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ABSTRACT: In drug discovery and development, the
conventional “single drug, single target” concept has been
shifted to “single drug, multiple targets” − a concept coined as
polypharmacology. For studies in this emerging field,
dedicated and high-quality databases of multitargeting ligands
would be exceedingly beneficial. To this end, we conducted a
comprehensive analysis of the structural and chemical/
biological profiles of polypharmacological agents and present
a Web-based database (Polypharma). All of these compounds
curated herein have been cocrystallized with more than one
unique protein with intensive reports of their multitargeting activities. The present study provides more insight of drug
multitargeting and is particularly useful for polypharmacology modeling. This specialized curation has been made publically
available at http:/imdlab.org/polypharma/

1. INTRODUCTION

In the past few years, polypharmacology has been recognized as
a new avenue for drug discovery and development.1−5

Numerous drugs such as Aspirin,6 topiramate,7 and especially
kinase inhibitors are known for their multitarget-directed
activities. Along the same lines, drug repurposing/repositioning,
which aims to discover new indications for existing approved
drugs, has emerged as a critical cost-effective and time-efficient
strategy for drug development.8−13 More importantly, the
enormous amount of molecular data generated in the
postgenomic era will significantly accelerate such polypharma-
cological research.
Rational design of multitargeting drugs can be challenging

with the current drug discovery strategies. Recently we
reviewed various polypharmacological approaches14−16 avail-
able in the literature. There have been several promising
attempts,2,11,17,18 and various methods16,19−23 were developed
for associating drugs with their possible unknown off-targets.
For instance, Campillos et al. mapped drugs-targets based on
their phenotypic side-effect similarities.2 The Shoichet group
developed similarity ensemble approach (SEA)24 to relate
targets based on the set-wise chemical similarity with their
ligands, and it was also applied to a large-scale prediction of
drug activity on side-effect targets.11 Several other groups used
knowledge-based approaches1,3,25−27 to identify associations
among various biomolecules stored in their databases. Recently
text mining techniques were also employed to extract ligand-
target-disease mapping information from the literature and
public databases.28−31 Of course, as the most straightforward
methodology in structure-based design, inverse docking has
long been used to identify potential targets for a given

ligand.21,32−35 Additionally, systems biology/pharmacology
approaches have gained more attention recently by integrating
experimental and computational approaches to understand
drug mechanisms of actions at the systems-level.36−39

During the past decade, numerous databases6,40−45 have
been developed such as DrugBank,6 STITCH,40 Supertarget,46

IUPHAR-DB,47 WOMBAT,41 PubChem’s BioAssay Data-
base,48 ChEMBL,49 and so on, which integrate diverse
information on molecular pathways, drug targets, crystal
structures, etc. There are also a number of small molecule-
centric databases including ZINC,50 PubChem,51 Ligand
Expo,52 etc. These databases are comprised of enormous
information about their disease relevance, chemical properties,
and biological activities. Therefore, they could be potentially
used for off-target identifications. However, deriving accurate
multitargeting information from these databases is not trivial,
and, to date, a dedicated, focused polypharmacological database
is yet to be developed.
Herein we showcase our implementation of a novel,

dedicated database for a unique set of polypharmacological
ligands with high-quality, experimentally validated structural
and biological activity data. The data was integrated from
multiple resources including the following: LigandExpo52

(formerly known as LigandDepot), Protein Data Bank
(PDB),53 Universal Protein Resource (UniProt),54 and
DrugBank.6 A variety of ligand-protein binding databases
such as PDBbind,55 BindingDB,42 and Binding MOAD43 are
also taken into consideration in order to extract the available
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ligand binding affinities. Additionally, literature reports were
also mined to obtain as much biological data as possible. By
integrating these resources, we have built a novel database,
termed Polypharma, specifically for multitargeting ligands, along
with their modulated targets and quantitative bioactivities (e.g.,
binding affinity), in particular for polypharmacology modeling.
To date, Polypharma includes 953 ligands that are complexed
with two or more protein structures belonging to distinct target
families. We also provide other information such as molecular
properties of ligands and their targets. A set of query functions
has been implemented to search our database, and molecular
networks can be constructed to depict ligand-target inter-
actions. The query results can also be visualized with integrated
molecular visualization tools. The database is currently
accessible at http://imdlab.org/polypharma/.

2. RESULTS
Curation of Polypharmacological Ligands with

Unique Targets. The Polypharma database consists of a
unique set of multitarget-directed ligands with their high
resolution crystal structures and available binding affinities.
These data will provide new insights for off-target identification
and polypharmacological agent design. A flowchart illustrating
the data curation is provided in Figure 1. The curation was

started by obtaining ligand data from Ligand Expo,52 and their
interactions with targets were analyzed based on their crystal
structures in the PDB. As of March 10, 2013, the Ligand Expo
contained 15,952 small molecules which were included in
88,714 unique PDB structures. To obtain information on the
ligands such as their names, chemical structures, and so on, the
mmCIF format dictionary was downloaded from Ligand Expo
and analyzed with an in-house program. To make it more
applicable for rational drug design, the “filter” module of the
OpenEye scientific software was used to keep only the drug-like
ligands. To this end, the typical Lipinski’s rule of five56 along
with other filtering parameters were applied (Table S1). This
process resulted in 8,067 ligands. Finally, several programs were
implemented to automatically identify those ligands complexed
with more than one protein. This led to 1,674 ligands
corresponding to a total of 9,382 unique protein structures
(PDB IDs).
During the curation we frequently observed that a ligand can

be included in multiple PDB entries which are actually of the
same protein. For instance, the drug alitretinoin is complexed
with 1FM6, 1FM9, and 1K74, but all belong to the PPAR-γ
protein (in a heterodimer with RXR-α), and hence alitretinoin
should not be included in Polypharma. To remove cases like

alitretinoin, we consider only those ligands complexed with
multiple proteins belonging to different families. To this end,
we first referred to UniProt identities attempting to obtain
unique proteins with an assumption that a protein structure
with a unique UniProt identity would represent a unique target.
Using our in-house tools, the PDB IDs were mapped to the
UniProt identities as annotated in the UniProt database
(accessed on March 10, 2013). However, upon analysis, we
encountered several problems. First, not all PDB IDs are
associated with UniProt IDs. Out of 4,167 PDB IDs, only 4,074
PDB IDs can be mapped to Uniprot IDs. Second, in some
cases, the same proteins have different UniProt IDs. For
example, HIV-1 protease complexed with the drug darunavir
has crystal structures of 3TTP and 3S53, but they have different
UniProt IDs as P03367 and Q7SSI0, respectively. The reason is
that P03367 corresponds to the gag-pol gene, whereas Q7SSI0
corresponds to the pol gene. Third, sometimes one PDB ID can
correspond to multiple UniProt IDs such as 3O3A which is for
human Class I MHC HLA-A2 in complex with the
Peptidomimetic ELA-1 protein with two UniProt IDs P01892
and P61769. The simple lesson learned from this unsuccessful
attempt demonstrated how complicated and difficult it is to
perform such data curation (also indicating the urgent need of
consistent and clean data integration across different
resources).
We also tried other protein classification methods such as

CATH/SCOP/EC numbers. Various issues were found, and we
conclude that they are not appropriate for our problem here.
Therefore, we ventured back to the very basic concept of
sequence similarity for identification of unique protein families.
All of the proteins bound to the same ligand were compared for
their sequence similarity, and the ones with less than 80%
similarity were retained. The threshold was determined through
a systematic analysis after experimenting with various cutoff
values ranging from 70% to 90%. However, we found that we
could maintain nonredundant proteins (e.g., some HIV
protease mutants have only 80% sequence similarity with the
wild type) only when using this 80% sequence similarity cutoff
for our data set. The filtering was achieved with the UCLUST
program which is a clustering algorithm that employs
USEARCH as a subroutine to assign sequences to clusters.57

Since this problem has a significant complexity due to the fact
that some PDBs have multiple chains and multiple ligands, the
program actually considers each chain separately.57 So for all
proteins binding the same ligand, the sequences of their
individual chains are compared with each other. The sequences
with similarity above a given threshold (80%) will be grouped
into one cluster. In each cluster, the chains are sorted (i.e.,
ranked) according to the following criteria and the order: (a) A
quality factor, calculated as ((1/resolution) − R-value); (b)
Deposition date (newer structures have higher ranks); (c)
Alphabetical order. From each cluster, only the highest ranked
chain will be picked as the representative sequence, and this will
lead to a set of nonredundant chains for a given ligand.

Database Characterization. Upon the above filtering with
the aid of sequence similarity clustering, we obtained 953
multitargeting ligands associated with 4,167 distinct PDBs
belonging to various nonredundant proteins. This represents
4,298 positive binding data points as some PDBs have multiple
chains with multiple bound ligands. Among the 953 ligands,
550 are crystallized with two unique proteins (1,100 ligand-
protein combinations), whereas the other 403 are bound to
more than two distinct proteins (3,198 ligand-protein

Figure 1. Scheme of Polypharma database curation.
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Figure 2. Comparison of SLogP, TPSA, and molecular weight in multiple-targeting ligands (the upper panel) vs single-targeting ligands (the lower
panel). The plots represent the distribution density of the ligands in the 2D space in terms of the respective chemical/physical properties. The color
represents the density as demonstrated by the bar. The color code and scale is the same in each comparison for multitargeting and single-targeting
ligands.

Figure 3. Comparison of residue composition (the upper panel) and chemical/physical properties of protein binding pockets of multitargeting vs
single targeting ligands.
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combinations). Figure S10 illustrates the targeting binding
profile for each ligand. Of note, it is very critical to understand
that there could be various other possible interactions that were
not reported yet, as they do not have solved crystal structures of
these interactions. This database only outlines the data
extracted from the currently available crystal structures and
will be updated along the time. Some statistics of our database,
including protein families, protein size, structure resolution,
etc., are shown in Figures S1−S3. For instance about 10%
proteins have below 200 residues, 40% of proteins have 201−
500 residues, whereas 31% have residues between 501 and
1000, and the remaining have more than 1000 residues (Figure
S3). For ligands, 30% of them have molecular weights between
130 and 200, 27% between 200 and 300, 37% between 300 and
500, and only 6% are above 500 (Figure S4). Similarly, 64% of
the ligands have LogP values between 0.0 and 4.0, and 14%
with LogP higher than 4.0 (Figure S5), suggesting a high
percentage of drug-like ligands. Other characterizations of these
multitargeting ligands, as compared to single-targeting agents,
are described next.
Comparison of Multitargeting and Single-Targeting.

As a dedicated database for multitargeting ligands, it is of great
interest to explore whether they are significantly different from
single-targeting agents. To this end, typical chemical/physical
properties such as molecular weight and hydrophobicity were
compared between the two groups of ligands. It is striking to
note that, as demonstrated by our 2D plots in Figure 2 and
Figure S7B, the 953 multitargeting ligands are on average
smaller than the single-targeting ligands. The multitargeting
agents mostly have molecular weight below 200 Da, while for
single targeting ligands the molecular weight is around 300−
420 Da. To some extent, this is not unexpected as lead
optimization can improve the selectivity but usually compan-
ioned with the increase of molecular size. Accordingly, the
hydrophobicity as represented by SLogP here is slightly lower
for multitargeting (0−2) than single-targeting ligands (0−4).
The similar trend was also observed for the number of rings
(Figure S7B) and topological polar surface area (TPSA)
(Figure 2). We also performed comparison of other properties
such as hydrogen bonding patterns and molecular refractivity,
as illustrated in Figure S7. While several properties such as
aromatic atoms and molecular refractivity were observed to
have more broad range for single targeting ligands (Figures
S7B−S7D) since they generally have larger size, it is surprising
to see that the hydrogen bonding patterns are similar for
multitargeting and single-targeting agents, both have 3−4
hydrogen bond acceptors and 2−4 hydrogen bond donors
(Figure S7A).
Although we the present study is focused on small molecule

ligands, we also conducted characterization analysis of protein
binding pockets using our in-house programs and a Web server
VADAR.58 Of note, in the binding sites, no significant
differences were observed between the two groups of proteins,
in terms of residue composition, hydrophobicity, and polar
surface area (Figure 3). Further case studies with molecular
visualization did not identify any unique features of “multi-
targeting” proteins (Figures S9A,B). This is not uncommon
because, as is known, small molecules can be optimized to
improve their selectivity toward a specific target. In other
words, some ligands can be rather specific, and they are
different from other multitargeting molecules, which is the
primary point of this manuscript. However, on the other hand,
protein targets are a bit different: all proteins are flexible, and

each single of them can accommodate quite different small
molecules in terms of size, flexibility, and even chemotypes, i.e.,
they are all always “multitargeting”. Therefore, we do not
expect any common features among them or unique features
compared to the single-targeting proteins. This is in agreement
with our observation here.

Binding Activity Data. For our curated polypharmaco-
logical agents, although their binary activities are apparent
based on their PDB complexes, the quantitative data of their
binding affinities, if available, would be more useful to develop
accurate QSAR models or docking/scoring functions for
multitargeting predictions. The curation of ligand-protein
binding affinities has been conducted by many groups during
the past decade, and a variety of databases have been
constructed.42,43,49,55 To obtain the binding data for our
specific multitargeting agents, we explored these databases
along with mining of the published literature. We found that
587 out of 953 ligands (∼61.5%) have available binding data
from databases such as PDBbind,55 BindingDB,42 and
MOAD.43 As these databases are implemented without a
standardized format, it was not trivial to retrieve the activity
data automatically from them. To this end, individual programs
have been developed to access these databases and extract the
activity data in an automated way. Since the data is obtained
from multiple databases, the redundancy in the data was
eliminated using in-house scripts. Similarly when conflicting
data was obtained for the same ligand-protein binding, we
double-checked their initial reports to ensure the accuracy of
data collections. Eventually we obtained 1,164 quantitative data
points for ligand-protein interactions. It is worthy of note that,
although the data about the ligands, targets, and their activities
are also available elsewhere (e.g., PDB or the databases cited
here), Polypharma is a specialized database dedicated to
polypharmacological ligands and is uniquely built to perform
analysis, visualization, and prediction of multitargeting proper-
ties.

3. METHODS, IMPLEMENTATION, AND USAGE
Polypharma has been designed in a three-tier architecture
(Figure 4). The Web user interface (Figure 5) was

implemented with HTML/CSS/PHP (version 5.3.27), and
the database is managed by MYSQL (version 5.5.32-cll). The
Apache HTTP servers (version. 2.2.24) with a HTTP content
accelerator are deployed on a Linux operating system (kernel
2.6.32−458). We also implemented many other features. For
instance, the JME molecular editor, as a courtesy of Dr. Peter
Ertl,59 is integrated to draw ligand molecules for chemical
similarity and substructure search. Additionally, MolDB5R,60 a
collection of fully functional PHP scripts and Perl scripts, is

Figure 4. Architecture implemented in the database.
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embedded for search options based on (a) substructure and (b)
functional groups. Moreover Jmol61 is used for visualizing
ligand-protein interactions directly within an HTML page, and
it provides controls of different visualization schemes of the
structures in the Jmol applet. Finally we also integrated our
molecular network analysis technologies for visualization of
multitargeting ligand-target interactions.15

For chemical similarity/substructure search, as a first step all
the ligands are encoded into their molecular fingerprints using
the checkmol program,60 and they are stored in our MySQL
database. To create a query, users can draw a chemical structure
using the JME applet embedded into the search page, and the
query structure will be converted to a MDL mol file. Based on
this file, our backend programs will generate the fingerprints
which will be used to search the database for molecules with the
similar chemical features (Figure 5). Another useful feature is
that the fingerprints of chemical functional groups of all the
polypharmacological ligands are stored and used for searching
with MolDB5R. Additionally, the user is provided with the
option to select multiple functional groups to identify
polypharmacological ligands of their interest (Figure S6).
Polypharma is dedicated to multitargeting agents along with

their specific targets and biological activities. There are two
options for queries. With the “Ligand” option, the queries can
be keywords of ligands (e.g., Aspirin) or Ligand Expo IDs (e.g.,
STI). The results page displays all entries matching the queries,
including their Ligand Expo IDs, ligand generic names, etc. The
data is linked to a page of the available activity data (Ki, Kd,
EC50, IC50, Ka, etc.) of ligands, the target information (e.g.,
PDB IDs), and so on. As mentioned above, the polypharmaco-
logical ligands can also be searched using either substructures
or using functional groups. The results are listed along with the
2D structure of each resulted polypharmacological ligand and
linked to (a) ligand physicochemical properties, (b) original
LigandExpo entry page, and (c) available activity data. With the

“Target” option, the queries can be PDB IDs (e.g., 1MLW),
disease names (e.g., cancer), target description (e.g., HIV-1),
etc. The results page shows the matched protein identities
along with their ligands as well as descriptions of the complex
structures. Furthermore, the activity data of ligands for different
targets is linked to the Ligand Expo IDs. Users can also explore
the link-out pages of PDB, DrugBank, and Ligand Expo
databases. More documentation with examples and screen shots
are available at our Web site http://imdlab.org/polypharma.
Users can also communicate with us for further suggestions or
questions.
As a unique and interesting feature, the ligand-target relations

are depicted and can be used to visualize the multitargeting
molecular interaction networks (Figure S8). This was built
upon our technology of molecular network analysis as
described previously.15 This in-house technique, as the first
step, generates the list of all the polypharmacological ligands
and, for each ligand, obtains the target information from our
curated database through SQL subroutines. Then for each of
the targets, all of their complexed ligands’ information is
obtained from RCSB and used to construct the graphical
network. An open source visualization software Graphviz62 is
employed to generate the ligand-protein networks for visual-
ization.

4. DISCUSSION

Despite their evident applications, polypharmacological studies
are attributed with several challenges. The major limitation is
that we only partially understand the pathways/mechanisms of
many diseases at the molecular level. It is exceedingly difficult
to derive the full polypharmacological networks without the
complete data. As a critical step of our attempt in this area,
Polypharma was built as a dedicated database specifically
designed for polypharmacology studies by providing accurate,
experimentally validated structural and activity data of multi-

Figure 5. Some of the screenshots of the graphical user interface of the Polypharma database.
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targeting ligands. We have mined and integrated information
from a number of existing databases to extract related data. The
database will be updated monthly, and future releases will
include new multitargeting ligand molecules together with their
targets and biological activities as they become available.
Additional functional features (e.g., searching by properties

such as LogP, ChemAxon fingerprints, etc.) will also be added.
Similarly we plan to integrate with more databases such as
PubChem database,63 ChEMBL database,49 and Community
Structure−Activity Resource (CSAR).64 We expect that our
dedicated database will lay a foundation for analysis of
multitargeting ligand properties and development of novel
polypharmacology approaches. In particular, with our accurate
activity data (both binary and continuous) along with high
resolution structures, investigators can develop various ligand-
based (e.g., QSAR) and structure-based (e.g., docking/inverse
docking) methods/models to predict off-targets or design
polypharmacological agents. Notably, the database would also
accelerate other drug development efforts such as drug-
repurposing.12,65,66 Therefore, we anticipate that this work
will vastly promote polypharmacology studies, and it is
significant to propel the field forward.
Moreover, there are a few cases where two different ligands

bind to different sites of the same protein, which may not be
true examples of polypharmacology but may affect the target
functions, e.g., binding of one may affect the binding of the
other due to allosteric effects. On the other hand, in many
cases, binding of one may have nothing to do with binding of
the other−especially if they bind to different domains. This
type of situation further makes the study more complicated and
needs to be addressed in the future. Last but not least, as we
already stated, it is important to realize that the current data
collection is far from complete. Absence of a ligand-target data
(structure or binding affinity) does not mean they are not really
interacting with each other. There could be possible
interactions that were not just yet reported. With more data
becoming available, we anticipate that our database will be
more useful for more accurate polypharmacology modeling.
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