

Specialty section:

This article was submitted to

Translational Medicine,

a section of the journal

Frontiers in Medicine

Received: 13 August 2021

Accepted: 04 October 2021

Published: 08 November 2021

Citation:

Kang Y, Zheng N and Meng Q (2021)

Deep Learning-Based Speech

Enhancement With a Loss Trading Off

the Speech Distortion and the Noise

Residue for Cochlear Implants.

Front. Med. 8:740123.

doi: 10.3389/fmed.2021.740123

Deep Learning-Based Speech
Enhancement With a Loss Trading
Off the Speech Distortion and the
Noise Residue for Cochlear Implants
Yuyong Kang 1, Nengheng Zheng 1,2* and Qinglin Meng 3

1Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering,

Shenzhen University, Shenzhen, China, 2 Pengcheng Laboratory, Shenzhen, China, 3 Acoustics Laboratory, School of Physics

and Optoelectronics, South China University of Technology, Guangzhou, China

The cochlea plays a key role in the transmission from acoustic vibration to neural

stimulation upon which the brain perceives the sound. A cochlear implant (CI)

is an auditory prosthesis to replace the damaged cochlear hair cells to achieve

acoustic-to-neural conversion. However, the CI is a very coarse bionic imitation of the

normal cochlea. The highly resolved time-frequency-intensity information transmitted by

the normal cochlea, which is vital to high-quality auditory perception such as speech

perception in challenging environments, cannot be guaranteed by CIs. Although CI

recipients with state-of-the-art commercial CI devices achieve good speech perception

in quiet backgrounds, they usually suffer from poor speech perception in noisy

environments. Therefore, noise suppression or speech enhancement (SE) is one of the

most important technologies for CI. In this study, we introduce recent progress in deep

learning (DL), mostly neural networks (NN)-based SE front ends to CI, and discuss how

the hearing properties of the CI recipients could be utilized to optimize the DL-based SE.

In particular, different loss functions are introduced to supervise the NN training, and a set

of objective and subjective experiments is presented. Results verify that the CI recipients

are more sensitive to the residual noise than the SE-induced speech distortion, which

has been common knowledge in CI research. Furthermore, speech reception threshold

(SRT) in noise tests demonstrates that the intelligibility of the denoised speech can be

significantly improved when the NN is trained with a loss function bias to more noise

suppression than that with equal attention on noise residue and speech distortion.

Keywords: cochlear implant, speech enhancement, perceptual property, deep learning, loss function

INTRODUCTION

A cochlear implant (CI) is an auditory prosthesis playing an essential role in restoring hearing
ability for patients with severe-to-profound sensorineural hearing impairment (1, 2). CI recipients
can achieve good speech understanding ability in quiet environments. However, their hearing
ability degrades dramatically in noisy backgrounds (3, 4). The main reason is that the signal
processing in CIs is a very coarse imitation of the sound coding in a healthy cochlea (5). The
inner hair cells (around 3,500), in charge of transforming sound vibrations in the cochlea into
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electrical signals, are replaced by only 12–26 implanted
intracochlear electrodes. Signal processing strategies in CIs can
only transmit coarsely frequency-resolved temporal envelopes
of the speech to stimulate the auditory nerves. Therefore, the
information conveyed by the spectro-temporal fine structures,
which are very important for speech understanding in noise,
are not effectively represented in CI (6, 7). Therefore, speech
enhancement (SE) algorithms have been developed to improve
speech intelligibility in noisy environments for CI recipients
(8–11). Unfortunately, this is still a pending problem.

Even for modern CIs with multiple microphones, single-
channel SE algorithms aremostly implemented after a directional
processing stage. Typical single-channel SE algorithms for CIs
include spectral subtraction (SS), subspace projection (SP),
Wiener filtering (WF), time-frequency (T-F) masking, etc. Yang
et al. (12) implemented an SS-based SE as a front end to CI,
which improved the speech understanding ability of CI recipients
significantly in speech-shape noise (SSN) but not significantly
in babble noise (Babble). Loizou et al. (13) proposed an SP-
based SE where CI recipients received intelligibility improvement
in stationary noise. Guevara et al. (14) proposed a multiband
single-channel WF SE for CI recipients, where subjects achieved
significant intelligibility gain in SSN but slightly improved in
cocktail party noise. Koning et al. (15) investigated two T-F
masking-based SEs: the ideal binary masking (IBM) and the
ideal ratio masking (IRM), on their effectiveness in SE for CIs.
Vocoder simulated tests showed that both maskings worked
well given known a priori signal-to-noise ratio (SNR), but the
performance cannot be guaranteed in real conditions due to
the unavoidable SNR estimation error. Most of these traditional
SE methods rely on an estimate of the noise (or SNR) and a
prerequisite on noise stationarity. Therefore, their performances
in nonstationary noise are usually not as convincing as in
stationary noise.

Data-drivenmodels, particularly the deep-learning (DL) ones,
have been applied for SE with promising results, especially in
nonstationary noisy environments where most conventional SEs
fail. A well-known example is the spectral mapping-based SE,
which uses the clean speech spectra as the training targets such
that a noisy-to-clean spectral mapping network can be obtained
(16). Another example is the masking-based SE, which is similar
to the traditional IBM/IRM ones except that a network is trained
to estimate the masking gain from the noisy input such that
no explicit noise/SNR estimation is required (17). Model-based
mapping or masking methods have also been adopted for SE in
CI. In SE for CI, enhancement processing can be done on either
the acoustic or electric signals. For the acoustic SE, Lai et al.
(18, 19) proposed deep neural network (DNN)-based spectral
mapping as an SE front end to CI processor. Both objective
and subjective evaluations showed superior performance over
traditional SEs. Goehring et al. (20) implemented the recurrent
neural networks (RNN)-based T-F masking method to enhance
the acoustic signal. Results indicated that both objective and
subjective evaluations achieved significant improvement. For
electric SE, Hu et al. (21) used a Gaussian mixture model
(GMM) as the binary classifier to estimate the IBM gains for
each electrode channel. Results demonstrated that CI subjects

obtained significant improvement on speech understanding in
Babble, Train, and Hall noises. Mamun etal. (22) proposed a
convolutional neural network (CNN)-based IRM gain estimator
to enhance the temporal envelopes (TEs) of each channel.
Objective evaluations showed a significant improvement in
speech intelligibility in noisy ambiance. Bolner et al. (23) and
Goehring et al. (24) used DNN to estimate the electrode-
dependent channel gains with which noise components in the
TEs can be suppressed. Results showed that DNN-based IRM
performed better than WF in both vocoder-simulated and CI-
subjective tests. Zheng et al. (25) presented a DL-based CI
strategy. Instead of serving as a front end or a built-in module
in CI strategy, the NN was built and trained to simulate a specific
strategy of a clinical CI device. The NN output was compatible
with the clinical device, and the noise robustness of the NN was
obtained through data-driven network optimization.

Most of the abovementioned DL-based SEs focus on
minimizing the overall difference between the target speech
and its denoised estimate, and, usually, the mean-square-
error (MSE)-based loss functions are adopted for NN training.
NNs trained with separate speech and noise losses have been
demonstrated to be beneficial for SE. For example, Xu et al.
(26) proposed a masking-based SE, in which the NN to
estimate the masking gain was trained with a loss function
containing separately computed speech distortion and residual
noise. Objective evaluations demonstrated that NN trained with
the new loss outperformed the one trained with traditional MSE
loss, and the best results were attained when the speech and noise
losses were equally combined.

As for CI, due to its coarse imitation of the normal auditory
system, the recipients obtain an electric hearing much different
from the acoustic hearing of NH people. A well-recognized
property of electric hearing is that the recipients are more
tolerant of speech distortion but very sensitive to noise (10, 27–
29). In contrast, NH people are more sensitive to distortion
than noise (27, 30). In addition, different CI recipients have
noticeable individual differences due to hearing experience,
devices, surgery, physiological conditions, etc. Therefore, the
individualized perceptual sensitivity to noise and distortion
should be considered in designing SE front ends for patients
with CI, and a more sophisticated combination of the two losses
should be investigated.

This study aims (1) to investigate perceptual sensitivities
of the CI recipients to noise and distortion, and will such
sensitivities vary across different noise conditions? and (2) to
design an effective SE front end with the knowledge of such
sensitivities of CI recipients. We developed a DL-based SE as a
front end to the signal processing strategy of CIs. A long-short
term memory (LSTM) network was trained to estimate the T-
F masking gains. Instead of the MSE, a loss function similar
to that in Xu et al. (26) was adopted for network training. By
adjusting the weights for trading off the speech distortion and
the noise residue, their contributions to speech intelligibility
for CI recipients were investigated, upon which an LSTM
trained with preference-biased-loss was developed. Finally, a
set of subjective experiments was conducted to evaluate the
system performance.
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ALGORITHM DESCRIPTION

SE Based on Time-Frequency Masking
Assuming that speech and noise are additive in the time
domain, i.e.,

y(n) = s(n)+ d(n) (1)

where y(n), s(n), and d (n) denote noisy speech, clean speech,
and noise, respectively. Since speech is a short-term stationary
signal, the frequency domain representation of (Equation 1) can
be obtained by applying short-time Fourier transform (STFT) to
the time signals, i.e.,

Y(t, f ) = S(t, f )+ D(t, f ) (2)

where t and f denote the index of the time frames and the
frequency bins for each T-F unit.

Wiener filtering (WF) has been one of the most widely
implemented SE methods to estimate S(t, f ) from Y(t, f ). Given
speech and noise uncorrelated, a gain function G(t, f ) to suppress
the noise can be written as

G
(

t, f
)

=

(

|S(t, f )|2

|S(t, f )|2 + |D(t, f )|2

)1/2

=

(

|S(t, f )|2

|Y(t, f )|2

)1/2

(3)

Assuming the effect of phase distortion is negligible, the target
speech spectra can be estimated by

Ŝ
(

t, f
)

= G
(

t, f
)

· Y
(

t, f
)

= G(t, f ) · |Y(t, f )| · ejϕY (t,f ) (4)

where ϕY

(

t, f
)

is the phase of the noisy speech.
Time-frequency masking, first proposed for speech separation

in computational auditory scene analysis tasks, has been
demonstrated to be the most successful in SE tasks. WF can be
regarded as T-F masking for noise suppression. Essentially, the
masking gain as in (Equation 3) provides the optimal filtering
in the sense of minimized MSE, given an accurate estimation
of noise or SNR. Unfortunately, such an accurate noise/SNR
estimation is usually not an easy task.

Figure 1 shows the diagram for a WF-based SE. As illustrated,
a noise estimation from the noisy speech spectra is required for
computing the masking gain.

Deep Learning-Based T-F Masking for SE
In the DL-based SE, the masking gain is computed from a pre-
trained NN. NNs have been known for their powerful learning
ability, given enough training data. Therefore, given a well-
trained NN, the gain can be reliably computed from the noisy
input without an explicit noise/SNR estimation.

Figure 2 shows the diagram for DL-based SE in which the
masking gain is computed from the noisy input by a pre-trained
LSTM. Here, LSTM is adopted for its superiority in modeling
sequential signals like speech over other networks. As shown, the
pre-trained LSTM takes the noisy spectral magnitude,|Y

(

t, f
)

|,

as input and output of the masking gain, Ĝ(t, f ), which multiplies
|Y
(

t, f
)

| to generate a denoised spectral magnitude, |Ŝ
(

t, f
)

|.
Finally, the inverse STFT (ISTFT) is employed to recover the

time-domain signal from the enhanced magnitude spectra and
noisy phase spectra. Unlike the WF, no explicit noise or SNR
estimate is required, as the gain is directly estimated by the LSTM.

Loss Functions for NN Training
Many factors affect the performance of an NN, including the
network structure, training strategy, optimization method, etc.
This study investigates the effect of different loss functions, i.e.,
the way measuring the difference between NN output and the
target signal, on their performance on NN training.

The most adopted loss is the MSE given by

JMSE =
1

T · F

∑

t

∑

f

(|Ŝ(t, f )| − |S(t, f )|)2 (5)

where T and F are the total numbers of time frames and
frequency bins, respectively.

As known, noise suppression in any SE may induce an
inevitable distortion to the target speech. Usually, the more
noise is suppressed, the more speech gets distorted. The MSE
loss in (Equation 5) computes the overall errors, including
both speech distortion and noise residue. It forces the DL-
based SE system to output estimated speech that is statistically
and objectively optimal with respect to the data. However,
speech perception is subjective, and the data-level objective
optimum might not necessarily result in a perceptual optimum.
Specifically, perceptual sensitivity to noise and speech distortion
varies across different noise conditions and different subjects.
Therefore, the NN may benefit from being trained with a loss
function trading off the speech distortion and the noise residue.

We introduce a new loss function combining weighted speech
distortion and noise residue, noted as weighting loss (WL), to
train the LSTM. The WL is given as (26).

JWL = α
1

T · F

∑

t

∑

f

(|S̃(t , f )| − |S(t , f )|)2

+ (1− α)
1

T · F

∑

t

∑

f

(|D̃(t , f )|)2 (6)

where
∣

∣S̃
(

t, f
)
∣

∣ = Ĝ
(

t, f
)

·
∣

∣S
(

t, f
)
∣

∣ is the distorted speech
spectrum, i.e., the remaining target speech components after
masking,

∣

∣D̃
(

t, f
)
∣

∣ = Ĝ
(

t, f
)

·
∣

∣D
(

t, f
)
∣

∣ is the noise residue,
and α is the weighting factor. Given α = 1, the loss JWLforces
the SE system to retain the target speech components as
much as possible, regardless of whether it suppresses the noise
components. On the other hand, if α = 0, the system suppresses
the noise as much as possible, regardless of the speech distortion.
That is, the remaining noise residue and the induced speech
distortion can be traded off by adjusting the parameter α. From
(Equation 5) and (Equation 6), it is easy to infer that α = 0.5 does
not give JWL identical to JMSE in general, and only when the clean

speech could be perfectly estimated (i.e.,
∣

∣

∣
Ŝ
(

t, f
)

∣

∣

∣
= |S(t, f )|),

α = 0.5 gives JWL = JMSE = 0.
Figures 3, 4 give the diagrams for the training of the

LSTM with the respective MSE- and WL-based loss functions.
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FIGURE 1 | The diagram for WF-based SE.

FIGURE 2 | The diagram for SE with DL-estimated T-F masking gain.

FIGURE 3 | The diagram for training the LSTM with MSE loss.

FIGURE 4 | The diagram for the training of the LSTM with weighting loss.

As shown, the LSTMs are optimized iteratively by the
backpropagation (BP) algorithm with the respective losses.

EXPERIMENTAL SETTING

Speech Materials
Two speech corpora, i.e., an open-access Chinese speech database
built by Tsinghua University, THCHS-30 (31) and the Mandarin
hearing in noise test, MHINT-M (32), were adopted for the
experiments. THCHS-30 is a Mandarin speech database widely
used to develop DL-based speech systems. It contains three

subsets, i.e., training, development, and test sets, consisting of
10,000, 893, and 2,495 utterances, respectively. MHINT-M is a
Mandarin speech database designed for the subjective listening
test. It contains 14 lists, 12 for formal tests and two for practice.
There are 20 utterances in each list and 10 Mandarin syllables in
each utterance. The noisy speeches were generated by additively
mixing the clean ones with two noise samples, SSN and Babble.
The SSN noise was generated by shaping (multiplying) a white
noise spectrum with an averaged speech envelope. The Babble
noise was taken from the NOISE-92 database (33). The duration
of SSN and Babble noises are about 10 and 4min, respectively. In
this study, the training and validation of NNs in the training stage
used the training and the development sets of THCHS-30, and all
tests used the speech signals in MHINT-M. All speech and noise
signals were downsampled to 16 kHz for the experiments.

There were, in total, 10 noisy conditions for the training, i.e.,
two noises (SSN and Babble), each at five SNRs (from 0 to 20 dB
in a step of 5 dB), in generating the noisy speech. Each utterance
in the training and development sets of THCHS-30 was randomly
mixed with a noise segment (randomly picked out from the whole
noise recording) in one of the 10 conditions such that there
are 10,000 and 839 noisy utterances used for NN training and
validation, respectively.

There were 62 noisy conditions for the test, i.e., two noises,

each at 31 SNRs (from −10 to 20 dB in a step of 1 dB), for noisy
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speech generation. Each utterance in MHINT-M was mixed with
a noise segment in all 62 conditions. Note that the whole set
of noisy speech was used for subjective evaluations, but only a
subset, with SNRs from−5 to 15 dB in a step of 5 dB, was selected
for objective evaluations.

SE Systems to Be Evaluated
Several DL-based SE systems were developed to examine how
the cost function could affect the DL-based SE for CI. Two loss
functions introduced in section Loss Functions For NN Training,
i.e., the MSE loss and the weighting loss (with different weights),
were used for network training. In addition, Wiener filtering-
based SE was also developed for comparison, from which the
performance gap between the traditional and the DL-based SEs
can be shown.

Wiener filtering (WF): instead of the traditional WF, a
parametric WF (34) was adopted as the SE front end to CI. The
gain function is given as

G
(

t, f
)

= max

(

|Y
(

t, f
)

|2 − α(t)|D̂
(

t, f
)

|2

|Y(t, f )|2
, 0.01

)

(7)

where
∣

∣

∣
D̂
(

t, f
)

∣

∣

∣

2
is estimated by an energy-based voice activity

detector, the floor parameter 0.01 is set to avoid negative or
very small gain, α(t) is a factor to avoid the overestimation
of noise and is computed based on the local a posterior SNR
[(SNRpost(t))], i.e.,

α(t) =







3.125, SNRpost(t) < 0dB
−1.875
20 SNRpost(t)+ 3.125, others

1.25, SNRpost(t) > 20dB

(8)

where SNRpost(t) = 10 log10

∑

f |Y(t, f )|
2

∑

f |D̂(t, f )|2
. In this experiment,

WF was implemented with the source code of the parametric
WF download from https://github.com/dpwe/pitchfilter. More
details of the baseline can be referred to the webpage.

T-F masking with gains computed by MSE-trained LSTM

(MSE-MASK) The LSTM consisted of three layers, i.e., an
input layer with 256 LSTM units, a hidden layer with two
fully connected (FC) layers (512 neural units per layer), and an
output layer with 256 FC units such that the output has the
same dimension as the input. LeakyReLU activation function
was applied to the input and hidden layers. Sigmoid activation
function was applied to the output layer. The parameters of
networks were optimized by Adam optimizer with an initial
learning rate of 0.005. When the loss did not decline for two
consecutive epochs, the learning rate was reduced to half until <
0.00001. Themodel was trained for 60 epochs. The validation was
implemented after each training epoch. Finally, the best model,
i.e., the one with the minimum loss among all the validated ones,
was selected for tests.

The long-short termmemory was trained with all noisy speech
covering all the 10 noise conditions mentioned in section Speech
Materials. To train the LSTM, T-F spectra of noisy speech,
|Y(t, f )|, and their corresponding clean spectra, |S(t, f )|, were

served as the input features and the training labels, respectively.
To generate the feature, each speech signal was first segmented
into short frames by a Hanning window with a 32-ms length
and 16-ms shift. Then, a 512-point fast Fourier transform
was applied to each frame, and a 256-dimensional feature
was constructed with the magnitude spectra of nonnegative
frequency components.

T-F masking with gains computed by WL-trained LSTM

(WL-MASK): The training and validation processes for LSTM
were the same as in MSE-MASK, except that the weighting loss
JWL, instead of the MSE loss, was used. To investigate the effect of
the weighting parameter α, we repeated the training process nine
times, each with a specific α from 0.1 to 0.9 in a step of 0.1. That
is, there were, in total, nine NNs trained with different α. For each
α, an LSTM was trained with all noisy speech covering all the 10
noise conditions mentioned in section Speech Materials.

Figure 5 shows the electrodograms extracted from speech
signals generated from the same speech utterance with different
noisy processing. The electrodograms were generated by
processing the acoustical signal with the CCi-Mobile, a CI
research development platform developed by CI-Lab at the
University of Texas at Dallas (35). Figures 5A,B are for clean
speech, and that corrupt by SSN at 0 dB SNR (Figure 5C)
is for the denoised speech with MSE-MASK DL SE, and
(Figures 5D–L) are for the denoised speeches with WL-MASK
DL SEs with α = 0.1, 0.2, · · · , 0.9, respectively. Two spectro-
temporal regions in the electrodograms are marked with red
boxes and blue boxes for better illustration. As shown, the noise
seriously corrupts the electrodogram. All the SE processings
suppress the noise to a certain degree and, at the same time,
introduce some speech distortion. The MSE-MASK seems to
have a balanced speech distortion and noise residue. As for
WL-MASK, noise is mostly suppressed, and a large number of
speech components are deleted at small α; as α increase, speech
components are mostly retained, so as the noise components.
Therefore, user-preference-dependent noise-distortion tradeoff
could be achieved by properly selected α.

To further investigate the effect of α in trading off the speech
distortion and residual noise in the electrodograms, we computed
and compared the current units of the enhanced electrograms
and the clean ones. The CI speech processor maps the subband
envelopes into currents from 0 unit to 255 units. We consider
distortion happens when the current unit of the enhanced
electrodogram is lower than that of the clean one; otherwise,
there exists residual noise. The degree of speech distortion and
noise residue is computed as,

Cdis =
1

I · T

∑

i

∑

t

max {0,Cref (i, t)− C(i, t)} (9)

Cres =
1

I · T

∑

i

∑

t

max {0,C (i, t) − Cref (i, t)} (10)

where i and t represent the indices for electrode channels and
time frames, I and T are the numbers of electrode channels and
time frames, and Cref (i, t) and C (i, t) are the current units of the
clean electrodograms and the enhanced ones.
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FIGURE 5 | The electrodogram examples of different systems, (A) clean speech, (B) noisy speech, (C) MSE-MASK enhanced, and (D–L) WL-MASK with α across

from 0.1 to 0.9.

Figure 6 shows the Cdis and Cres at different α. Ten noise
conditions, i.e., two noise types (SSN and Babble), each at five
SNRs (−5, 0, 5, 10, and 15 dB), were evaluated. It is clear that,
as α increases, the distortion decreases monotonically, and the
noise residue increases monotonically in most noise conditions.
The only exceptions happen at Cdis in −5 dB SSN, Cdis in −5
dB Babble, and Cres in 0 dB SSN, where some fluctuations
appear at around α = 0.6. The fluctuation in −5 dB might

be because the network has not seen a −5 db SNR during
the training.

OBJECTIVE EVALUATION

Methods
The envelope-based correlationmeasure (36), an objective metric
to evaluate speech intelligibility by CI recipients, was adopted
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FIGURE 6 | Speech distortion (Cdis) and noise residue
(

Cres

)

as a function of α in various noise conditions. (A) Cdis in SSN, (B) Cdis in Babble, (C) Cres in SSN, and

(D) Cres in Babble.

to measure the performance of different SE systems. In this
study, the CCi-Mobile platform was adopted for extracting
channel envelopes with the Advanced Combination Encoder
(ACE) strategy (37). Given two versions of a speech, e.g., a target
one and its distorted one, ECM computes the correlation of their
extracted channel envelopes, which will modulate the pulsatile
carriers and stimulate the electrodes. In the signal processing
strategy of CI, the recipient-dependent MAP parameters are used
in computing the channel envelopes. Therefore, ECM computed
from such subject-dependent envelopes well represents the
speech intelligibility of the corresponding CI recipient (36).
The score of ECM is between 0 and 1. The higher ECM, the
better intelligibility.

In this experiment, noisy test speech signals were first
denoised by different SE front ends and then processed by
the ACE strategy in the CCi-Mobile CI research development
platform. In addition, the sample MAP file provided in the CCi-
Mobile demo system was used in generating the envelopes. ECM
was computed on each pair of extracted envelopes, i.e., reference
one and distorted one.

Results
Table 1 shows the mean ECM scores for SSN-corrupted noisy
speech and their denoised versions with different SE front

ends, i.e., WF, MSE-MASK, and WL-MASK with α =

0.1, 0.2, · · · , 0.9. For WL-MASK, the highest score among the
nine α is highlighted in red fonts. As illustrated in Table 1, all
SE front ends achieved a certain ECM gain over noisy speech,
except for those highlighted in blue fonts, i.e., WF at high SNRs
(10 and 15 dB) and WL-MASK with α = 0.1 at SNR of 15
dB. Both DL-based SEs outperformed WF in all SNRs. The
performance of the WL-MASK front end varied at different α.
Nevertheless, there always exists some α, although the values vary
at different SNRs, with which the WL-MASK front end achieved
better performance than MSE-MASK.

Table 2 shows the mean ECM scores for Babble-corrupted
noisy speech and their denoised versions with different SE front
ends. Most SE front ends achieved a certain ECM gain over noisy
speech, except for those highlighted in blue fonts. Both DL-based
SEs outperformed WF in all SNRs. The performance of the WL-
MASK front end varied at different α. Unlike in SSN, in SNR of
5 and 10 dB, the WL-MASK with optimal α showed comparable
performance to MSE-MASK.

Tables 1, 2 tell that, although the optimal α varies across
SNRs, it generally increases as the SNR increases. Note that α

is the weight for loss induced by speech distortion. Therefore,
a larger α forces the network to output less distorted speech;
in contrast, a smaller α forces the network to suppress more
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TABLE 1 | The mean ECM score results for different systems under SSN.

Noisy WF MSE-MASK WL-MASK

SNR α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

−5 dB 0.143 0.190 0.235 0.313 0.256 0.254 0.264 0.282 0.243 0.258 0.234 0.226

0 dB 0.238 0.296 0.456 0.430 0.451 0.485 0.493 0.485 0.492 0.489 0.458 0.365

5 dB 0.365 0.428 0.596 0.502 0.556 0.584 0.599 0.586 0.607 0.604 0.588 0.503

10 dB 0.512 0.507 0.702 0.585 0.652 0.676 0.691 0.683 0.707 0.702 0.697 0.643

15 dB 0.712 0.560 0.801 0.673 0.738 0.764 0.781 0.777 0.800 0.800 0.805 0.782

The red bold indicates the best score under each SNRs. The blue bold indicates that worse than noisy condition.

TABLE 2 | The mean ECM score results for different systems under Babble.

Noisy WF MSE-MASK WL-MASK

SNR α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

−5 dB 0.201 0.228 0.291 0.276 0.293 0.315 0.310 0.313 0.292 0.283 0.274 0.253

0 dB 0.295 0.322 0.447 0.413 0.437 0.464 0.462 0.463 0.450 0.438 0.424 0.374

5 dB 0.427 0.440 0.592 0.508 0.557 0.583 0.590 0.590 0.589 0.586 0.576 0.518

10 dB 0.602 0.528 0.719 0.600 0.664 0.691 0.708 0.704 0.717 0.719 0.716 0.676

15 dB 0.789 0.577 0.825 0.695 0.760 0.787 0.810 0.801 0.824 0.829 0.833 0.809

The red bold indicates the best score under each SNRs. The blue bold indicates that worse than noisy condition.

noise. At low SNRs, noise is the dominant component in noisy
speech. Hence, the network must put more attention on noise
suppression to improve speech intelligibility. On the other hand,
speech dominates the noisy signal at high SNRs, and a larger α is
preferred to avoid significant speech distortion. Note that, even
for SNR of 0 dB, where speech and noise have the same energy,
ECM evaluation shows that noise suppression biased α (0.4 for
SSN, 0.3 for Babble) achieved better results. It is reasonable since
it is well-known that, unlike NH people, CI recipients are much
more sensitive to noise than distortion.

SUBJECTIVE EVALUATION: VOCODER
SIMULATION WITH NH SUBJECTS

Methods
Speech reception threshold in noise (38), an SNR level at
which the listener could correctly recognize 50% of words in a
sentence, was adopted to investigate how the speech distortion
and noise residue trading-off would affect the intelligibility of the
enhanced speech.

Ten college students, all are normal hearing (pure-tone
thresholds not >25 dB HL) and native Mandarin speakers, were
recruited with a reward for the test. Each subject underwent 12
SRT measure blocks, each for one of the 12 SE front ends, i.e.,
Noisy (no SE), WF, MSE-MASK, and WL-MASK with nine α.
The 12 test lists from MHINT-M were used, each for a block.
Before the formal test, the subject had taken a practice session
with the two practice lists in MHINT-M. Due to the limit of
speech materials, each subject was tested with one noise type,
either SSN or Babble.

The noisy speech signals were first processed by the SE
front ends. Then, the vocoded speeches were generated from a

Gaussian-enveloped-tone vocoder (39), which directly mapped
the electric stimulus of a CI to the acoustic signal. Meng et al. (39)
and Kong et al. (40) have demonstrated that this vocoder better
predicts the potential CI performance than classical continuous-
carrier vocoders. The CCi-Mobile platform was used to generate
electric stimuli (electrodogram) of the ACE strategy, where the
n-of-m strategy was set to 8 of 22, which is the same as that of
Meng et al. (39). The vocoded speech was presented diotically
to the NH subjects via a Sennheiser HD650 headphone in a
soundproof booth.

In each block, SRT was measured with an adaptive procedure
using a 20-utterances test list. SNR was adaptively modified in
a one-down, one-up way (41). An utterance was “intelligible”
when more than half of its syllables were repeated correctly
by the subject. The SNR was initialized at 12 dB and changed
by 4 dB before the second reversal and by 2 dB afterward.
Each sentence could be replayed up to three times upon the
request of the subjects. The SRT was computed as the average
of the intermediate SNRs of the last six reversals to reduce the
measurement deviation.

Results
Figure 7 shows the SRTs for the 12 SE front ends, the left panel
for SSN, and the right panel for Babble. For WL-MASK, the
mean and standard deviation of SRT for each α are depicted,
while for Noisy, WF, and MSE-MASK, mean SRTs are given
as constant lines for comparison. As shown, the DL-based SEs
outperform the unprocessed noisy speech and that with WF
in both noises. Furthermore, by properly trading off the errors
induced by speech distortion and residual noise, WL-MASK SE
attained lower SRTs than MSE-MASK. In SNN, the best SRT of
−2 dB was obtained at α = 0.3 and, in Babble, SRT of 0 dB was
obtained at α = 0.4. The results coincided with the ECM ones in
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FIGURE 7 | SRTs for different SE front ends with the vocoded speech, (A) SSN and (B) Babble. The circles represent the means, and the error bars represent the

standard deviations for each WL-MASK. The asterisk represents the result of pairwise comparison of MSE-MASK and WL-MASK, * indicates p < 0.0332, ** indicates

p < 0.0021, and *** indicates p < 0.0001.

Tables 1, 2, where the best ECMs were obtained at α = 0.4 (SSN)
and 0.3 (Babble) at SNR of 0 dB. One-way repeated measure
analysis of variance (RM-ANOVA) was applied to analyze the
influences of different factors. The results show that there is a
significant difference among different DL-SEmethods {[F(9, 36) =
1.262, p < 0.001]}. Dunnett’s test was used to pairwise compare
MSE-MASK and different WL-MASKs. In SSN, WL-MASK with
α from 0.2 to 0.5 obtained significant improvement over MSE-
MASK (p < 0.0332 at α = 0.2 and 0.4; p < 0.0021 at α = 0.3; p
< 0.0001 at α = 0.5). In Babble, WL-MASK with α = 0.3 and 0.4
significantly outperformedMSE-MASK (p< 0.0332 at α = 0.3; p
< 0.0021 at α = 0.4).

SUBJECTIVE EVALUATION WITH CI
RECIPIENTS

Participants
Nineteen CI recipients were recruited for the evaluation. They
were all single-side implanted with the CI24M series of Cochlear
corporation and could normally communicate in Mandarin in
quiet environments. Table 3 lists the individual information of
the subjects. Subjects with processors having noise reduction
built-in, i.e., Nucleus 6, Nucleus 7, and Kanso, turned off
the noise reduction function during the evaluation. Before the
evaluation, each subject read the informed consent and agreed
with it. All the subjects were paid after the listening test. This
subjective evaluation has been approved by the Medical Ethics
Committee of Shenzhen University.

SRT Test
Seven CI recipients, i.e., C1–C7 as listed in Table 3, participated
in the SRT test. Each subject underwent 10 blocks, each
measuring the SRT with one of the 10 experimental conditions:
five front ends (Noisy, WF, MSE-MASK, and WL-MASK with α

of 0.3 and 0.4), each for two noises (SSN and Babble). Here, only
two αs for WL-MASK were tested because those, as illustrated by
Figure 3, SRTs were mostly around 0 dB, where the optimal α

was 0.3 or 0.4. Each block used a 20-utterances list in MHINT-
M as the original speech materials. The processed signals were
presented to subjects via two Genelec 8030A loudspeakers at
a comfortable level (about 65 dB SPL) in a soundproof booth.
The two loudspeakers were placed front-right or front-left to the
participant such that the participants with either left or right side
implanted could be equally presented. Before the formal test, each
subject had finished two practice blocks. The SRT search process
was the same as the vocoder simulation experiments.

Figure 8 shows the SRTs for different SE front ends measured
on the seven CI subjects. The left and middle panels give
the individual results in SSN and Babble, respectively, and the
right panel gives the statistical results on all the subjects. For
the individual results, most subjects achieved better SRTs with
enhanced speech than noisy speech, except that WF and Noisy
performed comparably for C2, C3, and C4. WL-MASK with
α = 0.3 and 0.4 performed better than MSE-MASK for most
subjects except C2. Two-way repeated measure ANOVA (RM-
ANOVA) was applied to analyze the influences of different
factors. Results showed that there were significant interactions
between noise types and SE methods [F(1.56, 9.361) = 7.152, p =

0.02], and there were significant differences within SE methods
[F(1.825, 10.97) = 19.69, p < 0.001] and within noise types [F(1, 6)
= 43.6, p < 0.001]. Tukey’s multiple comparisons test was used
for pairwise comparison. In SSN, WL-MASK with α = 0.3
and 0.4 significantly improved speech intelligibility against Noisy
(both p < 0.0021), and significantly outperformed WF (at least p
< 0.0332), and the superiority of WL-MASK over MSE-MASK
was significant (p < 0.0332) with α = 0.3 but not significant
with α = 0.4. In Babble, WL-MASK with α = 0.3 showed
significant superiority over Noisy (p < 0.0332) and MSE-MASK
(p < 0.0021), WL-MASK with α = 0.4 showed significant
superiority over Noisy (p < 0.0332), but its superiority over WF
and MSE-MASK was not significant.

Speech Recognition (SR) Test
The ECM results show that the optimal α increases as the
SNR increases. To verify this phenomenon, we conducted a
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TABLE 3 | The individual subject information for speech recognition evaluation.

Participant Age at testing (years old) Etiology CI experience (years) Implanted side Processor

C1 23 Drug induced 20 R Freedom

C2 23 Drug induced 17 R Freedom

C3 23 Drug induced 17 R Sprint

C4 22 Acute meningitis 3 L Freedom

C5 37 Otitis media 10 R Esprit 3G

C6 21 Otitis media 12 R Nucleus 7

C7 26 Drug induced 20 R Nucleus 5

C8 17 Unknown 14 R Nucleus 5

C9 12 Unknown 10 R Kanso

C10 13 LAVS 7 R Nucleus 5

C11 16 Unknown 12 L Nucleus 6

C12 15 Drug induced 14 R Esprit 3G

C13 11 Unknown 8 R Freedom

C14 28 Drug induced 18 L Kanso

C15 17 Unknown 16 L Nucleus 6

C16 12 LAVS 7 R Nucleus 6

C17 12 Unknown 4 R Nucleus 5

C18 16 Drug induced 14 R Nucleus 7

C19 17 Unknown 12 R Nucleus 5

CI, cochlear implant; F, female; L, left; M; male, and R, right.

FIGURE 8 | CI users’ SRT results for different systems. (A) Individual results in SSN, (B) individual results in Babble, and (C) statistical analysis of the different

methods. The asterisk in (C) represent significance analysis results. * indicates p < 0.0332, ** indicates p < 0.0021, *** indicates p < 0.0001.

speech recognition test to investigate how the trading-off weight
α can maximize the SE gain for CI recipients in different
noise conditions.

Twelve CI recipients, i.e., C8–C19 as listed in Table 3,
participated in the SR test. Due to the limitation on speech
materials, only three different αs, i.e., 0.3, 0.5, and 0.7, were tested.
Each subject conducted 12 SR blocks, each with one of the 12 test
conditions: three SNRs (0 dB, 5 dB, and 10 dB) ∗ four systems
(Noisy, WL-MASK with the three αs)∗ one noise type (either
SSN or Babble). Each block randomly took one of the 12 lists in
the MHINT-M database as the speech materials. The utterance
order was also random in each list. The processed speeches were
presented to the subjects in the same way as in the SRT test.
Before the formal measurement, each subject had finished two
practice blocks in 10 dB noisy condition. In each block, the

sentences were presented in random order. Each sentence can
be replayed up to three times upon the request of the subjects.
The mean word recognition rate (WRR) of the 20 utterances was
calculated as the final result in each trial.

Figure 9 shows the mean and standard deviation of WRR
(over all the subjects) at different SNRs. The same methods as
in section SRT Test were used for significance analysis. RM-
ANOVA test showed that, in SSN, there was no significant
[F(1.267, 6.333) = 5.375, p = 0.05] interaction between SNRs and
SEmethods, there were significant differences within SEmethods
[F(2.026, 10.13) = 19.65, p < 0.001] and within SNRs [F(1.404, 7.003)
= 61.46, p < 0.001]; in Babble, there was no significant
[F(1.941, 9.704) = 3.421, p = 0.08] interaction between SNRs and
SE methods, and there were significant differences within SE
methods [F(1.613, 8.064) = 11.97, p = 0.005] and within SNRs
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FIGURE 9 | WRR of different systems at different SNRs in (A) SSN and (B) Babble. The bars show the mean WRR of all the subjects, and error bars indicate the

standard deviations. The asterisk indicates a significant level, * indicates p < 0.0332, ** indicates p < 0.0021, and *** indicates p < 0.0001.

[F(1.616, 5.803) = 80.38, p < 0.001]. Tukey’s multiple comparisons
tests showed that WL-MASK has no significant performance
improvement over Noisy in all noise conditions except for 0 dB
SSN, whereWL-MASKwith α = 0.3 and 0.5 achieved significant
improvement (p= 0.007 and 0.004).

DISCUSSIONS

The residual noise and speech distortion in the enhanced signal
generally determine the effect of SE. It is well-known that, unlike
NH people, CI recipients are more sensitive to noise than to
speech distortion in their daily speech perception. The distinct
noise- and distortion-perception properties of CI have been
investigated and adopted to design the enhancement algorithms
(10, 29, 42).

In this study, we developed a deep learning-based SE to
systematically investigate how the noise residue and speech
distortion could affect the intelligibility of the enhanced speech
for patients with CI, and how such noise and distortion
sensitivities could be adopted for SE system design. An LSTM-
based time-frequency masking system was developed as an SE
front end to CI, different loss functions were used to train the
system such that different levels of residual noise and speech
distortion in the output speech signal could be retained for
the investigation. Several objective and subjective experiments
were conducted to evaluate the performance of the SE system at
different loss conditions.

The objective evaluation with the ECM metric (Tables 1, 2)
showed that the MSE loss aiming at minimizing the overall
difference between the target and enhanced speech signals usually
had suboptimal results in both SSN and Babble noises. By
training the LSTM with weighting loss, the SE performance
varied at different weighting parameters α. In general, smaller
α, which tends to remove more noise components (and induce
more speech distortion), was preferred for noisy speech with
lower SNRs in both SSN and Babble. Whatever the SNR,
there exist some specific α with which the WL-MASK system

outperformed the MSE-MASK system. The superiority was more
evident in SNN than in Babble. In particular, for SNR of 0 dB,
where speech and noise had the same energy, α of 0.4 (in SSN)
and 0.3 (in Babble) achieved better results.

Vocoder simulation evaluation with SRT in noise by NH
people (Figure 7) gave consistent results to that by ECM.
Compared with MSE-MASK, WL-MASK had an SRT benefit of
about 2.8 dB in SSN (with α = 0.3) and about 1.7 dB in Babble
(with α = 0.4). Compared to Noisy, WL-MASK had an SRT
benefit of about 8.6 dB in SSN and about 6.3 dB in Babble.

SRT in noise test with seven CI users showed similar results.
Compared with MSE-MASK, WL-MASK had an SRT benefit of
about 3.3 dB in SSN and about 1.2 dB in Babble. Compared with
Noisy, WL-MASK had an SRT benefit of about 6 dB in SSN and
about 2.2 dB in Babble. The SRT gains obtained byWL-MASK are
compatible in both NH and CI tests, except for the case withWL-
MASK over Noisy in Babble, where the SRT gains drop from 6.3
dB by NHs to 2.2 dB by CIs. In this study, we did find that Babble
noise is a relatively more challenging condition for the NN-based
SE systems.

Speech recognition tests with 12 CI recipients showed that
the proposed WL-MASK had no significant improvement over
Noisy in all noise conditions, except for the low SNR (0
dB) SSN case, although the mean word recognition rates
did demonstrate that the preferred α was SNR dependent.
The lack of significance in high SNRs might be due to the
ceiling effect.

The same noise recording used for training and testing could
be a limitation of this work in considering the generation
of the NN-based SE for real-world applications. Nevertheless,
4- or 10-min recordings are relatively long enough to cover
possible variations of a specific noise type. Therefore, this study
could reflect the NN-based SEs performance for CI where
NNs are well trained with enough noise data, i.e., all noise
had been seen by the NNs after training. It is true that real-
world settings could be more challenging, which requires more
sophisticated NNs and a much larger amount of training noise
as well.
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Compared to traditional SE methods, the computation
load of a DL-based system should be considered in real-
world implementations. Furthermore, the WRR test implies
that noise conditions-dependent SE systems need to be
pre-trained, and real-time noise estimation is required to
maximize the benefit from the noise-dependent SE. These
drawbacks might restrict the implementation of the proposed
WL-MASK SE in clinical CI systems. Nevertheless, this
research indicates that it would be promising to further
explore the hearing properties of patients with CI and utilize
such properties for designing new signal-processing strategies.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Medical Ethics Committee of Shenzhen

University. Written informed consent to participate in this study
was provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

YK, NZ, and QM contributed to the design and writing of this
paper. YK and NZ planned the experimental program, collected
data, and wrote the manuscript. All authors agree to submit this
version of the article.

FUNDING

This work was jointly supported by Guangdong Key Area
R&D Project (No. 2018B030338001), National Natural Science
Foundation of China (61771320), Guangdong Basic and Applied
Basic Research Foundation (2020A1514325010386), and Science
and Technology Program of Guangzhou (202102020944).

ACKNOWLEDGMENTS

The authors are grateful to all the subjects, including people with
normal hearing and CI recipients. They thank them for their
energetic cooperation in subjective evaluation. At the same time,
thanks Huali Zhou for her technical guidance.

REFERENCES

1. Winn MB, Nelson PB. Cochlear Implants. In Oxford Research Encyclopedia of

Linguistics (2021).

2. Deep NL, Dowling EM, Jethanamest D, Carlson ML. Cochlear implantation:

an overview. JNLS B. (2019) 80:169–77. doi: 10.1055/s-0038-1669411

3. Ren C, Yang J, Zha D, Lin Y, Liu H, Kong Y, et al. Spoken word recognition

in noise in Mandarin-speaking pediatric cochlear implant users. Int J Pediatr

Otorhinolaryngol. (2018) 113:124–30. doi: 10.1016/j.ijporl.2018.07.039

4. Hast A, Schlücker L, Digeser F, Liebscher T, Hoppe U. Speech perception of

elderly cochlear implant users under different noise conditions.Otol Neurotol.

(2015) 36:1638–43. doi: 10.1097/MAO.0000000000000883

5. Choi CT, Lee YH. A review of stimulating strategies for cochlear implants.

In: Umat C, editor. Cochlear Implant Research Updates. InTech Open Access

Publisher.

6. Fischer T, Schmid C, Kompis M, Mantokoudis G, Caversaccio M,

andWimmer W. Effects of temporal fine structure preservation on spatial

hearing in bilateral cochlear implant users. J Acoust Soc Am. (2021) 150:673–

86. doi: 10.1121/10.0005732

7. MengQ, ZhengN, Li X.Mandarin speech-in-noise and tone recognition using

vocoder simulations of the temporal limits encoder for cochlear implants. J

Acoust Soc Am. (2016) 139:301–10. doi: 10.1121/1.4939707

8. Zhou H, Wang N, Zheng N, Yu G, Meng Q. A new approach for

noise suppression in cochlear implants: a single-channel noise reduction

algorithm1. Front Neurosci. (2020) 14:301. doi: 10.3389/fnins.2020.00301

9. Wang NYH, Wang HLS, Wang TW, Fu SW, Lu X, Wang HM, et al.

Improving the intelligibility of speech for simulated electric and acoustic

stimulation using fully convolutional neural networks. IEEE Trans Neural Syst

Rehabilitation Eng. (2020) 29:184–95. doi: 10.1109/TNSRE.2020.3042655

10. Wang D, and Hansen JH. Speech enhancement for cochlear implant

recipients. J Acoust Soc Am. (2018) 143:2244–54. doi: 10.1121/1.5031112

11. Huber R, Bisitz T, Gerkmann T, Kiessling J, Meister H, Kollmeier B.

Comparison of single-microphone noise reduction schemes: can hearing

impaired listeners tell the difference? International Journal of Audiology.

(2017) 57:55–61. doi: 10.1080/14992027.2017.1279758

12. Yang LP, Fu QJ. Spectral subtraction-based speech enhancement for cochlear

implant patients in background noise. J Acoust Soc Am. (2005) 117:1001–

4. doi: 10.1121/1.1852873

13. Loizou PC, Lobo A, Hu Y. Subspace algorithms for noise reduction in cochlear

implants. J Acoust Soc Am. (2005) 118:2791–3. doi: 10.1121/1.2065847

14. Guevara N, Bozorg-Grayeli A, Bebear JP, Ardoint M, Saa,ï S, Gnansia D,

et al. The voice track multiband single-channel modified Wiener-filter noise

reduction system for cochlear implants: patients’ outcomes and subjective

appraisal. Int J Audiol. (2016) 55:431–8. doi: 10.3109/14992027.2016.1172267

15. Koning R, Madhu N, andWouters J. Ideal time-frequency masking algorithms

lead to different speech intelligibility and quality in normal-hearing

and cochlear implant listeners. IEEE Trans Biomed Eng. (2014) 62:331–

41. doi: 10.1109/TBME.2014.2351854

16. Xu Y, Du J, Dai LR, Lee CH. A regression approach to speech

enhancement based on deep neural networks. IEEE/ACM Trans Audio,

Speech, Language Process. (2014) 23:7–19. doi: 10.1109/TASLP.2014.2

364452

17. Wang Y, Narayanan A, Wang D. On training targets for supervised

speech separation. IEEE/ACM Trans Audio, Speech, Language Process. (2014)

22:1849–58. doi: 10.1109/TASLP.2014.2352935

18. Lai YH, Chen F, Wang SS, Lu X, Tsao Y, Lee CH. A deep denoising

autoencoder approach to improving the intelligibility of vocoded speech

in cochlear implant simulation. IEEE Trans Biomed Eng. (2016) 64:1568–

78. doi: 10.1109/TBME.2016.2613960

19. Lai YH, Tsao Y, Lu X, Chen F, Su YT, ChenKC, et al. Deep learning-based noise

reduction approach to improve speech intelligibility for cochlear implant

recipients. Ear Hear. (2018) 39:795–809. doi: 10.1097/AUD.00000000000

00537

20. Goehring T, Keshavarzi M, Carlyon RP, Moore BC. Using recurrent neural

networks to improve the perception of speech in non-stationary noise

by people with cochlear implants. J Acoust Soc Am. (2019) 146:705–

18. doi: 10.1121/1.5119226

21. Hu Y, and Loizou PC. Environment-specific noise suppression for improved

speech intelligibility by cochlear implant users. J Acoust Soc Am. (2010)

127:3689–95. doi: 10.1121/1.3365256

Frontiers in Medicine | www.frontiersin.org 12 November 2021 | Volume 8 | Article 740123

https://doi.org/10.1055/s-0038-1669411
https://doi.org/10.1016/j.ijporl.2018.07.039
https://doi.org/10.1097/MAO.0000000000000883
https://doi.org/10.1121/10.0005732
https://doi.org/10.1121/1.4939707
https://doi.org/10.3389/fnins.2020.00301
https://doi.org/10.1109/TNSRE.2020.3042655
https://doi.org/10.1121/1.5031112
https://doi.org/10.1121/1.1852873
https://doi.org/10.1121/1.2065847
https://doi.org/10.3109/14992027.2016.1172267
https://doi.org/10.1109/TBME.2014.2351854
https://doi.org/10.1109/TASLP.2014.2364452
https://doi.org/10.1109/TASLP.2014.2352935
https://doi.org/10.1109/TBME.2016.2613960
https://doi.org/10.1097/AUD.0000000000000537
https://doi.org/10.1121/1.5119226
https://doi.org/10.1121/1.3365256
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Kang et al. Speech Enhancement for Cochlear Implants

22. Mamun N, Khorram S, Hansen JH. Convolutional neural network-based

speech enhancement for cochlear implant recipients. Proc Interspeech. (2019)

2019:4265–9. doi: 10.21437/Interspeech.2019-1850

23. Bolner F, Goehring T, Monaghan J, Van Dijk B, Wouters J, andBleeck S.

(2016. March). Speech enhancement based on neural networks applied to

cochlear implant coding strategies. In 2016 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). Shanghai: IEEE. p. 6520-

24.doi: 10.1109/ICASSP.2016.7472933

24. Goehring T, Bolner F, Monaghan JJ, Van Dijk B, Zarowski A, and

Bleeck S. Speech enhancement based on neural networks improves speech

intelligibility in noise for cochlear implant users. Hear Res. (2017) 344:183–

94. doi: 10.1016/j.heares.2016.11.012

25. Zheng N, Shi Y, Kang Y, Meng Q. (2021). A Noise-Robust signal processing

strategy for cochlear implants using neural networks. In ICASSP 2021-2021

IEEE International Conference on Acoustics, Speech Signal Processing

(ICASSP). IEEE. p. 8343–7. doi: 10.1109/ICASSP39728.2021.9413452

26. Xu Z, Elshamy S, and Fingscheidt T. Using Separate Losses for Speech

Noise in Mask-Based Speech Enhancement. In 2020 IEEE International

Conference on Acoustics, Speech Signal Processing (ICASSP). p. 7519–23.

IEEE. doi: 10.1109/ICASSP40776.2020.9052968

27. Akbarzadeh S, Lee S, Chen F, Tuan-Tan C. The effect of speech and noise levels

on the quality perceived by cochlear implant and normal hearing listeners.

Speech Commun. (2021) 132:106–13. doi: 10.1016/j.specom.2021.06.001

28. Kressner AA, May T, Dau T. Effect of noise reduction gain errors

on simulated cochlear implant speech intelligibility. Trends Hear. (2019)

23:2331216519825930. doi: 10.1177/2331216519825930

29. Qazi OU, Van Dijk B, Moonen M, and Wouters J. Understanding the

effect of noise on electrical stimulation sequences in cochlear implants

and its impact on speech intelligibility. Hear Res. (2013) 299:79–

87. doi: 10.1016/j.heares.2013.01.018

30. Loizou PC, Kim G. Reasons why current speech-enhancement algorithms do

not improve speech intelligibility and suggested solutions. IEEE Trans Audio,

Speech, Language Process. (2010) 19:47–56. doi: 10.1109/TASL.2010.2045180

31. Wang D, and Zhang X. THCHS-30: A free Chinese speech corpus. arXiv

preprint arXiv:1512.01882 (2015).

32. Wong LL, Soli SD, Liu S, Han N, Huang MW. Development of

the Mandarin hearing in noise test (MHINT). Ear Hear. (2007)

28:70S−4S. doi: 10.1097/AUD.0b013e31803154d0

33. Varga A, andSteeneken HJ. Assessment for automatic speech

recognition: II. NOISEX-92: a database and an experiment to

study the effect of additive noise on speech recognition systems.

Speech Commun. (1993) 12:247–51. doi: 10.1016/0167-6393(93)

90095-3

34. Adami A, Burget L, Dupont S, Garudadri H, Grezl F, Hermansky H, et al.

Qualcomm-ICSI-OGI features for ASR. In: Seventh International Conference

on Spoken Language Processing. (2002).

35. Shekar RC, Hansen JH. An evaluation framework for research platforms to

advance cochlear implant/hearing aid technology: a case study with CCi-

MOBILE. J Acoust Soc Am. (2021) 149:229–45. doi: 10.1121/10.0002989

36. Yousefian N, andLoizou PC. Predicting the speech reception threshold of

cochlear implant listeners using an envelope-correlation based measure. J

Acoust Soc Am. (2012) 132:3399–405. doi: 10.1121/1.4754539

37. Vandali AE, Whitford LA, Plant KL, Clark GM. Speech perception as a

function of electrical stimulation rate: using the nucleus 24 cochlear implant

system. Ear Hear. (2000) 21:608–24. doi: 10.1097/00003446-200012000-

00008

38. Plomp R, and Mimpen AM. Speech-reception threshold for sentences as

a function of age and noise level. J Acoust Soc Am. (1979) 66:1333–

42. doi: 10.1121/1.383554

39. Meng Q, Yu G, Wan Y, Kong F, Wang X, Zheng N. Effects of

Vocoder Processing on Speech Perception in Reverberant Classrooms.

In 2018 Asia-Pacific Signal Information Processing Association Annual

Summit Conference (APSIPA ASC). Hawaii: IEEE (2018). p. 761–

5. doi: 10.23919/APSIPA.2018.8659662

40. Kong F, Wang X, Teng X, Zheng N, Yu G, Meng Q. Reverberant speech

recognition with actual cochlear implants: verifying a pulsatile vocoder

simulation method. In: Proceeding of the 23rd International Congress on

Acoustics (ICA). Aachen: Universitätsbibliothek der RWTH Aachen.

41. Levitt H. Transformed up-down methods in psychoacoustics. J Acoust Soc

Am. (1971) 49:467–77. doi: 10.1121/1.1912375

42. Mauger SJ, Dawson PW, Hersbach AA. Perceptually optimized

gain function for cochlear implant signal-to-noise ratio based noise

reduction. J Acoust Soc Am. (2012) 131:327–36. doi: 10.1121/1.36

65990

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Kang, Zheng and Meng. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Medicine | www.frontiersin.org 13 November 2021 | Volume 8 | Article 740123

https://doi.org/10.21437/Interspeech.2019-1850
https://doi.org/10.1109/ICASSP.2016.7472933
https://doi.org/10.1016/j.heares.2016.11.012
https://doi.org/10.1109/ICASSP39728.2021.9413452
https://doi.org/10.1109/ICASSP40776.2020.9052968
https://doi.org/10.1016/j.specom.2021.06.001
https://doi.org/10.1177/2331216519825930
https://doi.org/10.1016/j.heares.2013.01.018
https://doi.org/10.1109/TASL.2010.2045180
https://doi.org/10.1097/AUD.0b013e31803154d0
https://doi.org/10.1016/0167-6393(93)90095-3
https://doi.org/10.1121/10.0002989
https://doi.org/10.1121/1.4754539
https://doi.org/10.1097/00003446-200012000-00008
https://doi.org/10.1121/1.383554
https://doi.org/10.23919/APSIPA.2018.8659662
https://doi.org/10.1121/1.1912375
https://doi.org/10.1121/1.3665990
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	Deep Learning-Based Speech Enhancement With a Loss Trading Off the Speech Distortion and the Noise Residue for Cochlear Implants
	Introduction
	Algorithm Description
	SE Based on Time-Frequency Masking
	Deep Learning-Based T-F Masking for SE
	Loss Functions for NN Training

	Experimental Setting
	Speech Materials
	SE Systems to Be Evaluated

	Objective Evaluation
	Methods
	Results

	Subjective Evaluation: Vocoder Simulation With NH Subjects
	Methods
	Results

	Subjective Evaluation With CI Recipients
	Participants
	SRT Test
	Speech Recognition (SR) Test

	Discussions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


