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Abstract

Canonical processing of miRNA begins in the nucleus with the Microprocessor complex,

which is minimally composed of the RNase III enzyme Drosha and two copies of its cofactor

protein DGCR8. In structural analogy to most RNase III enzymes, Drosha possesses a

modular domain with the double-stranded RNA binding domain (dsRBD) fold. Unlike the

dsRBDs found in most members of the RNase III family, the Drosha-dsRBD does not dis-

play double-stranded RNA binding activity; perhaps related to this, the Drosha-dsRBD

amino acid sequence does not conform well to the canonical patterns expected for a

dsRBD. In this article, we investigate the impact on miRNA processing of engineering dou-

ble-stranded RNA binding activity into Drosha’s non-canonical dsRBD. Our findings corrob-

orate previous studies that have demonstrated the Drosha-dsRBD is necessary for miRNA

processing and suggest that the amino acid composition in the second α-helix of the domain

is critical to support its evolved function.

Introduction

MicroRNAs (miRNAs) are a class of small (20–22 nt) non-coding RNAs known to function

primarily in the cellular process of RNA silencing [1]. In order to execute its role in post-

transcriptional gene regulation, a mature miRNA binds a complementary messenger RNA

(mRNA) in the RNA induced silencing complex (RISC) and inhibits translation of the target

mRNA [2, 3]. Through their silencing functions, mature miRNAs have been shown to exert

control over many essential biological functions, including regulation of the cell cycle and

cellular differentiation [4, 5]. Among other broad applications, this has resulted in intense

study of the role miRNAs play in tumor cell proliferation, innate immunity, and other disease

mechanisms [6–8]. It is therefore no surprise that there is also a parallel and vigorous effort to

understand the molecular mechanism of miRNA maturation.
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The canonical miRNA maturation pathway begins with a primary transcript (pri-miRNA,

often encoded within the introns of nascent mRNA transcripts) that is processed in the

nucleus via the Microprocessor complex, which is comprised minimally of the catalytic unit,

Drosha, and two copies of its cofactor, DGCR8 [9]. After this initial processing, the precursor

miRNA (pre-miRNA) is exported from the nucleus via the Exportin-5 pathway [10] and fur-

ther processed in the cytosol by a complex minimally composed of Dicer, and its cofactor

TRBP (or in some cases PACT). This complex then associates with an Argonaut protein for

transfer of the miRNA guide strand into RISC [2, 11], where regulation of its complimentary

mRNA(s) occurs.

Double-stranded RNA binding domains (dsRBDs) are present in each major protein in the

miRNA maturation pathway (with the exception of Exportin-5), making them likely candidate

domains for RNA substrate recognition. Each dsRBD fold is comprised of a strictly conserved

α-β-β-β-α structure; sequence is not necessarily conserved, although some consensus elements

have been identified [12]. Both RNase III enzymes found in the miRNA processing pathway,

Drosha and Dicer, contain a single C-terminal dsRBD, whereas DGCR8 and TRBP each con-

tain multiple dsRBDs. The canonical binding face for dsRBDs includes protein residues found

in three spatially distinct regions initially identified by Ryter and Shultz [13]. Of greatest rele-

vance to the present study is Region 3: a cluster of residues at the N-terminus of α2 that is

enriched in arginine and lysine residues. Significantly, the presence of the Region 3 sequence

motif is not strictly conserved throughout the pathway. For example, the Region 3 motif is not

present in dsRBD3 of TRBP and PACT, or in Drosha’s dsRBD (Fig 1). Significantly, experi-

mental evidence demonstrates that the third dsRBDs of TRBP and PACT function as media-

tors of protein-protein interactions, not as mediators of dsRNA binding [14–16]. Interest in

the non-RNA binding dsRBDs of the miRNA processing pathway was recently elevated by a

co-crystal structure of TRBP-dsRBD3 in complex with the protein binding domain (PBD) of

Dicer [17]. Although Drosha’s dsRBD is essential for miRNA processing [9], we have shown

that it does not bind to dsRNA in vitro [18]. The uniform absence of dsRNA binding activity

among these three dsRBDs that possess non-canonical Region 3 motif sequences suggests a

causative relationship that has not yet been explored.

Here we present our success in engineering a dsRNA binding Drosha-dsRBD mutant,

which was achieved through site directed mutagenesis of the Region 3 motif. We refer to the

generated construct throughout as “Drosha-Quad,” in acknowledgement of the need for four

point mutations to encode the reported gain of function. Biophysical confirmation that the

overall fold was retained by solution NMR spectroscopy and demonstration that its RNA bind-

ing activity is similar to that of other canonical dsRBDs in the miRNA processing pathway.

Significantly, cell-based pri-miRNA processing assays conducted in the background of the

Drosha-Quad mutations demonstrate that avid dsRNA binding by the dsRBD of Drosha is

incompatible with efficient pri-miRNA processing.

Materials and methods

Protein preparation

Mutants were generated by the standard QuikChange Lightning site-directed mutagenesis

protocol,(Agilent Technologies) using a previously reported plasmid that encodes wt-Drosha-

dsRBD (1259–1337) in a pET-47b(+) vector [18]. Upon sequence confirmation, the mutant

plasmid was transformed into the Escherichia coli BL21(DE3) cell line for overexpression.

Cells were grown to OD600 = 0.5 at which point they were induced with 500 μM IPTG (final

concentration) at 24˚C for 16 hours. Cells were lysed via sonication and the expressed protein
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was purified as previously described for wt-Drosha-dsRBD [18], although the final experimen-

tal buffers were modified as described below.

RNA preparation

In preparation for both the binding and processing assays, pri-mir-16-1 was transcribed in
vitro, purified, and renatured as previously described [18]. For the long ds44 and ds33 con-

structs, in vitro transcription using a duplex method, followed by purification, was performed

as previously described [23]. The shorter ds22 RNA strands were purchased from Dharmacon

and deprotected using the manufacturer protocol prior to duplex formation. The RNA

sequences for both strands of each duplex used in this study are presented in Table 1.

NMR methods

Samples of uniformly isotope enriched 15N-Drosha-Quad or 15N,13C-Drosha-Quad were pre-

pared as described to a final concentration of ~800 μM protein in 100 mM sodium cacodylate,

pH 7.3, 100 mM KCl, 5 mM β-mercaptoethanol, with 10% (v/v) D2O to provide a lock signal.

All NMR spectra were collected at 25˚C.

Fig 1. Conservation of sequence and secondary structure in the dsRBDs of miRNA maturation pathway components. (A)

Sequence alignment of miRNA maturation pathway dsRBDs, with residue numbers provided relative to the human polypeptide sequence.

Secondary structures present in the known crystallographic or NMR structure of each domain are annotated in shaded boxes within

individual sequences, with general boundaries annotated below. Secondary structure assignments correspond to the following PDB files:

Drosha, 2KHX; [19] Dicer, 3C4B; [20] DGCR8-1 and DGCR8-2, 2YT4;[21] TRBP-1, 3LLH (unpublished); TRBP-2, 3ADL;[22] and TRBP-3,

4WYQ.[17] Asterisks and bolded text are used to annotate the residues mutated to generate the Drosha-Quad mutant. (B) Schematic

depicting the pre-RISC Dicer/TRBP/pre-miRNA complex, modelled to reflect interactions between TRBP’s dsRBDs 1 and 2 (Red) and the

stem of the pre-miRNA. TRBP-dsRBD3 (Blue) mediates protein-protein interactions with Dicer (grey scale), but has no known dsRNA

binding function. (C) Schematic depiction of the Microprocessor complex modelling the observation that DGCR8 (dsRBDs green ovals,

disordered regions black wavy lines) recognizes the distal loop while the catalytic unit, Drosha (grey scale, dsRBD blue), recognizes and

processes the apical stem. Similar to TRBP-dsRBD3, Drosha-dsRBD has no known dsRNA binding function.

https://doi.org/10.1371/journal.pone.0182445.g001
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Drosha-Quad backbone and side-chain resonances were assigned using standard
1H,15N-HSQC, 1H,13C-HSQC, HNCO, HN(CA)CO, CBCA(CO)NH, HNCACB, H(CCCO)

NH, and (H)CC(CO)NH experiments as implemented in the Topspin 3 pulse program library.

An aliphatic TOCSY mixing time of 22 ms was used for side-chain assignments. Additional

side-chain assignments were made using the standard HCCH-TOCSY experiment with a 36

ms mixing time. All experiments were performed on a Bruker Avance III 600 MHz spectrome-

ter equipped with a TCI cryoprobe for enhanced sensitivity. All triple resonance experiments

were performed using 25–40% sparsity non-uniform sampling. Spectra were processed in

Topspin 3 (Bruker) and analyzed using Sparky (T. D. Goddard and D. G. Kneller, SPARKY 3,

University of California, San Francisco). Chemical shift data for Drosha-Quad has been depos-

ited in the BioMagResBank (ascension number 25924).

ModelFree analysis

The dynamic properties of Drosha-Quad were examined using Lipari-Szabo model-free analy-

sis [24] as implemented in the ModelFree 4.20 software [25]. The diffusion tensor used in

these calculations was calculated using the quadric method [26, 27]. Internal dynamics for all

residues were described by fitting 600 MHz R1, R2 and NOE relaxation data to determine S2

and τe as previously described [18].

EMSA methods

In preparation for binding assays involving the variable length duplexes, the top strand RNA

was 5´-end labelled with γ-32P-ATP and mixed in a 3-fold molar excess with cold bottom

strand. The duplex was purified from an 8% acrylamide native gel. The pri-mir-16-1 construct

was similarly labeled with 32P-ATP and renatured via heating at 90˚C for 1 minute and snap

cooling at 4˚C for 5 min. Binding reactions were run in 50 mM sodium cacodylate pH 6.0, 50

mM KCl, 5% glycerol, 1mM dithiothreitol, 0.1 mg/ mL Bovine Serum Albumin and 0.1 mg/

mL herring sperm DNA for thirty minutes at room temperature. The reactions were loaded

onto a 10% acrylamide native gel and run at 200 V for 3.5 hrs at 4˚C.

Gels were imaged using a Typhoon-9410 imager and then quantified using the software

ImageQuant (GE Healthcare Life Sciences) as previously described [28]. For each lane, Image-

Quant was used to draw equivalent sized boxes around the unbound band and the space

between the unbound band and the bottom of the well. The fraction of RNA bound was deter-

mined by computing the ratio of the integrated intensities inside the two boxes for each lane.

The points in the titration curves represent the mean fraction bound from two gels and the

error indicated is the uncertainty of this value to one standard deviation. The curves were fit to

the general Hill equation binding model using Matlab (MathWorks).

Table 1. List of RNA sequences used in this work.

Name RNA sequence 5´ to 3´

pri-mir-16-

1

GGG UGA UAG CAA UGU CAG CAG UGC CUU AGC AGC ACG UAA AUA UUG GCG UUA AGA UUC UAA
AAU UAU CUC CAG UAU UAA CUG UGC UGC UGA AGU AAG GUU GAC CAU ACU CUA C

ds44 TS GGU CAG CAG UGC CUU AGC AGC ACG UAA AUA UUG GCG UUA AGA CC

ds44 BS GG UCU UAA CGC CAA UAU UUA CGU GCU GCU AAG GCA CUG CUG ACC

ds33 TS GGU CAG CAG UGC CUU AGC AGC ACG UAA AUA UGG

ds33 BS CCA UAU UUA CGU GCU GCU AAG GCA CUG CUG ACC

ds22 TS GUC AGC AGU GCC UUA GCA GCA C

ds22 BS G UGC UGC UAA GGC ACU GCU GAC

https://doi.org/10.1371/journal.pone.0182445.t001
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Processing assay methods

All Drosha constructs and WT DGCR8 were overexpressed in HEK-293T cells. Plasmid was

transfected into cells using Lipofectamine 2000 (Invitrogen) per the packaged instructions. Mock

was similarly treated with Lipofectamine using the same procedure, but lacking plasmid DNA.

Forty-eight hours later the cells were washed and subsequently harvested using phosphate-buff-

ered saline and lysed via sonication using a buffer comprised of 20mM Tris, 100 mM KCl and

0.2 mM EDTA at pH 8.0. The lysate was cleared of cellular debris via centrifugation and com-

bined with RNasin (Promega), 10 fmol 5´-end labeled RNA was generated using γ-32P-ATP as

described above, or body labeled using α-32P-UTP as previously described [28]. For all reactions,

MgCl2 was added to a final concentration of 6.4 mM. The reactions were incubated at 37˚C for

30 minutes and immediately thereafter loaded onto 10% polyacrylamide denaturing gels for

analysis. Processing efficiency was calculated by comparing the density of the pri-miRNA band

to that of the 5´-fragment (end labeled) or pre-miRNA band (body labeled), with uncertainties

in the relative densities determined from the standard deviation of triplicate measurements.

Results

Generation of the Drosha-Quad mutant

The three dsRBDs found in the miRNA processing pathway that do not possess demonstrated

dsRNA binding activity all have non-canonical amino acid sequences in their Region 3 motif

(Fig 1). Therefore, this study was initiated through mutagenesis of Drosha-dsRBD designed to

directly test the hypothesis that the dsRNA binding function of dsRBDs is established by the

amino acid composition of the Region 3 motif. Re-introduction of the Region 3 motif into

Drosha-dsRBD through three point mutations (I1317K, Q1318K, E1321K; numbering relative

to the human polypeptide sequence) resulted in an insoluble recombinant construct when

expressed in E. coli. Examination of the protein sequence, compared to other dsRBDs (Fig 1)

revealed that an unusual lysine residue is present near the N-terminus of helix-1 (marked with

an asterisk in the sequence alignment). Visual inspection of the NMR structure of wild-type

Drosha-dsRBD demonstrated that this lysine projects into the same region of space as the

three sidechains from the Region 3 motif,[19] leading us to speculate that too much charge

was being introduced into this region in our mutant, causing the domain to become unstable.

Mutation of this residue to a β-branched aliphatic amino acid (K1262I), which is more repre-

sentative of the canonical dsRBD sequence motif, in the background of the three α2 mutations

already introduced, yielded the soluble and stable recombinant construct (Drosha-Quad)

reported here (visualized in Fig 2A).

Analysis of the HSQC overlay, comparing WT Drosha-dsRBD and Drosha-Quad (Fig 2B),

reveals excellent signal dispersion and overall preservation of the wild-type resonance pattern

[18]. We next aimed to confirm that the backbone dynamics of these two constructs are also

consistent through measurement of 15N-spin relaxation (Fig 3). Reassuringly, qualitative

trends in the calculated order parameters for wt-Drosha-dsRBD and Drosha-Quad are nearly

identical (Fig 3A) and both are consistent with estimates of ps-ns dynamics established by

[1H],15N-NOE values independently reported for Drosha-dsRBD [19]. While there is a slight

baseline offset in the order parameter profiles, this may be attributable to subtle changes in the

diffusion tensor for Drosha-Quad and therefore is not deemed large enough to be significant.

It is noteworthy that the order parameters in the mutated portion of α2 (i.e., Region 3) are

among the most different, suggesting that some stiffening of the backbone may have occurred

as a result of the mutations. Taken together, these NMR data confirm that the overall structure

and dynamics of Drosha-Quad are in good agreement with those of the wild type domain.
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Region 3 sequence drives dsRNA binding by Drosha-dsRBD

In general, dsRBD proteins bind to A-form dsRNA duplexes with observed equilibrium disso-

ciation constants in the low micromolar range (Kd,obs ~ 1–10 μM) under in vitro conditions

and do so without (strong) sequence preference,[29, 30] although exceptions that display

sequence specificity have been noted [31, 32]. Our laboratory has characterized the structure

of an in vitro transcribed pri-mir-16-1 construct [33] and used this model to establish the

dsRNA binding affinity of the dsRBDs from DGCR8 [18, 28], TRBP [34], and Dicer [23], as

summarized in Table 2. Our results have proven to be highly consistent with those reported by

other laboratories using related pri-miRNA constructs [35, 36].

Although wt-Drosha-dsRBD possesses no native dsRNA binding activity,[18] we observe

strong binding to pri-mir-16-1 by Drosha-Quad (Kd,obs = 2.8 ± 0.1 μM; Table 2) through

native gel assays (Fig 4A). Beyond characterizing the equilibrium binding of native-inspired

pri-miRNA constructs, our laboratory has also established that isolated dsRBDs characteris-

tically bind to longer dsRNA duplexes with modestly tighter observed affinities when length

is varied in duplexes of <50 base-pair total length (Table 2). For comparison, the stem region

of pri-mir-16-1 contains 39 base pairs. Although the measured equilibrium constants for

Drosha-Quad binding to the same panel of dsRNA duplexes are on the high end of our previ-

ously reported range (Table 2; see Fig 4B–4D for representative EMSA gels and fits), the

same trend of tighter binding to longer dsRNA constructs is observed. Taken together, we

conclude from this data that modifying the amino acid sequence of the Drosha-dsRBD

Region 3 motif to be near-canonical is sufficient to restore native-dsRBD binding behavior

to the domain.

Fig 2. NMR analysis of Drosha-Quad structure reveals preservation of the dsRBD fold with a well-packed Region 3 motif. (A)

Tertiary packing near Region 3 provides a rationale for protein instability prior to introduction of the K1262I mutation in α1. The four mutated

residues are shown in stick representation on the ribbon diagram. (B) 1H,15N-HSQC overlay of wt-Drosha-dsRBD (hollow black) and

Drosha-Quad (purple) confirms good peak dispersion, characteristic of a folded structure, and an overall similarity to the wild-type HSQC.

https://doi.org/10.1371/journal.pone.0182445.g002
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Fig 3. NMR spin relaxation reveals similar backbone structural dynamics in wt-Drosha-dsRBD and

Drosha-Quad. (A) Per-residue order parameters (S2) for wt-Drosha-dsRBD (blue) and Drosha-Quad

(purple). Uncertainties in the best fit value of S2 are represented as error bars that are generally smaller than

the size of the marker. Order parameters were derived by fitting per-residue (B) longitudinal relaxation times

(T1 = 1/R1), (C) Transverse relaxation times (T2 = 1/R2), and (D) [1H]-15N NOE data collected at 600 MHz

proton resonant frequency. Secondary structure positions are annotated with bars above the figure and the

positions of the four mutations introduced to generate Drosha-Quad are indicated with an asterisk.

https://doi.org/10.1371/journal.pone.0182445.g003

Table 2. Best fit observed macroscopic binding affinities (Kd,obs, μM) as determined by EMSA for dsRBD constructs relevant to the miRNA pro-

cessing pathway.

RNA Drosha-Quad Dicer-dsRBDa DGCR8-dsRBD1b TRBP-dsRBD1c TRBP-dsRBD2c

pri-mir-16-1d 2.8 ± 0.1 2.2 ± 0.1 9.7 ± 0.6 N/De N/De

ds44 6.5 ± 0.6 2.4 ± 0.1 5.9 ± 0.1 0.8 ± 0.05 0.8 ± 0.06

ds33 7.8 ± 0.2 4.9 ± 0.1 8.8 ± 0.2 0.9 ± 0.3 1.0 ± 0.08

ds22 13.4 ± 0.4 6.5 ± 0.1 21 ± 1.0 3.5 ± 0.2 1.7 ± 0.1

a Data reproduced from [23].
b Data reproduced from [18].
c Data reproduced from [34].
d pre-mir-16-1 was substituted for interaction with Dicer-dsRBD.
e Binding not determined.

https://doi.org/10.1371/journal.pone.0182445.t002
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Preserving the wt-Drosha-dsRBD Region 3 motif is essential for miRNA

processing

Having established that Drosha-Quad displays canonical dsRNA binding activity, we finished

this study by investigating whether or not our altered Drosha-dsRBD supports native miRNA

processing. To this end, we incorporated the Drosha-Quad point mutations into full-length

Drosha and assayed the resulting protein for processing ability in the context of the Micropro-

cessor. First, in order to verify that the Drosha-dsRBD is necessary for miRNA processing

in our assay, we co-transfected 293T cells with plasmids encoding wild-type DGCR8 and

Drosha-ΔdsRBD (a construct in which the C-terminal dsRBD was deleted). As shown in Fig

5A, transfection with wt-Drosha yields enhanced processing of our pri-mir-16-1 substrate,

whereas transfection with Drosha-ΔdsRBD did not elevate processing above mock levels.

Unexpectedly, transfection with a plasmid encoding full-length Drosha-Quad also did not

enhance pri-mir-16-1 processing above mock levels (Fig 5B). The results of our assay lead to

the conclusion that Drosha-mediated miRNA cleavage activity is incompatible with avid

dsRNA binding activity attributable to the Drosha-dsRBD.

While compelling, the Drosha-Quad processing results do not address whether dsRNA

binding activity is directly responsible for the observed loss of processing function, or if the

non-canonical amino acid composition of Region 3 has arisen in support of another unidenti-

fied function, such as mediation of protein-protein interactions. We and others have previ-

ously shown with DGCR8 [21] and TRBP [34] that alanine-substitution mutation of the

Region 3 motif is sufficient to eliminate dsRNA binding activity in dsRBDs. Therefore, as a

control to test the hypothesis that impaired miRNA processing by Drosha-Quad is a result of

altered Region 3 sequence, and not directly a result of gain-of-function with respect to dsRNA

binding, we introduced three alanine substitution mutations (I1317A, Q1318A, and E1321A).

This triple-alanine Drosha-dsRBD mutant was confirmed through EMSA not to bind dsRNA

(Fig 6A). Significantly, transfection of 239T cells with full-length Drosha bearing the triple-

alanine elimination of wild-type Region 3 sequence failed to support pri-mir-16-1 processing

(Fig 6B). In summary, disruption of the Region 3 sequence in Drosha-dsRBD is sufficient to

inhibit miRNA processing in cellular extracts, regardless of whether the mutant dsRBD dis-

plays dsRNA binding activity or not.

Fig 4. Electrophoretic mobility shift assays of Drosha-Quad binding to a panel of dsRNA substrates. (A) Drosha-Quad titrated into

an in vitro model for pri-mir-16-1, (B) ds44, (C) ds33, and (D) ds22 perfect Watson-Crick duplexes. Asterisks denote RNA only lanes and

increasing protein concentration ranges are indicated below the wedge. In the bottom panels the fraction bound in each lane is displayed as

average ± standard deviation, with fits to the general Hill Equation presented as a solid grey line. The insets provide averaged best fit values

of the observed dissociation constant (Kd) and Hill coefficient (n) with errors to one standard deviation.

https://doi.org/10.1371/journal.pone.0182445.g004
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Discussion

Recent characterization of the Dicer-PBD:TRBP-dsRBD3 interaction [17] has stimulated new

interest in understanding the function of non-canonical dsRBDs in the context of the miRNA

processing pathway. While the non-canonical dsRBD of Drosha and TRBP-dsRBD3 are simi-

lar in their demonstrated lack of dsRNA binding activity, the data presented here provides an

intriguing contrast with the mechanism of TRBP-dsRBD3 function. In the case of TRBP, the

Region 3 motif region of the dsRBD surface is not part of the protein-protein interface formed

with Dicer. In contrast, we have shown that the Drosha-dsRBD function in the context of

the Microprocessor depends on preservation of its wild-type, non-canonical Region 3 motif

sequence. This observation suggests that the necessary function of Drosha-dsRBD in miRNA

Fig 5. HEK 293T cell-based processing assays reveal that Drosha-Quad is unable to stimulate miRNA

processing. (A) A representative gel depicting processing of 5´ end-labelled pri-mir-16-1 by recombinant

Microprocessor in HEK 293T cell lysate incorporating wt-Drosha or Drosha-ΔdsRBD. (B) The same

processing assay performed with Drosha-Quad. In both panels, the migration position of uncut pri-mir-16-1

and the cut 5´ fragment are labelled.

https://doi.org/10.1371/journal.pone.0182445.g005
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processing is likely to be mediated by macromolecular interactions that are structurally dissim-

ilar to the TRBP-Dicer interaction.

As the example of TRBP-dsRBD3 illustrates, the dsRBD fold is not exclusively used in

nature for dsRNA binding, but rather many variations have evolved to support other func-

tions, often mediated by protein-protein interactions. For example, insertion of extra residues

into the α1-β1 or the β1-β2 loop of the dsRBD fold has previously been suggested as a mecha-

nism for imparting dual RNA and protein binding activity [37, 38]. As seen in Fig 1, Drosha-

dsRBD contains an extension of this type. This suggests that protein-protein interactions may

be mediated by the extended α1-β1 loop of Drosha-dsRBD too. We have previously suggested

that the dynamics of Drosha-dsRBD’s extended α1-β1 loop may in some way impair dsRNA

binding by the domain [18]. In contrast, our present work shows convincingly that the loss of

non-canonical but conserved Region 3 motif sequence in this dsRBD is responsible for its loss

of dsRNA binding activity.

Finally, the advances we report here in understanding Drosha-dsRBD function are espe-

cially intriguing in light of recent work that has challenged a number of previous DGCR8-cen-

tric models for Microprocessor assembly. In a landmark study, the Kim lab has shown that the

minimal Microprocessor components needed to reconstitute function in vitro are the C-termi-

nal region of Drosha, from the central domain to the native C-terminus, and a 73-residue C-

terminal tail of DGCR8 [39]. It is noteworthy that no specific function was attributed to the C-

terminal tail of DGCR8 in that study [39], although mediation of protein-protein interactions

with Drosha is an obvious hypothesis. In both pulldown assays and NMR titrations we were

unable to demonstrate an interaction between the C-terminal tail of DGCR8 and the dsRBD

from Drosha (data not shown). Therefore, if the functional role of the Drosha-dsRBD in vivo

is to mediate protein-protein interactions in the Microprocessor complex, the target(s) of this

interaction remain unidentified.

In summary, the C-terminal dsRBD of Drosha deviates from the expected sequence for a

dsRBD in two key ways: it possesses a non-canonical Region 3 motif and an extended α1-β1,

both of which have previously been associated with biological functions that are unrelated to

Fig 6. Replacement of critical Region 3 residues with alanine prevents miRNA processing while

preserving a lack of dsRNA binding. (A) A representative EMSA gel demonstrating that the triple-alanine

Drosha-dsRBD mutant is not able to bind dsRNA at achievable protein concentrations. (B) A representative

gel depicting processing of uniformly α-32P-ATP body-labelled pri-mir-16-1 by recombinant Microprocessor in

HEK 293T cell lysate. The migration positions of uncut pri-mir-16-1 and processed pre-mir-16-1 are labelled.

https://doi.org/10.1371/journal.pone.0182445.g006
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dsRNA binding. Here we have designed a canonical Region 3 sequence into the Drosha-

dsRBD, with the result that we are able to show in vitro dsRNA binding properties for Drosha-

Quad that are highly consistent with those of other well-characterized dsRBDs. In contrast, we

find that Drosha-Quad does not support miRNA processing in the context of the Microproces-

sor. This result suggests that Drosha-dsRBD may behave consistently with the growing num-

ber of non-canonical dsRBDS that mediate protein-protein interactions using the α1-α2

interface [40]. Finally, our processing assays clearly demonstrate that the Drosha-dsRBD is

essential for dsRNA processing in vitro, which is consistent with the minimal Microprocessor

results discussed above [39]. Taken together, these findings demonstrate an affirmative role

for Drosha-dsRBD in Microprocessing and suggest that the chemistry of the canonical dsRNA

binding face, dominated by the sequence of the Region 3 motif, is strongly coupled to dsRBD

function.
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